
The Design and Implementation of Elastic Quotas:
A System for Flexible File System Management

Ozgur Can Leonard
Sun Microsystems

Jason Nieh
Columbia University

Erez Zadok, Jeffrey Osborn,
Ariye Shater, and Charles Wright

Stony Brook University
Columbia University Technical Report CUCS-014-02, June 2002

Abstract
We introduce elastic quotas, a disk space management

technique that makes disk space an elastic resource like CPU
and memory. Elastic quotas allow all users to use unlimited
amounts of available disk space while still providing system
administrators the ability to control how the disk space is al-
located among users. Elastic quotas maintain existing persis-
tent file semantics while supporting user-controlled policies
for removing files when the file system becomes too full. We
have implemented an elastic quota system in Solaris and mea-
sured its performance. The system is simple to implement,
requires no kernel modifications, and is compatible with ex-
isting disk space management methods. Our results show that
elastic quotas are an effective, low-overhead solution for flex-
ible file system management.

1 Introduction

The increasing ubiquity of Internet access and the increasing
number of online information sources are fueling a growing
demand for storage capacity. Vast amounts of multimedia
data are ever more widely available to users who continue to
download more of it. As the storage demands of users and
the storage capacity of installations increases, the complex-
ity of managing storage effectively now dominates the total
cost of ownership, which is five to ten times more than the
original purchase cost [7]. This is particularly true in large
multi-user server computing environments, where allocation
of storage capacity should ideally be done in a manner that
effectively utilizes the relevant resource while multiplexing it
among users to prevent monopolization by a single user. Al-
though the cost per megabyte of disk space has been on the
decline, any given installation will have a finite amount of
disk space that needs to be partitioned and used effectively.
While there is ongoing work in developing better mecha-
nisms for partitioning resources such as processor cycles and
network bandwidth [1, 5, 11, 17, 19, 30], file system resource
management has not received as much attention.

Quotas are perhaps the most common form of file system
resource management. However, there are two fundamen-
tal problems with this simple fixed-size limit disk-allocation
scheme because it does not effectively account for the vari-
ability of disk usage among users and across time. The first

problem is that in a large heterogeneous setting, some users
will use very little of their quota, whereas experienced users,
regardless of their quota, will find their quotas too constrain-
ing. Assuming a large environment where having quotas is
required due to administrative costs, a potentially substantial
portion of the disk is allocated to users who will not use their
allocation, and is thus wasted. The second problem is that
users’ disk usage is often highly variable and much of this
variability is caused by the creation of files that are short-
lived; eighty percent of files have lifetimes of only a few sec-
onds [8, 18, 29]. As a result, the vast majority of files cre-
ated have no long term impact on available disk capacity, yet
the current quota system would disallow such file operations
when a quota limit has been reached even when there may be
available disk capacity. The existence of a separate storage
for temporary files is often ineffective because its separate file
name-space requires complex reconfiguration of applications
to use it, not to mention its tendency to require administra-
tor intervention to avoid it being filled up. The result is often
frantic negotiation with a system administrator at the least op-
portune time for additional space that wastes precious human
resources, both from a user’s and an administrator’s perspec-
tive.

Traditional file systems operate on the assumption that all
data written is of equal importance. Quota systems then place
the burden of removing unwanted files on the user. However,
users often have critical data and non-critical data storage
needs. Unfortunately, it is not uncommon for a user to forget
the reasons for storing a file, and in an effort to make space
for an unimportant file, delete important ones. In a software
development environment, an example of critical data would
be source code, whereas non-critical data would be the vari-
ous object files and other by-products that are generally less
interesting to the developer. Deletion of the former would be
devastating whereas the latter are generally only of interest
during compilation. This burden of file management becomes
only more complex for the user as improving storage capacity
gives users the ability to store, and the need to manage, many
more files than previously possible.

To provide more flexible file system resource management,
we introduce elastic quotas. Elastic quotas provide a mech-
anism for managing temporary storage that improves disk
utilization in multi-user environments, allowing some users

1

to utilize otherwise unused space, with a mechanism for re-
claiming space on demand. Elastic quotas are based on the as-
sumption that users occasionally need large amounts of disk
space to store non-critical data, whereas the amount of essen-
tial data a user keeps is relatively constant over time. As a re-
sult, we introduce the idea of an elastic file, a file for storing
non-critical data whose space can be reclaimed on demand.
Disk space can be reclaimed in a number of ways, including
removing the file, compressing the file, or moving the file to
slower, less expensive tertiary storage and replacing the file
with a link to the new storage location [26]. In this paper, we
focus on an elastic space reclamation model based on remov-
ing files.

Elastic quotas allow hard limits analogous to quotas to be
placed on a user’s persistent file storage whereas space for
elastic files is limited only by the amount of free space on
disk. Users often know in advance what files are non-critical
and it is to the users’ benefit to take advantage of such knowl-
edge before it is forgotten. Elastic quotas allow files to be
marked as elastic or persistent at creation time, later provid-
ing system-wide automatic space reclamation of elastic files
as the disk fills up. Files can be re-classified as elastic or per-
sistent after creation as well using common file operations.
Elastic files do not need to be stored in a designated location,
but instead users can make use of any locations in their nor-
mal file system directory structure for such files. A system-
wide daemon reclaims disk space consumed by elastic files
in a manner that is flexible enough to account for different
cleaning policies for each user.

Elastic quotas are particularly applicable to any situation
where a large amount of space is required for data that is
known in advance to be temporary. Examples include Web
browser caches, decoded MIME attachments, and other re-
placeable data. For instance, files stored in Web browser disk
caches can be declared elastic so that such caches no longer
need to be limited in size; instead, cached elastic data will be
automatically removed if disk space becomes scarce. Users
then benefit from being able to employ larger disk caches with
potentially higher cache hit rates and reduced Web access la-
tency without any concern about such cached data reducing
their usable persistent storage space.

We designed elastic quotas to be simple to implement and
install, requiring no modification of existing file systems or
operating systems. The main component of the elastic quota
system is the Elastic Quota File System (EQFS). EQFS is a
thin stackable file system layer that can be stacked on top
of any existing file system exporting the Virtual File System
(VFS) interface [14] such as UFS [16] or EXT2FS [4]. EQFS
stores elastic and persistent files separately in the underlying
file system and presents a unified view of these files to the
user. It makes novel use of the user ID space to provide ef-
ficient per user disk usage accounting of both persistent and
elastic files using the existing quota framework in native file
systems. A secondary component of the elastic quota system
is the rubberd file system cleaner. Rubberd is a user-level

program that cleans up elastic files when disk space becomes
scarce. We have implemented a prototype elastic quota sys-
tem in Sun’s Solaris operating system and measured its per-
formance on a variety of workloads. Our results on an un-
tuned elastic quota system prototype show that our system
provides its useful elastic functionality with low overhead
compared to a commercial UFS implementation.

This paper describes the design and implementation of
elastic quotas and is organized as follows. Section 2 describes
the system model of how elastic quotas are used. Section 3
describes the design of the Elastic Quota File System. Section
4 describes the rubberd file system cleaner. Section 5 presents
measurements and performance results comparing an elastic
quota prototype we implemented in Solaris 9 to the Solaris 9
UFS file system. Section 6 discusses related work. Finally, in
Section 7 we present some concluding remarks and directions
for future work.

2 Elastic Quota Usage Model

To explain how elastic quotas are used, we first define some
key elastic quota file concepts. A file can be either persistent
or elastic. A persistent file is a file whose space will never
be automatically reclaimed by the system. In a traditional
file system, all files are considered persistent. An elastic file
is a file whose space may be reclaimed on demand by the
system. A file can change from being persistent to elastic
and vice versa, but it can never be both at the same time.
Each user is assigned an elastic quota, which is analogous to
a traditional disk quota. Like traditional quotas, an elastic
quota is a fixed-size limit that restricts the maximum amount
of disk space that a user can use for storing persistent files.
Unlike traditional quotas, an elastic quota does not limit the
amount of disk space used for elastic files.

Users are only allowed to exceed their quotas by declar-
ing files as being elastic. When a file is declared elastic, the
system is effectively informed that the file may be removed
from the system at a later time if disk space becomes scarce.
The elastic quota system provides a contract between users
and the system. The system agrees to allow users to use
more than their quotas of disk space. In return, users agree
that the system will be able to remove enough files to bring
the users back within their quotas when disk space becomes
scarce. The system guarantees that only elastic files are ever
removed.

