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PC-Expo: A Metrics-Based Interactive Axes Reordering Method for
Parallel Coordinate Displays

Anjul Tyagi, Tyler Estro, Geoff Kuenning, Erez Zadok, Klaus Mueller

Fig. 1. PC-Expo is a real-time all-in-one Parallel Coordinate Plot (PCP) axes reordering framework. PC-Expo detects local properties in
high-dimensional data that can be used to reorder the PCP axes automatically or with human-in-the-loop (HIL) interactions A. We have
implemented detectors for the 12 most common data properties used to reorder PCPs, shown on the properties panel B. Users can
create their own optimization scheme using a weighted sum of these properties, by selecting respective properties and weights from
(B), summarized as a donut chart E for automated axes reordering. PC-Expo also supports HIL axes reordering via a heatmap and
local views D, C, and F . D summarizes the weighted sum of user-selected properties detected locally for each axis pair. C shows
where these visualization properties were detected for a particular axis pair, with a linked scatterplot F for visualizing the 2D data
points. Users can manually reorder the axes using these local views by clicking on D sequentially. The granularity slider in B lets users
control the size of local regions used to detect the properties. Area charts next to PCP axes in A show the local regions where the
properties selected on (B) are detected on the axis.

Abstract— Parallel coordinate plots (PCPs) have been widely used for high-dimensional (HD) data storytelling because they allow for
presenting a large number of dimensions without distortions. The axes ordering in PCP presents a particular story from the data based
on the user perception of PCP polylines. Existing works focus on directly optimizing for PCP axes ordering based on some common
analysis tasks like clustering, neighborhood, and correlation. However, direct optimization for PCP axes based on these common
properties is restrictive because it does not account for multiple properties occurring between the axes, and for local properties that
occur in small regions in the data. Also, many of these techniques do not support the human-in-the-loop (HIL) paradigm, which is
crucial (i) for explainability and (ii) in cases where no single reordering scheme fits the users’ goals. To alleviate these problems, we
present PC-Expo, a real-time visual analytics framework for all-in-one PCP line pattern detection and axes reordering. We studied
the connection of line patterns in PCPs with different data analysis tasks and datasets. PC-Expo expands prior work on PCP axes
reordering by developing real-time, local detection schemes for the 12 most common analysis tasks (properties). Users can choose
the story they want to present with PCPs by optimizing directly over their choice of properties. These properties can be ranked, or
combined using individual weights, creating a custom optimization scheme for axes reordering. Users can control the granularity at
which they want to work with their detection scheme in the data, allowing exploration of local regions. PC-Expo also supports HIL axes
reordering via local-property visualization, which shows the regions of granular activity for every axis pair. Local-property visualization is
helpful for PCP axes reordering based on multiple properties, when no single reordering scheme fits the user goals. A comprehensive
evaluation was done with real users and diverse datasets confirm the efficacy of PC-Expo in data storytelling with PCPs.

Index Terms—High dimensional data visualization, Parallel Coordinates Chart, Data Storytelling, Data Analysis
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1 INTRODUCTION

Visual analytics of high-dimensional (HD) data is crucial in many
applications. Common HD visualization techniques include embedding
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1 INTRODUCTION

Visual analytics of high-dimensional (HD) data is crucial in many
applications. Common HD visualization techniques include embedding

Fig. 2. PCP axes reordering based on multiple properties. In many
applications, it is desired to reorder PCP axes based on the property
that pops out the most in a particular axis pair. The example shows axes
reordering based on six different properties. The scatterplots below each
axis pair show the data points in 2D.

methods like MDS [26,27] and t-SNE [50], and projection methods like
RadViz [10] and Star Coordinates [24]. Most of these techniques suffer
from information loss and distortions as the data is transformed to lower
dimensions. Parallel Coordinate Plots (PCPs) [20] have been a popular
choice for HD data visualization since they can convey a large number
of dimensions without distortions. PCPs are considered a storytelling
method where each ordering of axes presents a particular story from
the HD data, and techniques like axes repetition, data scaling, and axes
inversion have been suggested to enable a persuasive narration of a
story [18, 40, 46, 47]. Previous storytelling work with PCPs mainly
focused on axes arrangement based on common data properties like
correlation, clustering, and the number of line crossings [43]; they
detect these properties in every pair of dimensions in the data and then
find the corresponding axes arrangement using the traveling salesman
problem (TSP) [15, 53] over the computed scores. Yet, given the
complex patterns that can appear in HD datasets, there is no one-
solution-fits-all for PCP axes arrangement and storytelling. Different
use cases require conveying different stories through PCPs and hence
require different axes arrangements.

Existing, fully automated PCP axes-arrangement techniques have
four major shortcomings. The first is the lack of human-in-the-loop
(HIL) support, which limits their utility to just a few applications.
Second is the lack of capabilities to explore local regions (a subset of
records) of the data. As HD data are typically complex many properties
may only occur locally. For example, there can be local regions of
positively correlated clusters in an overall negatively correlated data
set. Depending on the use case, such local clusters could have major
significance. However, these regions might be completely ignored
by fully automated axes-ordering techniques if they are dominated
by other, more global phenomena gauged by a global metric. While
techniques exist that work with local detection [30] they are too slow
since they work at a fairly low level of granularity. In addition, they
also lack adaptability since the size of the local regions cannot be
customized.

Third, there is also a growing interest in explainability [8, 48, 49, 52]
in modern computer-human interaction systems. For visualization
frameworks that are deployed for high-liability applications (e.g., crime-
fighting), explainability is a crucial feature. Most existing PCP axes-
ordering techniques fail to convey why a particular ordering was chosen.
The fourth and final shortcoming involves a lack of support for axes
reordering with multiple patterns. For example, in Figure 2 one of the
analysts from our user study preferred to order the PCP axes based on
different properties instead of just using a single property. This calls for
a HIL paradigm and an all-in-one, explainable PCP storytelling system.

