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Abstract of the Dissertation

Analyzing Root Causes of Latency Distributions
by

Avishay Traeger

Doctor of Philosophy
in

Computer Science

Stony Brook University

2008

OSprof is a versatile, portable, and efficient profiling methodology based on the analysis of
latency distributions. Although OSprof offers several unique benefits and has been used to uncover
several interesting performance problems, the latency distributions that it provides must be analyzed
manually. These latency distributions are presented as histograms and contain distinct groups of
data, called peaks, that characterize the overall behaviorof the running code. Our thesis is that by
automating the analysis process, we make it easier to take advantage of OSprof’s unique features.

We have developed the Dynamic Analysis of Root Causes system(DARC), which finds root
cause paths in a running program’s call-graph using runtimelatency analysis. A root cause path
is a call-path that starts at a given function and includes the largest latency contributors to a given
peak. These paths are the main causes for the high-level behavior that is represented as a peak
in an OSprof histogram. DARC uses dynamic binary instrumentation to analyze running code.
DARC performs PID and call-path filtering to reduce overheads and perturbations, and can handle
recursive and indirect calls. DARC can analyze preemptive behavior and asynchronous call-paths,
and can also resume its analysis from a previous state, whichis useful when analyzing short-running
programs or specific phases of a program’s execution.

In this dissertation we present the design and implementation of DARC. Our implementation
is able to find user-space and kernel-space root cause paths,as well as paths that originate in user-
space and terminate in kernel-space. We also investigate the possibility of using OSprof and DARC
in virtual machine environments. We show DARC’s usefulnessby analyzing behaviors that were
observed in several interesting scenarios. We compared theanalysis of these behaviors when using
DARC to the manual analysis required by the original OSprof methodology, and found that DARC
provides more concrete evidence about root causes while requiring less time, expertise, and intu-
ition. In our performance evaluation, we show that DARC has negligible elapsed time overheads
for normal use cases.
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Chapter 1

Introduction

An important goal of performance analysis is finding the rootcauses for some high-level behavior
that a user observes. OSprof [27–30] presents these high-level behaviors to the user by collecting
latency distributions for functions in histograms. These histogram profiles contain groups of oper-
ations, called peaks. Figure 2.1 shows example OSprof profiles for single and multiple processes
calling thefork operation. We discuss this profile further in Chapter 2. For now, note that there
are two distinct peaks in the multi-process profile (white bars): the first spans bins 15–19, and
the second spans bins 20–25. These types of peaks are characteristic of OSprof profiles, and are
indicative of some high-level behavior. In this case, the left peak characterizes the latency of the
actual fork operation, and the right peak shows a lock contention.

These histogram profiles are presented to the user, and with OSprof, the user then manually
analyzes the profiles using a variety of techniques. One technique is to compare peaks from two
different profiles to reach some conclusion. To analyze the multi-processfork workload shown
in the white bars of Figure 2.1, a user would need to have the expertise and insight to compare the
profile to a single-process workload’s profile. Because the right-most peak does not appear in the
single-process profile, the user can guess that a lock contention caused the peak.

Despite the manual analysis required to analyze profiles, OSprof is a versatile, portable, and
efficient profiling methodology. It includes features that are lacking in other profilers, such as
the ability to collect time-lapse profiles, small profile sizes, and low overheads (in terms of time,
memory usage, and code size). Based on user experiences, it is clear that interesting behavior
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Figure 1.1: Profiles of FreeBSD 6.0fork operations with single-process (black bars) and multi-
process (white bars) workloads.
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can be observed from these high-level profiles. We believe that DARC can help users take full
advantage of OSprof.

We designed the Dynamic Analysis of Root Causes (DARC) system to remedy the problem of
manual profile analysis [74]. DARC dynamically instrumentsrunning code to find the functions
that are the main latency contributors to a given peak in a given profile. We call these functionsroot
causes. DARC’s output is the call-paths that begin with the function being analyzed, and consist
of root cause functions. This provides the user with the exact sequence of functions that were
responsible for the peak of interest.