The elastic quota system provides a flexible interface con-
sisting of two components: the EQFS interface and the rub-
berd configuration interface. The EQFS interface is a simple
file system interface for declaring files elastic and managing
persistent and elastic quotas. The rubberd configuration inter-
face supports administrator-defined and user-defined policies
that determine how and when disk space is reclaimed. We
defer our discussion of the rubberd interface until Section 4
and focus first on the EQFS interface.

2

To allow users, user-level tools, and applications to declare
files as elastic, EQFS provides a file system interface that can
be used explicitly by users or as the basis for building tools
for elastic file system management. To provide information
about the elasticity of files without requiring any modification
to existing file system utilities, the interface provides multi-
ple views of the same directory hierarchy. These views enable
users to declare files as elastic, and separate elastic and persis-
tent files using common file operations. There are four views,
which are most easily thought of as four directories. We re-
fer to these views as /home, /ehome, /persistent, and
/elastic.

Each view appears as a separate directory. /home and
/ehome are two identical views of the file system. The key
difference between the two is that files created in /home
are persistent, whereas files created in /ehome are elas-
tic. All other file operations are identical. /persistent
and /elastic are read-only views of the file system. In
/persistent only persistent files are visible; conversely
in /elastic only elastic files are visible.

In all cases, users can use existing utilities for copying files,
moving files, listing directories, editing files, etc. without re-
quiring any changes to such tools to determine which files are
elastic versus persistent. Furthermore, as discussed in Sec-
tion 3, the interface can be supported in a way that requires
no changes to existing file systems.

Consider the following example of how the EQFS file sys-
tem interface provides its elastic functionality using common
file operations. Suppose there is a student Mary who is using
her computer account on a school system that provides elastic
quotas. Mary’s home directory is located at /home/mary.
Mary often receives large MIME attachments, which she can
not decode into her home directory without exceeding her
quota. She simply extracts them into /ehome to use them.
Since she still has the file within her mail inbox, there is no
danger of losing the data.

The flexibility of the elastic quota usage model is that
a file’s effective location does not change when its status
changes from persistent to elastic or vice versa. For instance,
using this model for temporary storage is quite different from
using a directory for just temporary files, such as /tmp. For
example, developers may want to compile a large package,
but do not have space for the temporary files associated with
the build. Without elastic quotas it is necessary to edit Make-
files or move the entire tree to /tmp. Using the elas-
tic quota usage model, developers would simply change di-
rectories from /home to the corresponding directory under
/ehome and then can compile the program, without worry-
ing about exceeding their quota.

The EQFS interface provides a useful foundation upon
which developers and users can easily create tools that use
normal file system interfaces to take advantage of elastic
quota functionality. For example, higher-level functionality
could be built on top of elastic quotas to allow users to spec-
ify that certain types of files should be considered elastic after

some period of time. One policy may be that *.o files should
be considered elastic if they were created more than a week
ago. This could easily be implemented using a cron job to
find and move files from /home to /ehome.

3 Elastic Quota File System

To support the elastic quota usage model, we created the Elas-
tic Quota File System (EQFS). An important benefit of the
elastic quota system is that it allows elastic files to be mixed
together with persistent files and located in any directory in
the file system. To provide this benefit, the system must effi-
ciently find elastic files anywhere in the directory hierarchy.
Furthermore, the system must account for the disk usage of
persistent files separately from elastic files since only persis-
tent files are counted against a user’s quota. With substan-
tial implementation effort, one could build a new file system
from scratch with an elasticity attribute associated with each
file and a quota system that accounts for elastic and persistent
files separately. The problem with this approach is that it re-
quires users to migrate to an entirely new file system to use
elastic quotas.

EQFS addresses these design issues by first storing per-
sistent and elastic files in separate underlying directories to
efficiently account for and identify elastic files. EQFS then
using file system stacking [10, 21, 25] to stack on top of both
the persistent and elastic directories to present a unified view
of the files to the user. Using file system stacking, a thin layer
is inserted directly above an existing file system, thus allow-
ing the layer to intercept and modify requests coming from
upper layers or data being returned from lower layers. Al-
though stackable file systems run in kernel space for best per-
formance, they do not require kernel modifications and can
extend file system functionality in a portable way [32].

Section 3.1 describes how EQFS stacks on top of both per-
sistent and elastic directories, and how this supports the mul-
tiple views. Section 3.2 describes how EQFS utilizes the sep-
aration of persistent and elastic storage with traditional quota
functionality to provide efficient disk usage accounting. Fi-
nally, Section 3.3 summarizes the implementation of individ-
ual EQFS file operations.

3.1 File System Stacking

One of the main features that EQFS must provide is a way to
associate an attribute with each file that indicates whether it is
elastic or persistent. Taking a file system stacking approach,
one way to do this would be to store a separate attributes file
for each file in the underlying file system that is manipulated
by the upper layer file system. The approach provides a gen-
eral way to extend file attributes, but would require accessing
an entirely separate file for determining whether the respec-
tive file is elastic. However, it requires substantial additional
overhead for an elasticity attribute that could potentially be

3

stored as a single bit of information. Another design alter-
native would be for the stackable file system to manipulate
special-purpose inode bits on the lower file system, to be able
to flag a file as elastic. However, stackable file systems are
designed to be modular and independent from the underlying
file systems they mount on. Such access violates the princi-
ples of stacking as it makes a stackable file system dependent
on the specific implementation details of the underlying file
system.

To provide an efficient stacking approach, we designed
EQFS to stack on top of two underlying directories in the
native disk file system, one for storing all persistent files and
the other for storing all elastic files. Because of the sepa-
rate directories for persistent and elastic files, EQFS can in-
fer whether a file is persistent or elastic from the location of
the file. Although the system introduces a new file property
— namely its persistence or lack thereof — EQFS does not
need to store this property as part of the on-disk inode. In
fact, EQFS does not maintain any state other than what it
uses to stack on top of the underlying persistent and elas-
tic directories. EQFS can be stacked on top of any existing
file system exporting the Virtual File System (VFS) interface
[14], such as UFS [16] or EXT2FS [4]. The VFS was de-
signed as a system-independent interface to file systems and
is now universally present in UNIX operating systems, in-
cluding Solaris, FreeBSD, and Linux. By building on top of
the VFS, EQFS serves as a higher-level file system abstrac-
tion that does not need to know about the specifics of the un-
derlying file system.

In the VFS, a virtual node (vnode) is a handle to a file main-
tained by a running kernel. This handle provides a common
view for public data associated with a file, and is the vehicle
for interaction between the kernel proper and the file system.
Vnodes export an interface for the set of generic operations
commonly applicable to files and directories, known as vnode
operations (vops). A stackable file system is one that stacks
its vnodes on top of those of another file system. Stacked file
systems are thus able to modify the kernel’s view of the un-
derlying file system by intercepting data and requests flow-
ing between underlying file systems and the kernel proper
through their vnode-private data and stacked vops. Our de-
sign of EQFS provides four important benefits:

1. Compatibility with existing file systems: Because
EQFS simply stacks on top of existing file systems, it
is compatible with and does not require any changes to
existing file systems. Furthermore, EQFS can be used
with commodity file systems already deployed and in
use. EQFS is ignorant of the underlying file systems and
makes no assumptions about the underlying persistent
and elastic directories. In particular, the underlying di-
rectories need not be on the same file system, or even of
the same file system type.

2. No modifications to commodity operating systems:
Since EQFS stacks on top of the widely used VFS in-

terface, EQFS can be implemented as a kernel module
that can be loaded and used without modifying the ker-
nel or halting system operation. Users can therefore use
elastic quotas in the large installed base of commodity
operating systems without upgrading to an entirely new
system.

3. Leveraging existing development investments: EQFS
leverages existing functionality in file systems instead
of replicating it. EQFS is a thin layer of functionality
that extends existing disk-based file systems rather than
replacing them. EQFS’s ability to reuse existing file sys-
tem functionality results in a much simpler implementa-
tion.

4. Low performance overhead: Since file system perfor-
mance is often crucial to overall system performance,
elastic quotas should impose as little performance over-
head as possible. EQFS runs in kernel space to minimize
performance overhead.