We designed PC-Expo (see Figure 1) to address these pending issues
which all call for a more refined PCP axes reordering methodology.
PC-Expo offers real-time detection schemes for the 12 most common
data analysis properties used to reorder PCPs, previously introduced
by Blumenschein et al. [7]. Users can create their optimization scheme
using these properties and detect them locally across the data dimen-
sions. PC-Expo supports automated and manual axes reordering based

Table 1. Comparing PC-Expo with different PCP reordering algorithms
based on the type of properties (Figure 3) they can detect (blue) and
the optimization schemes they follow (brown). Pairwise Axes optimiza-
tion refers to techniques optimizing on pairwise-dimension values of the
detected properties and then finding the axes ordering using TSP [12].
Localized axes means that the technique allows local detection of prop-
erties in the data.
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on these detected properties. To support a HIL paradigm with explain-
ability, PC-Expo incorporates a local view of each dimension pair,
highlighting regions of local activity in the data.

Our main contributions (plus code and software release) 1 are:
• Localized and real-time detection algorithm implementations for

the 12 most common properties [7] used for PCP reordering;
• HIL and explainable PCP axes reordering via local views in PC-

Expo (see Figure 1, labels C, D, and F);
• Multi-property axes reordering (see Figure 2); and
• A fully automated optimization algorithm for PCP axes reordering

based on localized property detection.

2 RELATED WORK

We summarize several lines of PCP axes-reordering research by com-
paring them based on the type of properties they can detect and the
optimization schemes they follow (see Table 1). Based on the 12 most
common data analytics properties, that can be used to reorder PCPs as
described in [7], Table 1 compares techniques that are used to detect
these properties partially. Compared to the individual techniques, PC-
Expo can be used to detect all the 12 properties available in a single
interface.

2.1 High-Dimensional Data Visualization
High-dimensional (HD) data come in various types: numerical, ordinal
and nominal. While some HD data visualization techniques are specifi-
cally designed for only a subset of these data types, others apply to all.
The most general data type is numerical, and techniques [54] have been
proposed to convert ordinal and nominal into numerical values for bet-
ter visualization and data handling. A popular paradigm for visualizing
HD numerical data is the scatterplot matrix [17], which decomposes the
HD space into a set of bivariate projections. Variants of this approach

1PC-Expo demo is available at: https://paracoords.herokuapp.com/
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Fig. 3. Properties and their corresponding line patterns detectable in
PC-Expo. Blumenschein et al. [7] proposed these line patterns and
related them to common analytical tasks. Below, in red, each analytical
task is the method we have used in PC-Expo to detect the corresponding
patterns locally in the data.

include bi-variate projections of the full space and HyperSlices-based
approaches [5, 37]. However, these techniques do not scale with the
number of attributes as the number of plots increases exponentially.
Even though quality metrics like DSC [42] can be used for automated
plot selection and reduction, it remains difficult to mentally fuse the
disjoint relationships conveyed in the individual plots.

Techniques that use non-linear optimization to embed the data into
a 2D plane can overcome these challenges. They include MDS [26],
Kernel PCA, Local Linear Embedding [39], Spectral Clustering [34],
and t-SNE [50]. However, these techniques lose the context to the
attributes in the data transformation process, making it difficult for users
to discern the semantics of the embedded patterns. Conversely, linear
transformations into a radial layout as produced by RadViz [10, 16, 19]
and Star Coordinates [24, 28] preserve this context, but they cannot
preserve distance relationships which can lead to ambiguities in the
layout. Adding an optimization step can recover these relationships [9].

PCPs have the unique ability to visualize HD data without any distor-
tions or ambiguities. Their inherent shortcoming is that the information
that can be visually extracted is dependent on the axes ordering. Scala-
bility to large datasets is also a problem as the increasing number of
polylines leads to cluttered displays which are hard to read. To alleviate
the latter, Ellis and Dix [13] calculate the over-plotting percentage in
PCPs and provide a lens system to see through highly cluttered regions
in the plot. An improvement of this work includes clutter-reduction
techniques in PCPs [14]. Illustrative PCP [31] aims to reveal differ-
ent patterns in PCPs lines using edge bundling, axes distribution, and
cluster visualization. Johansson et al. [22] discuss four methods to
reveal clusters in PCPs using data-transformation techniques. They pro-
pose that data scaling using root and log transforms can reveal patterns
in PCP lines. Pomerenke et al. [38] describe the existence of ghost
clusters in PCPs because of line patterns, which can be prevented by
adjusting line widths in PCPs at specific positions based on projection
angles. Peng et al. [36] show how to properly cluster the PCP lines
with a strategy that assigns each point to a PCP cluster. Improving upon
clustering with PCPs, Peltonen et al. [35] describe how to find local
and global neighbors of data points in a PCP.

All of these techniques focus on detecting patterns in an already
existing PCP representation. However, as mentioned, the axes ordering
plays a crucial role in generating the data pattern that are actually
revealed to the user and the detector. In PC-Expo, we take one step back
and allow users to prioritize and detect the patterns in the generation
stage which greatly increases the yield. It allows users to reorder the
PCP’s axes to present the desired pattern-based story through PCPs.

2.2 HD Data Visualization Metrics
HD data metrics are used to bridge the gap between visual representa-
tion through charts and analytical tasks that are commonly performed
on such data. Visualizations are affected by the choice of metrics that
analysts use to create them; this resonates with the idea that every visu-
alization has a story to tell, and that these metrics help in quantifying
how well a visualization depicts the story [32]. Tufte [44] was the

first to propose quality metrics for 2D charts, which spawned several
additions to better represent information in 2D scatterplots. Eagan
et al. [1] relates these metrics to most common data-analytics tasks,
listing correlation and cluster identification as the two most important
quality metrics for scatterplots. Bertini et al. [6] suggests sampling met-
rics for scatterplots to reduce the cluttering of points. Scagnostics [45]
suggests metrics for detecting visual structures in scatterplots, which
were extended by Wilkinson et al. [51].