DARC can narrow down root causes to basic blocks and can analyze recursive code as well as
code containing indirect functions. If the root cause of a peak is a preemptive event, DARC can
determine the type of event (a disk interrupt, for example).DARC can also analyze asynchronous
paths in the context of the main process. Although DARC generally does not require much time
to perform its analysis, DARC may not be able to fully analyzeprograms with short runtimes, and
longer running programs with short phases that are of interest. To solve these issues, DARC can
resume its analysis from a previous point. The program can berun again, and the analysis continues
from the previous point. An OSprof profile from the previous run can optionally be automatically
compared to a profile from the current run to ensure that the runtime environment has not changed
significantly. To minimize false positives and reduce overheads, DARC performs both process
ID (PID) and call-path filtering. PID filtering ensures that only calls made by a specific process
or thread group are analyzed. Call-path filtering ensures that DARC analyzes only calls which
originate from the function of interest and proceed throughroot cause functions.

We implemented DARC and present several use cases that show the advantages of automatic
root cause analysis. Not only is DARC’s analysis faster thanmanual analysis, but it also provides
more definitive explanations than those obtained from manual analysis while requiring less exper-
tise and intuition from the user.

Our current DARC implementation can report root cause pathsthat reside in user-space, in
the kernel, and those that originate in user-space and terminate in the kernel. This allows users
to analyze behaviors that are observed in user-space but whose root cause lies in the kernel. In
addition to running in user-space and in the kernel, we also discuss the possibility of using OSprof
and DARC in virtual machine environments.

We measured DARC’s overheads and show that they are acceptable for normal usage. Although
DARC can make fast memory-bound operations run up to 50% slower, the analysis can be com-
pleted quickly, resulting in a negligible effect on overallelapsed time. Further, our instrumentation
adds no noticeable overhead on slower I/O-bound operations.

To aid in reproducing our results [75], we have made DARC’s source code available, as well as
a detailed description of our experimental testbeds and ourbenchmark results at
http://www.fsl.cs.sunysb.edu/docs/darc/ .

1.1 Dissertation Organization

The remainder of the dissertation is organized as follows. We describe OSprof in Chapter 2. We de-
tail our design in Chapter 3 and our implementation in Chapter 4. We discuss DARC’s limitations in
Chapter 5. Chapter 6 describes the test machine that we used for all experiments. Chapter 7 shows
examples of how DARC finds root causes. We evaluate the performance of DARC in Chapter 8.

2



Chapter 9 discusses various methods for comparing OSprof profiles. We describe how OSprof
and DARC behave in virtual machine environments in Chapter 10. We discuss related work in
Chapter 11. We conclude and discuss future work in Chapter 12.

3



Chapter 2

OSprof

OSprof [27–30] is a powerful profiling methodology. Latencies for a specified function are mea-
sured using the CPU cycle counter (TSC on x86) and presented in histogram form. OSprof mea-
sures latency using CPU cycles because it is a highly preciseand efficient metric available at run-
time. Figure 2.1 shows an actual profile of the FreeBSD 6.0fork operation. Thefork operation
was called concurrently by one process (black bars) and by four processes (white bars) on a dual-
CPU SMP system. The operation name is shown in the top right corner of the profile. The lower
x-axis shows the bin (or bucket) numbers, which are calculated as the logarithm of the latency in
CPU cycles. The y-axis shows the number of operations whose latency falls into a given bin. Note
that both axes are logarithmic. For reference, the labels above the profile give the bins’ average
latency in seconds. In Figure 2.1, the two peaks in the multi-process histogram correspond to two
paths of the fork operation: (1) the left peak corresponds toa path without lock contention, and
(2) the right peak corresponds to a path with a lock contention. The methods used to reach this
conclusion are described later in this chapter.

The relative simplicity of the profiling code makes OSprof highly portable. It has been used to
find and diagnose interesting problems on Linux, FreeBSD, and Windows XP, and has been used to
profile from user-space and at several kernel instrumentation points. OSprof can be used for gray-
box OS profiling. For example, binary instrumentation was used to instrument Windows XP system
calls. The latency distributions of these system calls included information about the Windows
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Figure 2.1: Profiles of FreeBSD 6.0fork operations with single-process (black bars) and multi-
process (white bars) workloads. This figure is a duplicate ofFigure 1.1, and is recreated here for
convenience.

4



kernel. OSprof is also versatile: it can profile CPU time, I/O, locks, semaphores, interrupts, the
scheduler, and networking protocols.