EQFS is a thin stackable layer that presents multiple views
of the underlying persistent and elastic directories as /home,
/ehome, /persistent, and /elastic, as described in
Section 2. To provide a unified view of all files, EQFS creates
/home and /ehome by merging the contents of the under-
lying persistent and elastic directories. For example, if files
A and B are stored in one directory and C and D are stored
in another, merging the two directories will result in a unified
directory that contains A, B, C, and D. /persistent and
/elastic are created by simply referring to the respective
underlying persistent and elastic directories. Figure 1 illus-
trates the structure of the views and underlying directories in
EQFS.

View All
Files

View All
Files

View Persistent
Files

View Elastic
Files

Store Elastic
Files

Store Persistent
Files

All File Operations
Except Create

All File Operations
Except Create

All File Operations
Except Create

Operations
All File

Operations
All File

/persistent

/home /ehome

/elastic

Persistent Directory Elastic Directory

Figure 1: Views and directories in EQFS

EQFS makes merging of the underlying persistent and elas-
tic directories possible by ensuring that both directories have
the same structure and by avoiding file name conflicts. As dis-
cussed in Section 2, each of the four views exports the same
directory structure to the user. Similarly, for each directory
visible from these views, EQFS maintains a corresponding
underlying directory for persistent files and a corresponding

4

underlying directory for elastic files. If the directory struc-
tures were not the same, it would be ambiguous how to unify
the two structures when some directories could be present in
one but not the other. EQFS avoids file name conflicts by
not exposing the underlying directories directly to users and
only permitting file creation through /home and /ehome.
/persistent and /elastic cannot be used for file cre-
ation. If the underlying directories were not protected, a user
could create a file in the persistent directory and a file in the
elastic directory, both with the same name. This would cause
a file name conflict when the underlying directories are uni-
fied. File name conflicts are not possible using the views.

EQFS discriminates between the underlying directories
unified in /home and /ehome in order to make file creations
in /home persistent and file creations in /ehome elastic.
EQFS unifies the two underlying directories by treating one
of them as the primary directory and the other one as the sec-
ondary sister directory. The contents of the two directories
are joined into a unified view, but any file creations are al-
ways made to the primary directory. EQFS populates /home
by treating the underlying persistent directory as the primary
directory and the underlying elastic directory as the sister di-
rectory. Conversely, /ehome has the elastic directory as a
primary underlying directory and the persistent directory as a
sister underlying directory. As a result, elastic files created in
/ehome are elastic because the underlying primary directory
is elastic.

3.2 Disk Usage Accounting

Quotas usually keep track of disk blocks or inodes allocated
to each user or group. Traditional quota systems are imple-
mented by specific file system code. EQFS utilizes this native
quota functionality to simplify its implementation. However,
as regular quotas do not have elastic files for which no usage
limits exist, EQFS must build these extended semantics using
existing primitives.

EQFS solves this disk usage accounting problem by defin-
ing a shadow user ID for each user. A shadow user ID is a
second unique user ID that is internally assigned by EQFS to
each user of elastic quotas. EQFS uses a mapping between
normal user IDs and shadow user IDs that allows it to deduce
one ID from the other in constant time. Persistent files are
owned by and accounted for using normal user IDs, whereas
elastic files are owned by and accounted for using shadow
IDs. Shadow user IDs are made to infinite quotas, allowing
disk space used by elastic files to not be limited by users’ quo-
tas. The shadow ID mapping used in our EQFS implementa-
tion defines the shadow ID for a given user ID as its twos-
complement. Since the user ID is typically a 32-bit integer in
modern systems and even the largest systems have far fewer
than two billion users, at least half of the user ID space is
unused. Our implementation takes advantage of the large un-
derutilized ID space using the simple twos-complement map-
ping.

Rubberd takes advantage of the underlying quota system
to obtain information on users’ elastic space consumption in
constant time. Even though there is no quota limit set on
a user’s shadow ID, the quota system still accounts for the
elastic file usage.

3.3 File Operations

EQFS provides its own set of vnode operations (vops), most
of which can be summarized as transforming the user ID to
the shadow user ID if necessary, and then passing the oper-
ation on to the underlying vnode(s). The most notable ex-
ceptions to this generalization are the following vops which
require additional functionality to maintain EQFS semantics:
LOOKUP, READDIR, RENAME, MKDIR,CREATE, and LINK.

The LOOKUP vop returns the vnode for the given file name
in the given directory. Since EQFS directory vnodes are asso-
ciated with two underlying directories, LOOKUP must poten-
tially search both directories for the file before returning the
EQFS version of the underlying vnode. To enforce the invari-
ant of always having two underlying directories for an EQFS
directory, EQFS lazily creates missing directories in /elas-
tic or /persistent if it cannot find them. This makes it
easy to migrate existing file systems to EQFS; simply mount
/persistent on a spare partition, and the first access to a
directory will cause its sister to be created.

READDIR returns a subset of entries in a directory. Since
directories in an EQFS mount are mirrored in both underly-
ing sources, any given EQFS directory will contain duplicates
for its subdirectories, which are eliminated before being re-
turned by the kernel. Our READDIR implementation caches
the merged result of both underlying directories for improved
performance.

RENAME slightly departs from its traditional semantics
to support changing the elasticity of a file; if the file
names are the same and the target directory corresponds to
the same logical directory on the mirror mount point (i.e.,
/ehome/mary and /home/mary), the file is moved to the
mirror mount’s primary directory, and its ownership updated
accordingly. Thus, renaming a file from /home/mary/foo
to /ehome/mary/foo will make it elastic, and the con-
verse will make it persistent.

MKDIR creates a directory and returns the corresponding
vnode. Under EQFS, this vop first checks both the primary
and sister sources to make sure that there are no entries with
the given name, passing the operation down to both file sys-
tems to create the named directory if successful. Directories
can be created under either /home or /ehome, but they are
mirrored persistently under both views. Note that directories
are considered to be persistent, and like persistent files, are
only removed if done so explicitly by the user.

CREATE creates the named file if it does not exist, other-
wise it truncates the file’s length to zero. Like the MKDIR

vop, it must first check both sources to make sure that it does
not create duplicates. If the file does not exist, the the file

5

is always created in the primary directory, as outlined earlier.
Note that to prevent namespace collisions when /persis-
tent and /elastic are merged into /home and /ehome,
the system must disallow direct namespace additions such
as new files, directories or links to these underlying direc-
tories without passing through the EQFS layer. To ensure
this, /persistent and /elastic are covered by a thin
loopback-like file system layer which maintains no state and
passes all operations on to the underlying file system, sans
namespace additions.

LINK creates hard links. Hard links are created as inher-
iting the elastic properties of the file that is being linked, re-
gardless of whether the operation is done under /home or
/ehome. When a hard link is created to a persistent file, the
hard link is considered persistent; a hard link that is created to
an elastic file is considered elastic. Hard links to files across
/home and /ehome are disallowed to avoid conflicting se-
mantics in which a file is linked as both persistent and elastic.

4 Rubberd

To provide a mechanism for reclaiming disk space used by
elastic files when the disk becomes too full, we developed
rubberd, a user-level space reclamation agent that leverages
the separate elastic file storage and quota functionality pro-
vided by EQFS. Rubberd is a highly configurable cleaning
agent, and its behavior can be set by the administrator, and
also in part by the users of the system.

System administrators can specify the location of the elas-
tic file system root, and parameters for describing the disk
utilization characteristics required to start and stop cleaning
operations and determine the rate of cleaning operations. The
start cleaning threshold is the percentage of total disk space
above which rubberd will start cleaning elastic files. The stop
cleaning threshold is the percentage of total disk space below
which rubberd will stop cleaning elastic files. The disk usage
sampling interval is the amount of time that rubberd waits be-
fore it checks if the total disk usage is above the start cleaning
threshold. System administrators can also choose whether or
not to allow users to specify their own policies for determin-
ing the ordering in which elastic files are removed.

When reclaiming disk space, rubberd works in conjunc-
tion with the EQFS quota system to identify users who are
over their quota limits. By default, rubberd removes elastic
files from users who are over their quota in proportion to how
much each user is over quota.

Note that rubberd only removes elastic files from users
whose total disk space consumption, including both persis-
tent and elastic usage, is over quota. If a user is consuming
a large amount of elastic space but is below quota, none of
that user’s elastic files will be removed. In the absence of
a user-specified removal policy, rubberd will remove elastic
files from a given user in order of least recent file access time
first.