Along with metrics for 2D data, specific metrics have been devised
for analyzing line patterns in PCPs. Blumenschein et al. [7] suggest 12
metrics and their line patterns in PCPs which can impact the quality and
visual representation of the plots. Pargnostics by Dasgupta et al. [12]
proposed 6 metrics for PCPs and a reordering strategy based on these
properties. Users could create a weighted optimization scheme based
on the Pargnostics properties, which motivated our development of
PC-Expo. Beyond Pargnostics, other metrics covered in Blumenschein
are convergence of lines [30], outliers [36], skewness and variance [29],
and axes similarity [2]. These metrics can assist in storytelling with
PCPs. However, they are not available in a single interface and some
of these techniques are unusably slow on large datasets, as seen in our
evaluation results (Section 6). PC-Expo extends these properties by
adding PCP axes reordering with positive and negative skewness and
variance (Figure 3). We developed real-time detectors for these line
patterns using analytical methods and parallel programming, which are
all available to users in a single interface. Also, users can detect these
line patterns locally in the data, a feature that is not supported in any
prior work that we are aware of.

2.3 Axes Reordering in Parallel Coordinate Plots
Axes reordering in PCPs play a crucial role in presenting desired infor-
mation accurately. This has been a major application for the metrics
devised for PCPs (see Section 2.2). Some of the algorithms optimize to
find the ordering directly on the data [3, 21] while others calculate the
PCP metrics for every axis pair before optimizing [12, 30, 36]. After
the metrics are calculated for every axis pair, TSP solvers can be used
to find the PCP axes reordering from the data [12]. A major limitation
of existing algorithms is the lack of localized detection of these metrics.
For example, there can be local regions of positively correlated clus-
ters in an overall negatively correlated data set. With metric detection
without localized support, the algorithm will return zero correlation for
such data. With existing techniques, such local attributes in the data
go undetected during PCP reordering. Also, it is hard for the users to
clearly visualize why a particular ordering was chosen, and there is
no way to enter user feedback into these algorithms. In PC-Expo, we
introduce localized detection of all the line patterns in PCPs; and these
can be fully controlled by users. Users can choose the localization level,
or even reorder the axes based on different metrics manually, using the
scores obtained via our detection scheme.

3 FORMATIVE STUDY

To systematically evolve our idea of an all-in-one PCP axes-ordering
framework, we applied Munzner’s nested model [33] for visualiza-
tion application design. Before designing PC-Expo, we conducted a
formative study to get to know user requirements and their views on
the state-of-the-art PCP tools, libraries, and general workflows. This
approach helped us concretize PC-Expo’s design with a user-centered
evaluation at an earlier development stage.

The formative study participants were carefully chosen to be analysts
and researchers who use PCPs as their regular visualization technique
for HD data. A total of 10 participants contributed to this study, out
of which 4 were visualization researchers (3 Ph.D. students and 1
professor), 3 systems researchers (1 Ph.D. student and 2 professors),
and 3 data analysts working in the industry. While the data analysts
and visualization researchers helped us design the principles related
to visual aspects of PCPs, the systems researchers helped us make the
PCPs more generic and applicable across different domains. One of
the major contributions from systems researchers in this aspect was in
optimizing the detection schemes and extending their usability with
parallel programming and low-level optimizations.
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We interviewed our participants in several meetings, asking ques-
tions about the pros and cons of the existing techniques and tools they
use to design PCPs, getting suggestions for improving the current sys-
tems, and asking about any important additions they believed would be
useful in a new system. All of these interviews and answers were used
to iteratively design PC-Expo’s final form.

3.1 Key Findings
The purpose of performing the formative study with domain experts and
potential users were to gather a list of requirements that we expected our
framework to meet. Our many discussions culminated in the following
requirements list, ordered by importance:

R1: Localization. None of the existing PCP ordering algorithms
show where the properties lie on the axes. Highlighting these properties
on the PCP axes helps the user understand how the final ordering was
obtained and what portion of the data contributed to the final ordering.

R2: Real-time metrics calculation. Existing PCP reordering tech-
niques either (i) work for only a few metrics or (ii) are more generic but
are too slow [12], as seen with the existing tools2. Thus, a more flexible
and faster implementation for real-time detection would be useful for
PCP axes ordering applications.

R3: HIL axes reordering. PC-Expo should support HIL axes re-
ordering because no single optimization scheme can fulfill all use cases.
For flexibility, users should be able to use their domain knowledge and
feedback from our local detector algorithms to reorder the PCP axes.

R4: Aggregate view. The aggregate view has two uses. For local
HIL axes reordering, PC-Expo should quantify each of the properties
selected by the users on all the axis pairs in the data. For automated
axes ordering, users should be able to visualize the weighted properties
and the corresponding optimization function on the interface.

R5: Multi-property axes reordering. As shown in Figure 2, users
sometimes need to investigate different patterns in their data, which
cannot be accomplished using a single reordering strategy. PC-Expo
should support multi-property axes reordering for such use cases.

4 PROPERTIES IN PC-EXPO

Figure 3 shows the 12 properties supported in PC-Expo and their
corresponding line patterns. Users can create a custom optimization
scheme using a weighted sum of these properties, each of which our
system then detects in the data. We implemented individual detectors
that look for local regions in the data using a sliding window of a user-
specified size, and then calculate the corresponding property values at
each window position. Each property is calculated for every primary
(left) and secondary (right) axis of an axis pair. In the descriptions below
we refer to the primary axis as X and the secondary axis as Y . Out of
the 12 properties, 7 are calculated directly from the 2D bivariate data
defined by the axis pair, i.e., correlation, variance, density change, clear
grouping, split up, neighborhood and fan; the other 5 are calculated on
the marginal axis (i.e., the primary axis) only. We describe the detection
algorithms for each property next.

