
Operating System Support for Fan-Out File Systems
Charles P. Wright, Puja Gupta, Harikesevan Krishnan,Kiran-Kumar Muniswamy-Reddy

Mohammad Zubair, and Erez Zadok
Stony Brook University

Stackable file systems are a portable mechanism to extend file
system functionality without the complexity of creating an en-
tirely new disk-based or network-based file system. Normally,
applications execute system calls, then the VFS calls, the file
system directly. With stacking, the VFS calls the stackable file
system which in turn calls the lower-level file system. An im-
portant class of stackable file systems is fan-out file systems in
which one upper-level object can be represented by more than
one lower-level object.

Traditional stackable file systems form a linear stack of layers.
Fan-out file systems, however, use multiple underlying directo-
ries. Examples include unification, replication, load balancing,
RAID-like file systems, sandboxing (privilege or access separa-
tion), and others. Fan-out can even occur within a single direc-
tory: for example, checksums, indexes, or extra mappings can
be stored in databases or auxiliary files.

Unfortunately, current OS infrastructure is insufficient to sup-
port fan-out file systems: error handling and reporting needs to
improve in the face of partial errors; file systems need to be able
to disambiguate between conflicting data; and remote file system
components need improved communication.

Partial Failures The POSIX API essentially has a binary re-
turn value (0 for true and −1 for false); but by their very nature,
fan-out file systems are more complicated than a simple binary
return value. When an operation fails in a fan-out file system,
there are two distinct cases: (1) the operation fails completely,
and (2) the operation only partially fails. The current APIs are
not equipped to pass the complex status of a fan-out operation,
which describes whether the operation was successful on each
underlying object and if not, report the appropriate error code;
existing error codes are too rigid and cannot be extended easily.
File systems, indeed all kernel components, should be able to
dynamically register new error codes and associated messages
with the kernel.

There are three approaches that we are exploring to deal with
partial failures. First, we are designing fan-out file systems that
hide as possible partial failures from user-space. Second, we are
modifying the POSIX API to return complex error codes. Third,
we are developing a generic transaction mechanism for file sys-
tems, such that they roll back partially completed actions. In our
unification file system, unionfs, we are using various methods
to reduce the number of partial errors. Unionfs merges the con-
tents of several directories, called branches. Unionfs can be used
to merge the contents of split CD-ROMs or to manage source
code and object files. We assign each branch a precedence, the
branches with a higher precedence are to the left of directories
with a lower precedence. When an error occurs, we require that
the view of the file system does not change, rather than the more
stringent requirement that nothing changes on disk. To reduce
the number of partial errors, we use careful ordering of opera-
tions. For example, to remove a file in unionfs we must ensure

that the user’s view of the file system never changes unless the
operation succeeds. To satisfy this invariant, we remove files
going from right to left. If the operation fails, then the leftmost
file is not deleted and the file system remains the same. If the
operation proceeds all the way to the leftmost branch, then the
operation is successful. Ordering operations preserves the con-
tents of Unionfs, but not the underlying file systems. To handle
partial errors with no on-disk changes, we must implement VFS
transactions and rollback. Presently several file systems have
support for transactions, but only deep inside the internals of the
file system. Transactions should be exposed to other kernel (and
user-space) components, and should be part of the VFS rather
than being reimplemented in each individual file system.

Disambiguating Data In a fan-out file system, data comes
from various sources and can conflict. In Unionfs, for exam-
ple, an object can exist as a file in one branch and a directory in
the next. We use the left-to-right precedence rule to resolve this
conflict, but in other file systems (e.g., replication) this indicates
data corruption and the method for resolving it is not clear. We
are exploring a file-system level checker (ala fsck) to resolve
such conflicts.

A more subtle form of conflict occurs when enumerating di-
rectory entries. If there are two branches with distinct permis-
sions making up a union, then the following can occur: user
cpw may read only the left branch, but user ezk may read both
branches. Since the directory entry caches are global, not per-
user, cpw could gain access to entries that he should not or en-
tries will be missing from ezk’s view. To resolve this we will
create per-user views of a single file system.

Communication For several new file systems, communica-
tion between file systems across the network will be required.
For example, a replication file system needs to re-synchronize
replicas after errors and a secure network file system needs to
transmit authentication tokens from client to server. We are
developing methods to communicate using only standard VFS
methods. The two methods of communication we are develop-
ing are using reserved file names that act as pipes and extended
attributes. Each file system can open a special file, for example
/.vfs_pipe, on the remote stackable file system. Data can
then be transferred using the standard read and write VFS calls.
This can be useful for bulk data transfers, but results in complex
overloading of existing VFS operations. Alternatively, Extended
Attributes (EAs) are divided into separate namespaces, so we can
choose a unique namespace and not modify any existing seman-
tics. Setting an EA invokes special methods, and retrieving an
EA obtains a return code (similarly to /proc entries on Linux).
EAs are tied to an inode, so an operation is invoked on the object
it uses.