Section 4.1 describes the rubberd cleaning mechanisms
that enable rubberd to efficiently support a wide-range of
cleaning policies. Section 4.2 describes the mechanism by
which users can select the order of removal for elastic files to
be cleaned. Section 4.3 describes the default rubberd propor-
tional cleaning algorithm we use.

4.1 Cleaning Mechanisms

The key goal in the design of rubberd was to efficiently sup-
port a wide-range of removal policies provided by the sys-
tem administrator or users without adversely impacting nor-
mal file operations. For example, when rubberd wakes up
periodically, it must be able to quickly determine if the file
system is over the start cleaning threshold. If the system is
over the threshold, rubberd must be able to locate all elastic
files quickly because those files are candidates for removal.
Moreover, depending on the policy, rubberd will also need
to find out certain attributes of elastic files, such as a file’s
owner, size, last access time, or name.

To meet this goal, rubberd was designed as a two-part sys-
tem that separates obtaining file attributes from the actual
cleaning process. Rubberd scans the file system nightly for
all elastic files under /elastic to build a lookup log of
information about the elastic files and their attributes. This
log serves as a cache that rubberd then uses to lookup file at-
tributes to determine what files to clean when the file system
is over the start cleaning threshold. The log can be stored in
a database, or a file or set of files. The prototype rubberd that
we built used per-user linear log files that are created in par-
allel for faster completion time. We chose this approach over
using popular databases such as NDBM or DB3 primarily for
the sake of simplicity.

Rubberd’s nightly scanning is analogous to other system
processes such as backup daemons or GNU updatedb [15]
that are already widely used and do nightly scans of the entire
file system. Because rubberd does a full scan of elastic files, it
can obtain all the information it may need about file attributes.
Rubberd does not require any additional state to be stored on
normal file operations, which would impact the performance
of these operations. Since the vast majority of files created
typically have short lifetimes of a few seconds[8, 18, 29], rub-
berd also avoids wasting time keeping track of file attributes
for files that will no longer exist when the file system clean-
ing process actually takes place. Although the cleaning log
will not have information on files just recently created on a
given day, such recent files typically consume a small per-
centage of disk space [8]. Furthermore, we expect that most
removal policies, including the default removal policy, will
remove older files that have not been accessed recently.

When rubberd cleans, it uses the files in the log when ap-
plying a cleaning policy and searches the log for files that
match the desired parameters (owner, creation time, name,
size, etc.). By default, rubberd uses a disk usage sample in-
terval of one hour so that it may reuse the log 23 times before

6

another file system scan occurs. Since our lookup log is up-
dated nightly at a time of least system activity, rubberd also
initiates a cleanup check right after the log is updated. Be-
cause the log is by default updated only once a day, it is pos-
sible that rubberd could run out of elastic files in the log to
clean while the disk utilization is still above the stop cleaning
threshold. In this case, rubberd will initiate a more expen-
sive full scan of the /elastic directory to update the elas-
tic files log and restart the cleaning phase using this updated
log. In this way, rubberd is able to optimize the common case
cleaning using the log while limiting the need to do recursive
scans of /elastic only as a last resort.

Normally, the rubberd cleaner simply runs as a low prior-
ity process to minimize its impact on other activities in the
system; a progress-based regulation approach could also be
used [6]. However, if the system is sufficiently busy that the
rubberd cleaner does not complete before its next scheduled
cleanup check, the priority of rubberd is raised to that of a
system-level process to ensure that the cleaning process is
given enough time to run. Rubberd cleaning can also be ini-
tiated by an administrator by sending a signal to the cleaning
process, presumably because the administrators determined
that cleaning is needed right away. In this case, the cleaner is
also run at a higher system-level priority.

4.2 User Policy Files

If the system administrator has allowed users to de-
termine their own removal policies, users are then al-
lowed to use whatever policy they desire for deter-
mining the order in which files are removed. A
user-defined removal policy is simply a file stored in
/var/spool/rubberd/username. The file is a
newline-delimited list of file and directory names or simple
patterns thereof, designed to be both simple and flexible to
use. Each line can list a relative or absolute name of a file or
directory. A double-slash (//) syntax at the end of a direc-
tory name signifies that the directory should be scanned re-
cursively. In addition, simple file extension patterns could be
specified. Table 1 shows a few examples and explains them.

Entry Meaning
class/foo.tgz a relative pathname to a file
˜/misc a non-recursive directory
˜/tmp// a recursive directory
src/eqfs/*.o all object files in a specific directory
src//*.o all object files recursively under src
˜//*.mp3 all MP3 files anywhere in home directory

Table 1: Example user removal policy file entries

Management of this removal policy file is done similarly to
how crontabmanages per-user cron jobs. A separate user
tool allows a user to add, delete, or edit their policy file — as
well as to install a new policy from another source file. The

tool verifies that any updated policy conforms to the proper
syntax. This tool also includes options to allow users to ini-
tialize their default policy file to the list of all their elastic
files, optionally sorted by name, size, modification time, ac-
cess time, or creation time.

4.3 Default Cleaning Algorithm

Rubberd’s default removal policy proportionally distributes
the amount of data to be cleaned based on the amount by
which users exceed their quota limits. Rubberd is flexi-
ble enough that many other cleaning algorithms and policies
could also be used, but due to space constraints, a detailed
discussion of different cleaning algorithms and policies is be-
yond the scope of this paper. Rubberd’s default proportional
share cleaning behavior is provided by a simple algorithm
that is easy to implement. When rubberd wakes up every sam-
ple interval, it begins by checking the current disk usage on
the system. If the usage is over the start cleaning threshold���������	�

, rubberd calculates the total amount of disk space to
clean (
 ��������

) as follows:

 ���������������� � ����������� � ���������
� ��� (1)

where
���������

is the stop cleaning threshold and
�

is the total
size of the disk.

Next, rubberd finds the amount of elastic disk usage over
quota for each user (!#"). This value is retrieved from the
quota system, by querying it for the user’s current quota usage
based on the user’s UID for persistent disk usage, the corre-
sponding shadow UID for elastic disk usage, and comparing
the sum of both usage values to the user’s actual fixed quota.
Rubberd sums all ! " values for all over-the-quota users into
! ��������

. Then, rubberd computes the portion of disk space that
should be cleaned from each user (
 ") as follows:

 " �
 ��������$� ! "
! �������� (2)

Before rubberd can begin to remove users’ files, it decides
the order in which the files will be removed. Rubberd re-
moves files as long as the total sum of removed files is less
than
 " . First, rubberd removes files in the order they are
listed in the user’s custom policy file. If the policy file does
not exist, or all files corresponding to the policy file have been
removed, rubberd will then use the system default removal
policy for removing more elastic files if more files need to be
removed. The system default policy is to remove files by ear-
liest access time first, which is based on the assumption that
these files are generally the least likely files to be used again
in the future.

5 Evaluation

To evaluate elastic quotas in a real world operating system en-
vironment, we implemented a prototype of our elastic quota

7

system in Solaris 9, the latest operating system release1 from
Sun Microsystems. We chose Solaris because it is widely
used in large production environments such as the file servers
on which elastic quotas would operate. We present some ex-
perimental results using our prototype EQFS and rubberd im-
plementations. We compared EQFS against Solaris 9 UFS
[2], the most popular file system used on Solaris servers. We
also measured the impact of rubberd on a running system.

We conducted all experiments on a Sun-Fire 480R multi-
processor system with four 750 MHz UltraSPARC-III CPUs
and 4 GB of RAM, running Solaris 9. We believe this is a
moderate size machine for the type of large file servers that
elastic quotas will be useful on. Although such installations
will probably include RAID arrays or SAN products, we fo-
cused on the native disks that were in the machine; this helped
us to analyze the results without worrying about interactions
with other storage systems. For all our experiments, we used
a local UFS file system installed on a Seagate Cheetah 36LP
disk with 36 GB capacity and 10000 rpm. UFS includes op-
tional logging features used in some installations that enable
a form of journaling that logs meta-data updates to provide
higher reliability guarantees. We considered both UFS and
UFS logging (LUFS) in our experiments. For each experi-
ment, we only read, wrote, or compiled the test files in the file
system being tested. All other user utilities, compilers, head-
ers, and libraries resided outside the tested file system. Unless
otherwise noted, all tests were run with a cold cache by un-
mounting all file systems that participated in the given test
after the test completed and mounted the file systems again
before running the next iteration of the test.