4.1 Correlation, Variance, Skewness, and Outliers
To find correlation, we compute the Pearson correlation directly using
Equation 1; rXY is the correlation coefficient calculated using every
point xi; i = 1...N and yi; i = 1...N. Here, xi; i = 1...N is the set of
points falling within the sliding window on the primary axis X . The
points yi; i = 1...N are the corresponding tuple values of xi; i = 1...N
on the secondary axis Y . x̄ and ȳ are the mean values of all xi and yi,
respectively. The variance can be directly inferred as the numerator
value in Equation 1.

rXY =
∑N

i=1(xi − x̄)(yi − ȳ)√
∑N

i=1(xi − x̄)2
√

∑N
i=1(yi − ȳ)2

(1)

Skewness is a marginal property in PC-Expo with values in [−1,1]
to indicate negative and positive skew. It is calculated using the Fisher-

2PCP Reordering Implementation https://subspace.dbvis.de/pcp/

Pearson coefficient g shown in Equation 2, where mi is the ith central
moment of the data.

g =
m3

m3/2
2

=
1
N ∑N

i=1 (xi − x̄)3

[
1
N ∑N

i=1 (xi − x̄)2
]3/2 (2)

Finally, the outliers calculation within the given window is done by
calculating the points falling outside the range of 1.5∗(Q1−Q3) where
Q1 and Q3 are the first and third quartile, respectively, and marking
them as outliers. The total number of outlier points is then the outlier
score for that sliding window.

4.2 Density Change
In PCPs, the density of lines between any pair of axes in the data can
change. In a local context, this is the difference between densities of
the points on a pair of axes for a given window. For quantifying the
change in densities of two marginal distributions, we adopted the idea
of Kullback-Leibler (KL) divergence, which has been widely used in
data-analytics applications. KL divergence gives a score based on the
difference in the entropies of two probability distributions. For our
purposes, the first step is to estimate the probability density functions
(pdf ) of the points on the two marginal axes, X and Y . We use Kernel
Density Estimation [25, 41] with a Gaussian kernel to estimate the
probability densities of the data points, shown in Equation 3.

pK(x′) =
N

∑
i=1

K(x′ − xi;h) (3)

where pK(x′) is the estimated pdf for point x′ within a group of points
xi; i = 1...N on the X axis, which is estimated using the Gaussian kernel
K with a bandwidth parameter h (see Equation 4). The bandwidth
parameter controls the perimeter of points around x′ that are to be
considered for estimating the density. For our use case, we set h to be
equal to the standard deviation of the points in the current window, to
speed up calculations and improve result consistency.

K(x′;h) ∝ exp(− x′2

2h2 ) (4)

After the densities for each point in a window are estimated, we can
compute the KL divergence between the two axes using Equation 5.

DKL(X ||Y ) =
N

∑
i=1

pK(xi)log(
pK(xi)

pK(yi)
) (5)

4.3 Clear Grouping and Split-Up
In PCPs, clear grouping and split-up are inverse properties. Clear
grouping refers to points that occur in a cluster on one axis and are also
clustered on another axis. Conversely, split up means that clustered
points on one axis are further apart on the other. To calculate the value
of clear grouping, we use the idea of local neighbors on a marginal
axis as proposed by Peltonen et al. [35]. Shown in Equation 6, for a
given point x′ on a set of local points xi; i = 1...N on the axis X , the
probability that point x′′ is the neighbor of point x′ can be estimated as
a probability distribution function. Equation 6 estimates the probability
of point x′ being a neighbor of point x′′.

pX (x′|x′′) =
exp(−(x′′ − x′)2/σ2

X )

∑xi $=x′′ exp(−(x′′ − xi)2/σ2
X )

(6)

While comparing points from the two axes, we estimate the neigh-
borhood probabilities of all points compared to the other points on the
axes using Equation 6. This can be treated as a pdf of neighborhood
probabilities for each point. The KL divergence between pX (x′|x′′) and
pY (y′|y′′) for a point (x′,y′) on two axes X and Y shows the number of
neighbors that are still intact when transitioning from axis X to Y (see
Equation 7).
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DKL(px′
X , py′

Y ) = ∑
x′ "=x′′

pX (x′|x′′)log(
pX (x′|x′′)
pY (y′|y′′)

) (7)

To extend Equation 7 to all the points in a local window, we can
sum the values for all points; this gives us an estimate of grouping
behavior on a pair of axes across all points, as shown in Equation 8.
For consistent scoring, we have to limit the DX ,Y values to a fixed
range across the dataset. However, the range of DX ,Y depends on the
input data; hence we normalize DX ,Y based on the precomputed mean
and standard deviation of a sample of DX ,Y values from the dataset to
produce DX ,Y (norm). Finally, for split-up calculations, since we define
split up as an inverse property of clear grouping, we obtain split-up
values using 1−DX ,Y (norm).

DX ,Y = ∑
i

DKL(pxi
X , pyi

Y ) = ∑
i

∑
j "=i

pX (x j|xi)log(
pX (x j|xi)

pY ′(y j|yi)
) (8)

4.4 Neighborhood and Fan
In the context of PCP line pattern detection, neighborhood refers to
the amount of parallelism in lines and fan refers to the divergence of
points that originate from a small region on the left axes. We calculate
these values from the existing PCP metrics proposed in Pargnostics [12]
as parallelism and divergence, respectively. Parallelism is calculated
using the extent of the angle distribution of lines for an axis pair,
because parallel lines tend to have a lower range of line angles that
occur between an axis pair. Similarly, divergence is calculated using a
2D histogram, counting the number of bins with a value greater than
zero on the secondary axis for a given bin on the main axis, respectively.

4.5 Confidence Scores and Normalization
When dealing with the calculation of metrics locally, it is crucial to
normalize the scores based on the global properties of the axes for
consistency and misinformation prevention. We developed normaliza-
tion schemes for each of the 12 properties in PC-Expo to ensure that
the calculated values are presented based on their confidence scores.
For correlation and variance reporting, the final scores are normalized
based on the p-values, pr obtained for a correlation value, rXY (see
Equation 1) for a given pair of axes X and Y . Referring to rXY as r, the
pr calculation is shown in Equation 9 (N is the number points under
the sliding window).

pr =
r
√

N −2√
1− r2

(9)

Similarly, for skewness, the p-values used for normalization are
calculated using permutation tests. Also, in case of negative values for
correlation, variance, and skewness, the values are inverted to represent
higher scores when the actual values are lower. For KL divergence-
based properties—density change, split-up and clear grouping—no
normalization is required since KL divergence automatically accounts
for the number of samples used in the calculation. Hence, the values are
consistent across dimensions. For the Pargnostics-based properties [12]
neighborhood and fan we scale the values based on the fraction of
points they were calculated for. Hence, for a local window with fewer
points, a large value is scaled down, as compared to a window with
more points. Finally, no normalization is required for outliers as they
are calculated directly over the full range of axis pairs.

5 PC-EXPO DESIGN

To implement our idea of a real-time, HIL, explainable and localized
PCP axes-reordering framework, we developed PC-Expo with the help
of the principles discovered during the formative study discussed in
Section 3. PC-Expo allows users to interactively visualize and optimize
the PCPs on their data and convey the desired story with high accu-
racy and confidence. As shown in Figure 1, PC-Expo consists of six
views, which we discuss next. The R# next to each view denotes the
requirements from the formative study that the particular view satisfies.

Fig. 4. Property summarization view with area charts overlaid on the
PCP axes in Figure 1 (A). This example shows the user optimizing over
the density change and fan properties, which are detected locally with
intensities shown as heatmaps corresponding to the left axis of the PCP.
These intensities are summarized in the form of area charts, showing
the distribution of where the properties were detected in the data.

5.1 PCP Display with Localized Area Charts (R1-R5)
Shown in Figure 1 (A), the goal of the PCP display view is to show the
final PCP resulting from the user interactions or direct optimizations.
This view summarizes how the properties chosen by the user affect the
axes reordering with the help of area charts overlaid on the PCP axes.
As shown in Figure 4, this aggregate view helps visualize where the
user-selected properties were detected locally in the final PCP; this is
crucial for explainability of our optimization algorithm’s final result.
Users can choose the granularity of the local regions to explore and
look for line patterns; this updates the granularity of the local heatmaps
and the area chart in this view.

5.2 Sidebar for Local Optimization (R1, R2, R5)
Shown in Figure 1 (B), the sidebar offers full control to the users to
reorder the PCP axes based on the properties they like. Users can
choose from the 12 properties (see Figure 3) with adjoining check-
boxes; further, users can choose weights for each property using the
sliders. These weights are useful when optimizing directly over these
properties to optimize a PCP axis’ order: they let users control how
much contribution from each property should be considered for a final
optimization. For direct optimization, PC-Expo calculates the weighted
sum of these property values for each axis pair in the data, where the
weights are determined by the slider values. Once final scores for each
axis pair are calculated based on the localization level chosen by the
user, a TSP [12] over these scores gives the final PCP axes ordering.
The sidebar also offers localization control with the window size slider,
which controls the length of the sliding window. The value on the win-
dow size slider is the percent of axis range to be considered for localized
properties detection on the axis. Users can also filter the features they
want to use in the final PCP using the data features selection tab.

5.3 Local View (R1, R3, R5)
Shown in Figure 1 (C, F), the local view is the key component of PC-
Expo for allowing HIL and explainable PCP axes reordering. Based on
the property weights and the localization level (granularity) chosen by
the users in the sidebar, our algorithm detects local regions of activity
in the data. The local view communicates these local regions to the
user, assisting in decision making and understanding the data behavior.
Any axis pair in the data can be selected from the heatmap, as seen in
Figure 1 (D); the local view shows the details of all properties and their
intensities on the chosen axis pair.

The local view also supports user interactions to enable a deeper
dive into local data regions. Each property is given its individual axis
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Fig. 5. HIL axes reordering using a heatmap on PC-Expo with decreasing scores of the Density Change & Fan properties. The heatmap summarizes
the weighted sum of properties for every axis pair in the data. Users can double-click on each cell in a sequence to reorder the PCP based on the
their goals. In this case, the numbers 1–5 show the click sequence on the heatmap to generate the PCP displayed on the right.

with a fixed slider width; the sliders can be dragged to highlight the
corresponding points on the adjoining PCP and scatterplot displays, as
seen in Figure 1 (F). This helps users identify small regions of interest
based on specific properties in the data.

5.4 Heatmap for HIL Axes Reordering (R3, R4, R5)
Shown in Figure 1 (D), the heatmap summarizes the scores from the
detection algorithms based on the properties chosen by the user. Each
cell in the heatmap corresponds to the value of normalized weighted
sum of properties detected for a pair of dimensions in the dataset.
Clicking on any cell opens up a window with details of the local view,
showing how the final score for the current cell was calculated. One
major benefit of the heatmap is to assist in HIL axes reordering based
on the calculated scores from the detectors. As shown in Figure 5,
users can view the details of each cell in the heatmap and use that
information to reorder the PCP axes. Also, this reordering does not
have to stick to a single property and can include multiple properties per
axis pair, as shown in Figure 2. Users can generate a new heatmap after
every axis-pair selection to select the next adjoining axes, allowing for
PCP reordering based on multiple properties. Each property score is
normalized between [0,1] before calculating the weighted sum values
for the heatmap.

5.5 Property Weights and Global Optimization (R2)
For quick results, PC-Expo supports a fully automated global optimiza-
tion scheme. With the help of our global optimization algorithm, users
can generate a PCP axes reordering based on selected properties, corre-
sponding weights, and the localization level. This algorithm performs a
branch-and-bound TSP algorithm [12] on the calculated heatmap data
and generates PCP axes reordering automatically. The optimization
function showing each property’s contribution to the axes reordering is
summarized using a donut chart; see Figure 1 (E).

6 EVALUATION

This section presents an evaluation of PC-Expo for its effectiveness and
design efficiency, through a comparison with existing PCP reordering
tools, a system usability study [4] survey, and detailed user interviews.