We report experimental results using both file system
benchmarks and real applications. Sections 5.1 and 5.2 de-
scribe the file system workloads we used for measuring EQFS
and rubberd performance, respectively. Sections 5.3 shows
results for three file system workloads comparing EQFS to
UFS to quantify the performance overhead of using EQFS.
Section 5.4 shows results quantifying the impact of rubberd’s
actions on a running system: reclaiming storage, building its
database, etc.

5.1 EQFS Benchmarks

To measure EQFS performance, we stacked EQFS on top
of UFS and compared its performance with native UFS. We
measured the performance of four file system configurations
on a variety of file system workloads: UFS without log-
ging (UFS), UFS with logging (LUFS), EQFS on top of UFS
(EQFS/UFS), and EQFS on top of LUFS (EQFS/LUFS). We
used three file system workloads for our experiments: Post-
Mark, a recursive find, and a compilation of a large software
package, the Solaris 9 kernel.

1FCS due summer 2002.

PostMark The first workload we used was PostMark [13],
a well-known file system benchmark that creates a large pool
of continually changing files to simulate a large electronic
mail server workload. PostMark creates an initial pool of text
files of various sizes, then performs transactions by reading
from, appending to, or creating and deleting files. The work-
load provides a useful measure of file system performance
for users performing daily tasks such as reading mail, editing
files, and browsing their directories. This workload exercises
some of the more complex EQFS file operations and provides
a conservative measure of EQFS overhead. We only report
PostMark measurements for EQFS using /home since EQFS
performs identically when using either /home or /ehome in
this experiment.

Because the default PostMark workload is too small, we
configured PostMark to perform 5000 transactions starting
with an initial pool of 2500 files with sizes between 8 KB and
64 KB, matching file size distributions reported in file system
studies [29]. Previous results obtained using PostMark show
that a single PostMark run may not be indicative of system
performance under load because the load is single-threaded
whereas practical systems perform multiple concurrent ac-
tions [28]. Therefore, we measured the four file systems run-
ning 1, 2, 4, and 8 PostMark runs in parallel. This not only al-
lows us to conservatively measure EQFS’s performance over-
head, but also evaluate EQFS’s scalability as the amount of
concurrent work done increases. The latter is even more im-
portant than the former, since raw speed can be improved by
moving to a larger machine, whereas poorly-scaling systems
cannot be easily helped by using larger machines.

Recursive Find The second workload we used was a re-
cursive scan of the full Solaris source base — which is a col-
lection of 32416 Java, C, and assembly files in 7715 subdi-
rectories — using find . -print. Since EQFS is imple-
mented as a stackable union file system, some EQFS file op-
erations must be performed on both /elastic and /per-
sistent. For example READDIR must merge two directory
contents; and LOOKUP must find a file in either of these two
directories. Since LOOKUP operations are common [20], and
merging two directory contents can be costly, this find test,
when run with a cold cache, is intended to show the worst-
case performance overhead of EQFS when using these file
system operations. To measure EQFS performance with this
workload, all files were stored persistently and we performed
the recursive scan using both /home and /ehome.

Solaris Compile The third workload we used was a build
of the Solaris 9 kernel, which provides a more realistic mea-
sure of overall file system performance. The kernel build is
inherently parallel, and as such the elapsed time masks over-
heads due to disk latency. As in all such measurements, the
increase in system time is of interest, as it indicates the extra
processing done by EQFS. This build processes 5275 C and

8

assembly source files in 1946 directories to produce 4020 ob-
ject files and more than 10,000 other temporary files. We used
Sun’s Workshop 5.0 compilers and set the maximum concur-
rency to 16 jobs to keep the CPU busy and to ensure that the
overhead is not underrepresented due to time spent perform-
ing I/O. Overall this benchmark contains a large number of
reads, writes, and file lookups, as well as a fair mix of most
other file system operations such as unlink, mkdir, and re-
name. To measure EQFS performance with this workload,
all source files were stored persistently and we performed the
build in both /home and /ehome. When using /ehome, all
object files are created elastic.

5.2 Rubberd Benchmarks

To evaluate rubberd, we measured how long it took to build
its nightly elastic files log and use it for cleaning elastic files.
The rubberd log we used contains the names of elastic files
and lstat(2) output. To provide realistic results on com-
mon file server data sets, we used a working set of files col-
lected over a period of 18 months from our own production
file server. The working set includes the actual files of 121
users, many of whom are software developers. The file set in-
cludes 1,194,133 inodes and totals over 26 GB in size; more
than 99% of the file set are regular files. 24% of the users use
less than 1 MB of storage; 27% of users use between 1–100
MB; 38% of users use between 100 MB–1 GB of storage;
and 11% of users consume more than 1 GB of storage each.
Average file size in this set is 21.8 KB, matching results re-
ported elsewhere [20]. We treated this entire working set as
being elastic. Previous studies [23] show that roughly half of
all data on disk and 16% of files are regeneratable. Hence
by treating all files as elastic, we are effectively modeling the
cost of using rubberd on a disk consuming a total of 52 GB
in 7.5 million files. Using EQFS mounted on LUFS, we ran
three experiments with the working set for measuring rubberd
performance: building the elastic files log, cleaning elastic
files using the log, and cleaning elastic files while running a
file system workload.

Elastic File Log Creation The first rubberd benchmark we
used measured the time it took to build an elastic file log by
scanning the entire /elastic directory through EQFS. The
scan is recursive and builds per-user log files in parallel with
a separate child process for each user, storing lstat(2) in-
formation on each file in the 26 GB data set described above.
Thus, the completion time to create the log is determined by
the users with the most elastic files. Building such a disk
scan may take a while and can disrupt user activity, partic-
ularly when run on larger file systems. As a result, the log
is intended to be built at night or when few users are active.
Nevertheless, once the log is created, we expect that scanning
it to find elastic files suitable for removal can be executed
much faster than scanning the file system directly, especially

if the set of files to be removed is significantly smaller than
the set of elastic files on the system.

Elastic File Cleaning The second rubberd benchmark we
used measured the time it took to use the elastic file log to
clean a portion of the disk on an otherwise idle system using
our default cleaning policy. Rubberd operates by retrieving
the list of files for each user, ordering them based on the de-
fault cleaning algorithm as described in Section 4.3, and then
removing files in order from this list. To provide a conserva-
tive measure of cleaning overhead, we set the rubberd param-
eters such that 5 GB of disk space, roughly 1/4 of the space
used by elastic files, would need to be removed to achieve the
desired state. While we do not propose using such a high hys-
teresis value for normal file systems, we chose a large value
to avoid under-representing the cost of rubberd operation.

Rubberd Cleaning with Solaris Compile The third rub-
berd benchmark we used measured the time it took to run the
second rubberd benchmark in conjunction with the Solaris
Compile described in Section 5.1. This experiment measures
the more practical impact of rubberd cleaning on a system
operating under load. Here, we ran the previous elastic file
cleaning benchmark on the same file set, but at the same time
we ran the parallel Solaris compilation, simulating high CPU
and I/O load. In this experiment, the kernel build was per-
formed under /ehome, although we did not need to worry
about rubberd causing the build to fail as the database con-
tained enough files from which to satisfy the cleaning request.
Note that both the kernel build and rubberd cleaning were ex-
ecuted on the same physical disk.

5.3 EQFS Results

PostMark The following two figures show the results for
running PostMark on each of the four file systems. Figure 2
shows the total throughput of the system and Figure 3 shows
the total time it takes to complete all of the runs. The re-
sults for LUFS show that EQFS incurs less than 10% over-
head over LUFS, with the EQFS/LUFS throughput rate and
completion time being within 10% of LUFS. The results for
UFS are even better, showing that EQFS incurs hardly any
overhead, with the EQFS/UFS throughput rate and comple-
tion time being within 1% of UFS. These results show that
EQFS’s overhead is relatively modest even for a file system
workload that stresses some of the more costly EQFS file op-
erations.