6.1 User Study
We conducted a user study to evaluate PC-Expo for its ability to support
PCP axes reordering tasks with real users. The study aimed at investi-
gating PC-Expo’s support as an interactive visual-analytics system and
quantifying how well the system meets user needs. We designed three
tasks for this study to compare PC-Expo with the existing baseline
PCP axes ordering algorithms presented in Table 1. All these baseline
algorithms were compiled into a single dashboard by Blumenschein
et al. [7], known as the dimensional reordering for parallel coordinates
(DRPC). We carefully designed the tasks for this user study so they can
be performed with both PC-Expo and DRPC. Since PC-Expo supports
more properties and a detailed local view—not available in DRPC—we

evaluated these features separately following up from this user study
(see Sections 6.2 and 6.3). Since PC-Expo gives a detailed view of
every axis pair weighted sum while performing the reordering tasks,
users could memorize the correct sequence for the task. To prevent this,
all the user study tasks were first performed on DRPC, followed by
PC-Expo.

6.1.1 Operation Details
DRPC and PC-Expo support different types of operations which were
noted during the user study. There are a total of 22 operations supported
in DRPC which include choosing between 7 reordering strategies, 2
types of distance metrics, and 6 weights-specific Pargnostics PCP re-
ordering. PC-Expo supports multiple operations which can linearly
increase with data dimensionality. Besides fixed operations for choos-
ing the properties and local view interactions, the matrix view and the
main PCP view depend on the data dimensionality.

6.1.2 Participants
We recruited 10 participants for this study (4 females and 6 males;
aged between 22 and 30 years) via social media and mailing lists. 5
experts were the same participants from the formative study (Sec 3. We
recruited 5 additional non-experts to participate in this study. All of the
non-experts were graduate students studying computer science.

6.1.3 User Study Tasks
Employing a within-subject design, we created three tasks for this user
study to compare PC-Expo and DRPC on multiple aspects of PCP axes
reordering. All the tasks required users to come up with a final PCP
axes reordering which they thought worked best. For a fair comparison,
every task was related to correlation and clustering analysis, since it
is well supported in the baseline tool. Based on the formative study
(Section 3), this setup covers general cases that analysts encounter in
data storytelling with PCPs. Also, the tasks were ordered in increasing
levels of the detailing needed to generate the final result. The time
and number of operations taken by the user to generate final result
were logged for every task. To quantify the goodness of final PCP axes
ordering produced by the participants, final scores were generated using
the predefined properties for that task (e.g., as per Figure 6, top). Since
the localization is undefined for DRPC-based reorderings, an average
of all the localization levels supported in PC-Expo was used to score
the axes orderings obtained with DRPC. For a fair comparison, users
were not allowed to see the final score through the area charts on the
final axis orderings, as it was a direct proxy to the final score.

Task 1 focused on global, fully automated PCP axes reordering
use cases. Users were asked to reorder the PCP axes to best present
correlated clusters and to separate outliers in the data. For the baseline,
the task involved experimenting with existing methods for correla-
tion [2, 3, 12] and outliers [36] based PCP reordering. PC-Expo, can
perform the task by choosing appropriate property weights on the side-
bar and looking at the corresponding generated PCPs. The final scores
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of the properties correlation and outliers were calculated by using
PC-Expo to compare the goodness of generated PCP orderings from
both tools (see Figure 6, top). This task evaluated PC-Expo for the
speed and accuracy of the local property detection algorithms it used.

Fig. 6. (TOP) Sample PCP orderings generated by a user during Task
1 of the user study (see Section 6.1.3). The results compare PC-Expo
with the baseline tool DRPC [7], showing that the user arranged the axes
better using PC-Expo based on the area charts on the final PCP shown.
PC-Expo shows a constant detection of the properties at all the axes.
In DRPC, users could only find high values along the first axis, while
the other axes do not show any detection of the properties. (CENTER)
Axes ordering sample from a user performing Task 2 in PC-Expo. The
task was to optimize for Fan and Variance. In the result, a clear fan
structure is shown in the first three axes and higher variance is visible in
the last two dimensions. (BOTTOM) Axes ordering for user study Task
3 as performed by one of the users on PC-Expo. The task was to find
local correlated clusters in the dataset. The final ordering in the PCP
shows highly negatively correlated clusters in all the axes as detected
by the user. High-resolution images are provided in the supplementary
material.

Task 2 focused on cluster identification with maximum variability.
In this task, participants were asked to reorder the PCP to show the
maximum number of small clusters on one axis that spread on the other

axis (i.e., fan-shaped clusters with high divergence). This scenario is
common in general analytical tasks where the users seek to find the
behavior of some data sample with respect to a dependent variable.
For example, in the computer systems domain a relationship between

“hard drive type” and “total requests” follows this pattern because hard
drives that can handle more requests are preferred (see Figure 6, center).
For final evaluation, the scores of the properties fan and outliers were
used to compare the axes orderings. This task evaluated PC-Expo for
HIL axes reordering efficiency.

Task 3 focused on finding small regions of similar behavior in the
data. Users were asked to reorder the PCPs to show the maximum
number of local structures in the data based on correlation (positive or
negative). Some examples of this scenario include finding the relation-
ship between “miles per gallon” and “weight” in the cars dataset. Cars
with higher weight generally have low MPG and vice versa. Building
upon task 2, this task emphasized finding local regions of interest in the
data. Figure 6 (bottom) shows an example user-generated PCP ordering
for this task. Final scores for the participant reorderings were generated
using the clear grouping, and correlation properties in PC-Expo. This
task evaluated PC-Expo for multi-property HIL axes reordering.

6.1.4 User Study Dataset
We used two datasets for this study: a systems dataset for tasks 1 and
2 and the penguins [23] dataset for task 3. The systems dataset is
larger and has more complicated patterns that are not straightforward
to visualize. The penguins dataset, however, is less complex with
simpler-to-detect local patterns.