EQFS exhibits higher overhead when stacked on LUFS
versus UFS in part because LUFS performs better and is
less I/O bound than UFS, so that any EQFS processing over-
head becomes more significant. LUFS logs transactions
in memory, clustering meta-data updates and flushing them
out in larger chunks than regular UFS, resulting in higher
throughput and lower completion time than regular UFS for

9

��������

� ����
�	
��

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

���
���
���
���
���
�

���
���
���
���
���
�

���������
���������
���������
���

���
���
���
�

���������
���������
���
���������
���������
���

��������

� ���� �� � !"
#�##�##�#$�$$�$$�$ %%%&&& '�''�''�'(�((�((�()�))�))�)

)�))�)

**

+�+�+,�,

-�-./�/0 1 23
4�456�67

8�88�89�99�9 ::;; <�<<�<=�==�= >>
>
??
?

20

40

60

80

100

120

140

160

180

1 2 4 8

T
hr

ou
gh

pu
t (

tr
an

sa
ct

io
ns

/s
ec

)

No. of Parallel Runs

LUFS
EQFS/LUFS

UFS
EQFS/UFS

Figure 2: PostMark transactions per second results

@�@A�A

BC�CD�DE�EF�F G�GHI�IJ

KL�LM�M

N�NO�O P�PP�PP�PQ�QQ�QQ�Q RRR
RR
SSS
SS

T�TT�TT�T
T�TT�TT�T
T�TT�TT�T
T�TT�TT�T
T�T

UUU
UUU
UUU
UUU
U

V�VW�W

X�XX�XX�X
X�X
Y�YY�YY�Y
Y�Y

Z�ZZ�ZZ�Z
Z�ZZ�ZZ�Z
Z�ZZ�Z

[�[[�[[�[
[�[[�[[�[
[�[[�[

\�\\�\\�\
\�\\�\\�\
\�\\�\\�\
\�\\�\\�\
\�\

]]]
]]]
]]]
]]]
]

^�^^�^^�^
^�^^�^^�^
^�^^�^^�^
^�^^�^^�^
^�^^�^^�^
^�^^�^^�^
^�^^�^^�^
^�^^�^

__`�`a�a

b cd

ef�fg�g

hhi
i

j�jj�j
j�jj�j
k�kk�k
k�kk�k

l�ll�l
l�ll�l
l�ll�l
l�l

mm
mm
mm
m

n�nn�n
n�nn�n
n�nn�n
n�nn�n
n�nn�n
n�nn�n

oo
oo
oo
oo
oo
oo

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 4 8

C
om

pl
et

io
n

T
im

e
(s

ec
on

ds
)

No. of Parallel Runs

LUFS
EQFS/LUFS

UFS
EQFS/UFS

Figure 3: PostMark completion time results

PostMark. However, UFS scales better than LUFS, as ev-
ident by the fact that the total throughput rate for UFS in-
creases slightly with more parallel PostMark runs whereas
the throughput rate for LUFS decreases significantly. More
importantly, the results show that EQFS scales with the per-
formance of the underlying file system and in no way impacts
performance adversely as the amount of concurrent work
done increases.

Recursive Find Figure 4 shows the results for running the
recursive find benchmark on each of the file systems. We
show results for running the benchmark with both cold cache
and warm cache. The cold cache results show that EQFS in-
curs roughly 80% overhead in terms of completion time when
stacked on top of UFS or LUFS, taking about 80% longer to
do the recursive scan than the native file systems. The high
EQFS overhead is largely due to the frequent READDIR op-
erations that are done by the recursive scan. Using a cold
cache with the recursive scan, each READDIR operation re-
quires going to disk to read the respective directory block.
Because EQFS must merge both persistent and elastic direc-
tories, READDIR requires two directory operations on the un-
derlying file system. This causes twice as much disk I/O as
using the native file system to read directories, resulting in a
significantly higher completion time. This is compounded by
the fact that most FFS-like file systems such as UFS make an

attempt to cluster meta-data and data together on disk; UFS
does not necessarily place the two sister directories close to
each other on disk, hence reading the two directories not only
causes multiple I/O requests, but also causes the disk to seek
more, which slow overall performance. Overall the recursive
find benchmark is not representative of realistic file work-
loads, but provides a measure of the worst-case overhead of
EQFS as READDIR is the most expensive EQFS operation.

pqpqprqrqr
stqtuquvqvwqw

xqxxqxxqx
xqxxqxxqx
xqxxqxxqx
xqxxqxxqx
xqxxqxxqx
xqxxqxxqx
xqx

yyy
yyy
yyy
yyy
yyy
yyy
y

zqzqz{q{q{| }~

���
���
���
���
���
���
���

���
���
���
���
���
���
���

� ������ �q��q��q��q��q��q�

�q�q��q�q�

�q��q��q�
�q��q��q�
�q��q��q�
�q��q��q�
�q��q��q�
�q��q��q�
�q�

�q��q��q�
�q��q��q�
�q��q��q�
�q��q��q�
�q��q��q�
�q��q��q�
�q� �q�q��q�q�

�q��q�
�q��q�
�q��q�
�q��q�
�q��q�
�q�

�q��q�
�q��q�
�q��q�
�q��q�
�q��q�
�q�

�q�q��q�q�

��
��
��
��
��
�

��
��
��
��
��
�

��q��q��q��q��� � ���� ¡q¡¢q¢£q£¤
1

10

100

1000

Cold Warm Cold Warm

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

[l
og

]

UFS
/ehome (UFS)
/home (UFS)

LUFS
/ehome (LUFS)
/home (LUFS)

Figure 4: Elapsed times (seconds, log-scale) of a recursive find,
using cold and warm caches

In this test all files found were located under /persis-
tent. This meant that looking up files via /home found
the files in the primary directory, whereas when looking them
up via /ehome, the files were logically located in the sis-
ter directory and EQFS had to perform two LOOKUP opera-
tions to find those files. Nevertheless, Figure 4 shows that the
overhead of looking up those files with an extra LOOKUP was
small: 4.2% when mounted on LUFS and only 0.1% when
mounted on top of UFS.

When using a warm cache, Figure 4 shows that EQFS
incurs essentially no overhead versus the native file system
when stacked on top of either UFS or LUFS. For all file sys-
tems, the recursive find took less than two seconds to com-
plete, roughly two orders of magnitude faster than when us-
ing a cold cache. Like other Solaris file systems, our EQFS
implementation utilizes the Solaris Directory Name Lookup
Cache (DNLC). The warm cache results illustrate the full
benefits of caching. Since the directory contents are already
merged and cached, EQFS does not spend additional time
merging directories, resulting in negligible performance over-
head. There is also no difference in EQFS performance when
using /home versus /ehome since LOOKUP requests are sat-
isfied from the cache and EQFS does not call the underlying
file system.

Solaris Compile Figure 5 shows the results for running the
Solaris compile on each of the file systems. Results are re-
ported in terms of elapsed time and system time. Although
we do not report user time, we note that the sum of user and
system time is higher than elapsed time, due to the parallel
nature of the build and the multiprocessor machine used. The

10

results show that EQFS incurs almost no overhead in comple-
tion time when stacked on top of UFS or LUFS, taking less
than 1% longer to complete the compilation. EQFS incurs
less than 5% overhead versus UFS or LUFS in terms of sys-
tem time. These results show that EQFS imposes very little
performance overhead, and does not limit file system scalabil-
ity for realistic application workloads such as a large parallel
compilation.

�������������������������

���������
���������
���������
���������
���������
���������
���������
���

			
			
			
			
			
			
			
	
�
���

���
���
���
���
���
���
���
�

� ����
���
���
�
���
���
� ������������
���������
���������
���
���������
���������
���

���������

!!!
!!!
!!!
!!!
!!!
!!!
!!

"""
"""
"""
"""
"""
"""
"" #�##�#$�$$�$%&�&'(�()

*�**�*
*�**�*
*�**�*
*�**�*
*�**�*
�

+�++�+
+�++�+
+�++�+
+�++�+
+�++�+
+�+

,�,,�,-�--�-

..
..
..
..
..
.