The Systems dataset was collected over a set of several experiments
run at our university to record the system performance for a large num-
ber of configurations. Currently, the dataset consists of 10 dimensions
with a total of 100k configurations, giving the recorded performance
values for each. For the tasks to run in real-time on the baseline tool,
we sampled the dataset down to 2k rows and 6 dimensions, total re-
quests, cost, requests per second, number of reads, latency, and number
of writes. This allowed for a fair comparison of time and number of
operations between PC-Expo and the baseline (DRPC). This dataset
was chosen for the study because the final PCP reordering results could
be evaluated by systems researchers. Also, some of the user study par-
ticipants were not from the systems domain, allowing a fair comparison
with no preexisting knowledge of data features.

The Penguins dataset [23] is a publicly available dataset with 2k
rows and 6 features, containing details about different species of pen-
guins. This dataset contains simple local features, which better suited
Task 3 because of time constraints on the tasks.

6.1.5 Procedure
During the study, participants completed the above three tasks using
both DRPC and PC-Expo, one after another. Prior to the tasks, partici-
pants were first introduced to both systems. Participants were allowed
to play with the tools using some pre-determined PCP reordering ex-
amples, independent of the user study tasks. After the users were
comfortable using the tools, they were introduced to the tasks sequen-
tially. Each task was limited to 20 minutes, and the time and number of
operations were logged for each user.

6.1.6 Results
Figure 7 summarizes the user study results obtained from the partici-
pants’ interactions for PC-Expo and DRPC. We compared the two tools
based on three factors: time, number of operations(N/Ops), and score
of the final PCP orderings generated by the participants.

The results show that the average participant time for axes reordering
tasks was lower in PC-Expo compared to the baseline. For task 1, the
average time on PC-Expo was 1.8 minutes compared to the 5.1 minutes
on DRPC. For task 2, the average time for PC-Expo was 5.3 minutes
compared to 14.8 minutes on DRPC. And for task 3, the average time
for PC-Expo was 4.3 minutes compared to 9.1 minutes on DRPC. There
is a clear trend of increasing time difference between the baseline and
PC-Expo as the task complexity increases. This indicates the efficacy
of PC-Expo in faster PCP axes reordering.
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Fig. 7. Results for time, number of operations (N/Ops), and scores
for the three tasks used to compare PC-Expo with the baseline tool
(DRPC). The lines show the range of values obtained from the user
study participants for each metric. The dot on each line represents the
distribution mean. This user study evaluation shows that with PC-Expo,
faster PCP axes reorderings can be generated with higher accuracy
compared to the baseline. Significant p-values, < 0.005 were obtained
for all these experiments for the Wilcoxon test. Details are provided in
the supplementary material.

For number of operations (N/Ops), our user study showed mixed
results. In task 1, the average N/Ops for PC-Expo were 18.5 compared
to a lower number, 7.7, for DRPC. A similar pattern was seen during
task 2 where the average N/Ops for PC-Expo was 34.8 compared to
31 for DRPC. However, in task 3, the average N/Ops in PC-Expo was
lower: 15.8 compared to the 33.4 in DRPC. The higher N/Ops for
PC-Expo can be attributed to the local view because the users validate
their choices through the local view interactions.

For the third set of result attributes, we compared the final scores
obtained from the PCP axes ordering finalized by the participants.
These PCP orderings were input to PC-Expo and the value of the final
area charts was compared. PC-Expo had better results in all three tasks
compared to the baseline in this case. The average score for task 1 with
PC-Expo was 1.13 compared to 0.62 for DRPC. For task 2 this gap
increased, with an average of 1.09 for PC-Expo and 0.32 for DRPC.
For task 3, PC-Expo had an average score of 1.64 compared to 0.44 for
DRPC. This clearly shows the value of local properties visualization
supported in PC-Expo, which aids in better final PCP designs compared
to the baseline.

Comparing the numbers from the results, it is clear that even though
users end up finding higher N/Ops while working with PC-Expo, the
quality of the results is better and the time taken to perform the axes
reordering is lower. Each interaction in PC-Expo aids in better develop-
ment towards a final result, and the users reach the goal faster and with
higher accuracy. Full results from the user study and the numbers for
each participant and tasks are provided in the supplementary material.

6.2 System Usability Study

After collecting the results from the user study tasks, every participant
was interviewed to collect feedback on the usability of PC-Expo. This
study aimed at evaluating PC-Expo for multiple factors based on the
system usability scale (SUS) [4]. The SUS score is an industry standard
for quantifying the usability of any visual analytics tool through a series
of questions that focus on evaluating different aspects of the tool and
are sequenced alternatively to focus on positive and negative aspects.
Participants are required to answer each question on a 5-point Likert
scale that ranges from Strongly Disagree (1) to Strongly Agree (5). The
question sequence is altered during the interview to collect positive and
negative feedback about the tool. Figure 8 shows the 10 SUS questions
used to evaluate PC-Expo. The whole interview lasted about 10 minutes
for each participant.

6.2.1 Results
As shown in Figure 9, PC-Expo received a positive usability feedback
from a majority of the participants. Overall, based on participant ratings
for the 10 SUS questions, PC-Expo received an average SUS score of
81.5. Since the baseline SUS standard is 68 [4], the SUS evaluation
results for PC-Expo show that our system is highly adaptable and
has great usability in this domain. We also separately evaluated the
SUS scores for experts and non-experts in this study. The expert SUS
scores averaged 84 while the non-expert scores averaged 79, both being
higher than the baseline score. Detailed scores and analyses for each
participant are provided in the supplementary material.

Further analyzing the scores from the participants for individual SUS
questions (see Figure 8), the questions receiving the most unanimous
high votes included (Q4) no need for tech support and (Q9) confidence.
These results indicate that PC-Expo’s design is easy to use and users
are highly confident in the generated results, complementing the funda-
mental principle of explainability for developing the tool. Questions
receiving the second-highest vote counts included (Q3) Easy to use,
(Q5) Well integrated, and (Q6) Consistency. These results show that
PC-Expo aligns well with the goals of real-time and accurate imple-
mentation of the PCP reordering schemes. Overall, the average IQR of
votes across all the questions was 1.25, which is considered low (good)
on a 5 point scale. This shows that both experts and non-experts had
a similar experience with PC-Expo, and hence the tool is consistent
across users.

Besides the majority of positive feedback, a few questions received
mixed reviews during the study. (Q1) Use frequently, had two low
votes from experts, which we attribute to the limitations of PCPs with
very high-dimensional datasets (discussed further in Section 6.3). Also,
(Q10) High learning curve, had three low votes from non-experts
participants. To further evaluate these issues, we conducted a detailed
interview session, discussed next in the follow up text.

6.3 User Interviews
Besides the general SUS interviews, we separately collected detailed
feedback from two study participants with the lowest SUS scores: an
expert (E1) and a non-expert (E2). These interviews helped us gain
further insights into user experience with PC-Expo, its limitations,
and potential areas of improvement. Some of the interview results
and user comments are discussed below. We have categorized the
user comments based on their experience with PC-Expo. Three extra
question discussions are provided in the supplementary material.

Ease of exploration. Both participants agreed that the local view
and heatmap reordering were useful in exploring local regions in the
data. E1 suggested an improvement in their comment: “Sometimes we
want to intentionally ignore a property, for example, ignore outliers
while optimizing for other properties. In such cases, negative weights
for some properties would be helpful.”

Use on regular basis. Both users gave positive reviews on the
usability of PC-Expo, with a few suggestions for improvement. P1
commented: “I regularly come across the issue with PCPs when the
dimensionality of data increases. Very high dimensional datasets are
hard to fit with PCPs. Maybe involving dimension reduction techniques
to shrink data dimensionality before analysis with PC-Expo will be a
good addition.” E2 further suggested: “I really found PC-Expo very
useful for data storytelling with PCPs. Every axis ordering presents a
different story in the data and PC-Expo makes it easy for us to get the
right story out with PCPs. I suggest adding similar support for tools
that work with categorical data will be a good next step. Parallel Sets
can be extended with this local visualization of properties too.”

Ease of usage and creativity. Both participants mentioned that they
scored PC-Expo high on this criterion. E1 commented: “It is very
easy to understand line patterns and local properties in my data with
PC-Expo. Since now we have implemented real-time detection schemes
for several line patterns, it will be interesting to extend this work with
machine learning. Maybe we can create a small dataset of detected
patterns with PC-Expo and use it to train a supervised model.” E2 also
commented about the multi-property axes reordering: “This was the
first time I experimented with multi-property reordering in PCPs. It
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Fig. 8. SUS [4] study questions and participant votes on a scale of 1 (Strongly Disagree) to 5 (Agree).

Fig. 9. SUS [4] evaluation scores for PC-Expo obtained from the 10-user
study participants, summarizing their experience. PC-Expo received
an average SUS score of 81.5, which is considerably higher than the
baseline SUS score of 68 for design tools.

was very easy to see which was a dominating property for a particular
axes pair through PC-Expo.

7 CONCLUSION

Axes reordering plays a crucial role in HD data storytelling with parallel
coordinate plots. In this work, we present PC-Expo, an all-in-one, real-
time, human-in-the-loop, localized PCP axes reordering framework.
Our framework implements real-time detection algorithms for the 12
most common data analytical properties occurring in PCPs as shown in
past research [7]. This enables PC-Expo to extend the pattern detection
from a full axis scale to a more localized approach. With PC-Expo,
we can detect several data patterns on a local level and visualize their
behavior across all dimensions. These local-detection schemes allow
further advancements in PCP axes reordering techniques.

PC-Expo supports two types of axes reordering schemes: fully au-
tomated and human-in-the-loop (HIL). In the fully automated method,
users can control the localization level in PC-Expo and calculate pair-
wise data dimension scores. Using these scores, the final ordering can
be generated using a traveling salesman [15] algorithm. Conversely, in
the HIL paradigm, PC-Expo supports local views of pairwise dimen-
sions, highlighting zones of activity for the user-selected properties
in the data. This information can be used to manually generate the
ordering of axes as desired for different use cases. And when every data
ordering in a PCP presents a different story, no single axes ordering
algorithm can suit all usage scenarios. PC-Expo aims to assist the
users in presenting their story through PCPs with high accuracy and

confidence.
We learned several important lessons while designing PC-Expo.

Our initial discussions with domain experts during the formative study
were decisive in pinning down the main design components. After
all the tasks and contributions were formulated with the experts’ help,
it was easier to design the visual interface for PC-Expo with all the
components. Primarily, we realized that adding a human in the loop
is important as a means of allowing users to infuse their own domain
knowledge into the process.

Future work. Beyond PC-Expo’s effectiveness, there are aspects
that can be improved. Our interviews with the user-study participants
pointed out several features and directions for future work. First, adding
support for negative-weight properties is useful if the user wants to
actively ignore a particular property. Also, scalability is an issue with
PC-Expo when the data dimensionality goes beyond 15 dimensions.
The matrix view gets cluttered and calculation of metrics on window
sizes smaller than 30% becomes slower. To overcome this, data filtering
and dimension reduction techniques can be incorporated into PC-Expo.
We would also like to explore different metric combination measures
besides weighted sum. Since weighted sum has known limitations, for
e.g. the distribution of the solution space is not uniform [11], we would
like to explore other distance measures to combine the metrics. Addi-
tionally, we plan to add a history feature to PC-Expo; this will allow
users to backtrack the process of ordering the axes through the heatmap.
One of the user study participants also suggested additional support
for high-dimensional datasets using dimension-reduction techniques.
We can reduce the dimensionality of the data to make it easier to repre-
sent information through a PCP and allow faster property calculation.
More advanced additions to PC-Expo include storytelling with natural
language processing. The idea is that we can combine the properties
in PCPs to tell a common story that they represent in the data. In this
way, every PCP axes ordering can be linked to a data story that can
be presented in a few sentences. Also, it’ll be interesting to know if
pre-classification of data records locally would help in further improv-
ing the axis ordering techniques. These features are not yet supported,
and we continue to design and develop PC-Expo. Finally, we plan to
deploy PC-Expo for real users to collect in-depth user feedback in a
longitudinal study.
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