//
//
//
//
//
/

012�234�45
6�66�66�6
6�66�6
777
77 89:;
<<
<
==
= > ?@AB
CC
CC
DD
DD

0

500

1000

1500

2000

2500

3000

3500

Elapsed System Elapsed System

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

UFS
/ehome (UFS)
/home (UFS)

LUFS
/ehome (LUFS)
/home (LUFS)

Figure 5: Elapsed and system times (seconds) of a large compile
benchmark

The performance of EQFS when doing the compile from
/ehome is slightly worse than when doing the compile from
/home because the source files are located in the underly-
ing persistent directory. As a result, LOOKUP operations for
uncached entries from /ehome will cause a lookup in both
underlying directories. We analyzed the cost and frequency
of various file operations for the compilation and found that
while LOOKUP operations are the most frequent, accounting
for almost half of all file operations, the total time spent do-
ing LOOKUP operations was small. Since the same file is typ-
ically referenced multiple times during the build, requests are
satisfied from the cache, resulting in little performance differ-
ence between compiling in /home versus /ehome.

For comparison purposes, we also measured the overhead
of a null stacking layer and found that it incurred about 0.5%
overhead when stacked on top of UFS or LUFS. This means
that EQFS only imposes roughly 0.5% more overhead beyond
the basic stacking costs, even though EQFS provides signif-
icant additional functionality. EQFS’s low overhead is due
in part to its effective use of the DNLC for vnode caching.
Previously published results for similar compilation bench-
marks on trivial stacking systems [31] that simply copy data
between layers show a 14.4% increase in system time, signif-
icantly higher than what we measure for EQFS.

5.4 Rubberd Results

Elastic File Log Creation Table 2 shows the results for
building the elastic file log. The results show that the entire
log was created in only about 10 minutes using a cold cache.
This indicates that the cost of building the elastic file log is

small and should have little if any effect on system opera-
tion if run during off-peak hours. Table 2 also shows that the
entire log was created in less than three minutes when using
a warm cache. In practice, we expect actual numbers to be
closer to those of a cold cache.

Time Cold Warm Speedup
Elapsed 638.5 175.4 364%
User 7.3 7.2 1.3%
System 76.1 72.0 5.7%

Table 2: Times (seconds) to build the elastic file log

Elastic File Cleaning Table 3 shows the results of running
the elastic file cleaning benchmark to clean 5 GB of disk
space. The entire cleaning process took less than two min-
utes. Compared to the time it took to scan the disk and build
the elastic file log, the overhead of cleaning is more than five
times less, which shows the benefit of using the log for clean-
ing. In the absence of the elastic file log, removing the same
set of data would have involved scanning the entire disk in
order to find candidate files, which would have taken signifi-
cantly longer. As expected, the figures indicate that the job is
primarily I/O bound, with user and system times amounting
to a mere fraction of the completion time.

The cleaning cost is low enough that rubberd may be run
multiple times during the course of a day without much over-
head. For instance, if rubberd were run once an hour, the rub-
berd would only need three percent of the time to clean 120
GB of disk space a day. It is unlikely that this much storage
space would need to be reclaimed daily for most installations,
so that rubberd cleaning overhead in practice would typically
be even lower.

Elapsed User System
111.8 16.5 10.1

Table 3: Times (seconds) to clean 5GB

Rubberd Cleaning with Solaris Compile Table 4 shows
the completion time for executing our large Solaris compile
benchmark while rubberd is running. These results measure
the impact of running rubberd cleaning on the Solaris compi-
lation by comparing the compilation completion times when
rubberd is not running, when rubberd is running at low prior-
ity, and when rubberd is running at normal priority.

Comparing with the Solaris compilation results without
rubberd running, we observe a 3.5% degradation in comple-
tion time when rubberd is running at low priority, and a 4%
degradation when running at regular priority. Running rub-
berd as a lower priority job does not make a large difference,
primarily since both jobs are I/O bound, hence CPU schedul-
ing priority has a very small impact on completion time. Fur-
thermore, we observe that there are numerous lull times dur-

11

Rubberd Status Elapsed Time
Not running 2872.1
Low Priority 2974.5
Normal Priority 2991.5

Table 4: Elapsed time (seconds) to build kernel in /ehome in three
ways: alone (rubberd not running), with rubberd running at a low
priority, and with rubberd running at a normal priority.

ing a regular system’s operation in which it would be possible
to schedule rubberd to run with an even lower impact on sys-
tem operation [6].

Overall, however, we observe that the impact of rubberd
running even once an hour with a conservatively large amount
of data to remove does not significantly hamper normal sys-
tem operation. It is also important to note that as these files
are temporary they would be removed anyhow; rubberd pro-
vides the added convenience of automatically doing so when
disk space becomes low and before the disk fills up and ham-
pers user productivity.

6 Related Work

Elastic quotas are complementary to Hierarchical Storage
Management (HSM) systems. HSM systems provide disk
backup as well as ways to reclaim disk space by moving
less-frequently accessed files to a slower disk or tape. These
systems then provide some way to access files stored on the
slower media, ranging from file search software to leaving
behind a link to the new file storage location in the original
file location. Examples of HSM systems include the Network
Appliance Snapshot system [3], the Smart Storage Infinet sys-
tem [26], IBM Storage Management [12], and UniTree [27].
The UniTree HSM system uses a combination of file size and
the age of a file in hours to compute the eligibility of a file to
be moved to another medium. Rubberd can be similarly con-
figured to clean files based on size and time; however, it also
uses more complex algorithms to compute disk space usage
over time. Elastic quotas can be used with HSM systems as a
mechanism for determining which files are moved to slower
storage. Given an HSM system, rubberd could then reclaim
disk space when it becomes scarce by moving elastic files to
the slower layers of the HSM storage hierarchy.

The design of EQFS builds on previous work in stackable
file systems. Rosenthal first implemented file system stack-
ing on top of the VFS interface in SunOS 4.1 [21] more than
a decade ago. Skinner and Wong developed further proto-
types for extending file systems in SunOS [25]. Guy and
Heidemann developed slightly more generalized stacking in
the Ficus layered file system [9, 10]. Stacking in 4.4 BSD is
derived from Heidemann’s work. More recently, Zadok and
Nieh have developed a system for stackable file system code
generation that simplifies stackable file system development
and improves file system portability [32]. EQFS uses the idea

of file system stacking but does not require much of the func-
tionality in more generalized stacking infrastructures, such
as being able to manipulate file data. As a result, the perfor-
mance overhead of using EQFS is lower than the performance
overheads that have been reported for using these other sys-
tems.

The idea of unification used in EQFS is similar to the union
mounts in 4.4 BSD [17] and Plan 9 [19]. However, EQFS
differs from these systems in four ways. First, EQFS pro-
vides true fan-out stacking on two underlying directories as
opposed to linear stacking. EQFS does not need to use lin-
ear stacking in part because it only provides unification of
two underlying directories as opposed to unification of an ar-
bitrary number of underlying file systems. Second, EQFS
does not require complex mechanisms to resolve differences
in directory structure or file name conflicts in the underly-
ing file systems. Third, EQFS provides not just one unified
view of the underlying directories, but two unified views with
different semantics for file creation. Fourth and most impor-
tantly, EQFS does not treat the underlying directories as read
only, eliminating the need for the potentially expensive copy-
up operation required on UnionFS. These differences are part
of the reason for the much lower performance overhead of
EQFS versus more generalized union file systems.

The use of a disk cleaner to reclaim disk space consumed
by elastic files has some similarities to mechanisms for sup-
porting versioned files in file systems such as Cedar [24] and
Elephant [22, 23]. Versioning file systems keep track of mul-
tiple versions of data automatically. As disk space fills up,
versioning file systems reclaim disk space by discarding file
versions according to some policy, such as discarding the
oldest file versions first. The overall problem of support-
ing versioned files is different from the problem addressed
by the elastic quota system. EQFS can complement ver-
sioning systems by differentiating between files that should
be versioned (i.e., /persistent) and the temporary files
for which versioning is not necessary, while rubberd removes
non-versioned temporary files from /elastic.

Much previous work [1, 5, 11, 17, 19, 30] has been done to
develop mechanisms for sharing resource such as processor
cycles and network bandwidth such that resources can be uti-
lized fully yet fairly. These resources are elastic in the sense
that they can be allocated to a user in such a way that the allo-
cation can be increased or decreased over time based on avail-
ability. For example, a processor scheduler enables a group
of users to share processor cycles fairly, but allows a user to
monopolize the resource when no one else is using it. Elas-
tic quotas can be thought of as a way to make disk space an
elastic resource as well. The ability to use disk space elasti-
cally opens up new opportunities for applying elastic resource
management ideas such as proportional sharing [5, 11, 17, 30]
to disk space, a previously unexplored area.

12

7 Conclusions and Future Work

We have introduced elastic quotas, a novel disk space man-
agement technique that brings elasticity to file systems. Elas-
tic quotas provide traditional persistent file semantics for crit-
ical data while providing a new elastic model that is easy to
use and matches well with the temporary nature of the vast
majority of files. Elastic quotas simplify file system man-
agement while providing more efficient utilization of stor-
age space in multi-user computing environments. We have
demonstrated the viability of elastic quotas by creating an
elastic quota system consisting of the Elastic Quota File Sys-
tem (EQFS) and the rubberd file cleaner. EQFS operates as
a thin stackable layer that provides elastic quotas with exist-
ing file systems without any modifications to those systems.
Rubberd reclaims disk space as needed in a manner that is
consistent with user preferences.

We have implemented an elastic quota system in Solaris
and measured its performance, finding it to be a low-overhead
solution to temporary storage management. Our results show
that using EQFS adds very little overhead to existing file sys-
tems, with performance on a large parallel compilation within
one percent of native file system performance. Our results
also show that rubberd storage reclamation on a production
file system workload is fast, taking just a couple minutes to
clean several gigabytes of elastic files. More importantly, rub-
berd provides the convenience of automatic file cleaning, re-
lieving users of the burden of this task.

Our experimental results have encouraged us to deploy
elastic quotas on a production system to further explore the
ways in which users will take advantage of reclaimable space
and flexible storage limits. Although we have currently fo-
cused on file removal policies for storage reclamation of elas-
tic files, we plan to continue to investigate the benefits of
combining file compression and hierarchical storage manage-
ment techniques with elastic quotas. We hope that elastic
quotas will provide a useful foundation for future work in
exploring elastic resource management in file systems.

References

[1] G. Banga, P. Druschel, and J. Mogul. Resource Containers: A
New Facility for Resource Management in Server Systems. In
Proceedings of the 3rd Symposium on Operating Systems De-
sign and Implementation, pages 45–58, Berkeley, CA, Febru-
ary 1999. USENIX.

[2] J. L. Bertoni. Understanding Solaris Filesys-
tems and Paging. Technical Report TR-98-55,
Sun Microsystems Research, November 1998.
http://research.sun.com/research/techrep/1998/abstract-
55.html.

[3] K. Brown, J. Katcher, R. Walters, and A. Watson. Snap-
Mirror and SnapRestore: Advances in Snapshot Tech-
nology. Technical report, Network Appliances, Inc.
http://www.netapp.com/tech library/3043.html.

[4] R. Card, T. Ts’o, and S. Tweedie. Design and implementa-
tion of the second extended filesystem. In Proceedings to the
First Dutch International Symposium on Linux, Seattle, WA,
December 1994.

[5] A. Demers, S. Keshav, and S. Shenker. Analysis and Simu-
lation of a Fair Queuing Algorithm. In Proceedings of ACM
SIGCOMM ’89, pages 1–12, Austin, TX, September 1989.

[6] J. R. Douceur and W. J. Bolosky. Progress-based regulation
of low-importance processes. In Proceedings of 17th ACM
Symposium on Operating Systems Principles, pages 247–60,
Kiawah Island Resort, SC, December 1999. ACM Press.

[7] Gartner, Inc. Server Storage and RAID Worldwide.
Technical report, Gartner Group/Dataquest, 1999.
http://www.gartner.com.

[8] T. Gibson. Long-term Unix File System Activity and the Effi-
cacy of Automatic File Migration. PhD thesis, Department of
Computer Science, University of Maryland Baltimore County,
May 1998.

[9] R. G. Guy, J. S. Heidemann, W. Mak, T. W. Page Jr., G. J.
Popek, and D. Rothmeier. Implementation of the Ficus repli-
cated file system. In Proceedings of the Summer USENIX
Technical Conference, pages 63–71, Summer 1990.

[10] J. S. Heidemann and G. J. Popek. File system development
with stackable layers. ACM Transactions on Computer Sys-
tems, 12(1):58–89, February 1994.

[11] G. Henry. The Fair Share Scheduler. AT&T Bell Laboratories
Technical Journal, 63(8):1845–1857, October 1984.

[12] IBM Tivoli. Achieving cost savings through
a true storage management architecture.
http://www.tivoli.com/products/documents/white pa-
pers/sto man whpt.pdf, 2002.

[13] J. Katcher. PostMark: a New Filesystem Bench-
mark. Technical Report TR3022, Network Appliance.
http://www.netapp.com/tech library/3022.html.

[14] S. R. Kleiman. Vnodes: An architecture for multiple file
system types in Sun UNIX. In Proceedings of the Summer
USENIX Technical Conference, pages 238–47, Summer 1986.

[15] K. Lindsat. Secure Locate.
http://www.geekreview.org/slocate, 2002.

[16] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A
fast file system for UNIX. ACM Transactions on Computer
Systems, 2(3):181–97, August 1984.

[17] J. Nieh and M. Lam. The Design, Implementation and Eval-
uation of SMART: A Scheduler for Multimedia Applications.
In Proceedings of the 16th Symposium on Operating Systems
Principles, volume 31(5), pages 184–197, New York, October
1997. ACM Press.

[18] J. Ousterhout, H. Costa, D. Harrison, J. Kunze, M. Kupfer,
and J. Thompson. A trace-driven analysis of the usenix 4.2
bsd file system. In Proceedings of the 10th ACM Symposium
on Operating System Principles, pages 15–24, Orcas Island,
WA, December 1985. ACM.

[19] A. Parekh and R. Gallager. A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks:
The Single-Node Case. IEEE/ACM Transactions on Network-
ing, 1(3):344–357, June 1993.

13

[20] D. Roselli, J. R. Lorch, and T. E. Anderson. A comparison of
file system workloads. In Proceedings of the Annual USENIX
Technical Conference, June 2000.

[21] D. S. H. Rosenthal. Evolving the Vnode interface. In Pro-
ceedings of the Summer USENIX Technical Conference, pages
107–18, Summer 1990.

[22] D. J. Santry, M. J. Feeley, N. C. Hutchinson, and A. C. Veitch.
Elephant: The File System that Never Forgets. In Proceedings
of the IEEE Workshop on Hot Topics in Operating Systems
(HOTOS), March 1999.

[23] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch,
R.W. Carton, and J. Ofir. Deciding When to Forget in the
Elephant File System. In Proceedings of the 17th ACM Sym-
posium on Operating Systems Principles, pages 110–123, De-
cember 1999.

[24] M. D. Schroeder, D. K. Gifford, and R. M. Needham. A
Caching File System for a Programmer’s Workstation. In Pro-
ceedings of the 10th ACM Symposium on Operating Systems
Principles, pages 25–34, December 1985.

[25] G. C. Skinner and T. K. Wong. “Stacking” Vnodes: A progress
report. In Proceedings of the Summer USENIX Technical Con-
ference, pages 161–74, June 1993.

[26] Smart Storage. SmartStor InfiNet: Virtual Storage for Today’s
E-Economy. A White Paper, September 2000.

[27] UniTree Francis Kim. UniTree: A Closer
Look At Solving The Data Storage Problem.
http://www.networkbuyersguide.com/search/319002.htm,
1998.

[28] VERITAS Software. Veritas file server edition performance
brief: A postmark 1.11 benchmark comparison. Tech-
nical report. http://eval.veritas.com/webfiles/docs/fsedition-
postmark.pdf.

[29] W. Vogels. File System Usage in Windows NT 4.0. In Pro-
ceedings of the 17th ACM Symposium on Operating Systems
Principles, pages 93–109, December 1999.

[30] C. Waldspurger. Lottery and Stride Scheduling: Flexible
Proportional-Share Resource Management. PhD thesis, De-
partment of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, September 1995.

[31] E. Zadok, J. M. Anderson, I. Bădulescu, and J. Nieh. Fast
Indexing: Support for size-changing algorithms in stackable
file systems. In Proceedings of the Annual USENIX Technical
Conference, pages 289–304, June 2001.

[32] E. Zadok and J. Nieh. FiST: A language for stackable file sys-
tems. In Proceedings of the Annual USENIX Technical Con-
ference, pages 55–70, June 2000.

14