OSprof has negligible performance overheads. Its small profiles and code size minimize the
effects on caches. Additionally, having small profiles enables OSprof to collect time-lapse profiles,
where a separate profile is used for each time segment. This allows the user to see how latency dis-
tributions change over time. The performance overhead for profiling an operation is approximately
40 cycles per call. This is much faster than most measured functions, especially since OSprof is
generally used to profile high-level functions.

The drawback of OSprof is the manual investigation requiredto find the root cause of a par-
ticular behavior, which is seen as a peak in a profile. The investigation typically requires some
deep understanding of the code, as well as taking the time to profile more sections of code. Let us
consider the profile shown in Figure 2.1 in more detail. In thesingle-process case, only the left-
most peak is present. Therefore, it is reasonable to assume that there is some contention between
processes inside of the fork function. In addition to the differential profile analysis technique used
here, other techniques have also been used, such as using prior knowledge of latencies, layered
profiling, correlating latencies to variables, and profile sampling [28]. We show some examples of
these techniques in Chapter 7, where we compare the analysismethods of OSprof with DARC.

5



Chapter 3

Design

We define a root cause function to be a function that is a major latency contributor to a given peak
in an OSprof profile. The key to searching for root causes liesin the fact that latencies are additive:
the latency of a function’s execution is roughly equal to thelatency of executing the function itself,
plus the latency to execute its callees. This concept can be extended recursively to the entire call-
graph, providing us with an effective method for finding the largest latency contributors. DARC
searches the call-graph one level at a time, identifying themain latency contributors at each step,
and further searching the sub-trees of those functions.

When starting DARC, the user specifies the process ID (PID) ofthe target program, the function
to begin analyzing (we refer to this asf0), and the maximum search depth. We call a path fromf0

to a root cause aroot cause path. DARC’s goal is to find root cause paths and present them to the
user.

3.1 The Function Tree

Over time, DARC creates an in-memory tree that represents the function calls along root cause
paths. We call this the Function Tree, orftree, and it is composed offnodes. Initially, there is a
single fnode in the tree, representing calls tof0. The depth of the ftree increases during DARC’s
analysis, until either the specified maximum depth is reached, or DARC has finished its analysis.
The PID is used to ensure that only function calls that are invoked on behalf of the given process
or thread group are analyzed.

It is important to note that fnodes do not represent functions, but rather function calls in the
context of call-paths. For example, we can see in Figure 3.1(a) that bothfA andfB call fC . In
this case, there would be two nodes forfC , as shown in Figure 3.1(b). This concept also holds for
situations where one function calls a different function twice. In this case, there will be one node
for each call site, as shown in Figure 3.2. The ftree is a proper tree, as it contains only sequences
of function calls, and so it does not contain loops or nodes with more than one parent. The ftree
grows as DARC finds more functions that belong to root cause paths.

6



fA

fC

fB

(a) call-graph

fC fC

fA fB

(b) ftree

Figure 3.1: An example of a call-graph (left) with a possiblecorresponding ftree (right), where a
function appears in the ftree twice.

fC fC

fA

(a) call-graph

fC fC

fA

(b) ftree

Figure 3.2: An example of a call-graph (left) with a possiblecorresponding ftree (right), where a
function calls a different function twice.

3.2 Initial f0 Instrumentation

DARC begins by instrumentingf0 with OSprof code, as shown in Figure 3.3. In our notation,
the callees off0 aref0,0 to f0,n. The ellipses represent any code present in the original program
that is not relevant to our discussion. TheGETCYCLESfunction reads the current value of the
register which contains the current number of clock ticks onthe CPU (e.g.,RDTSCon x86). These
notations are also used for Figures 3.5, 3.7, and 3.11.

The instrumentation accumulates profile data, which is displayed to the user upon request.
DARC examines changes between bins in the histogram to identify peaks, and displays the peak
numbers to the user along with the histogram. The peak analysis takes the logarithmic values of
the y-axis into account, mimicking the way a human might identify peaks. The output that the
user sees is presented in Figure 3.4. Here we can see the address off0, the total number of times
f0 was called, the total latency of the profiled calls tof0, the profile in array form, and a visual
representation of the profile. The peak numbers are shown under the bin numbers.

At this point, the user may communicate the desired peak to DARC. DARC then translates the
peak into a range of bins. If the desired peak is known ahead oftime, the user may specify the peak
number and the number of timesf0 should be called before translating the peak into a bin range.
Oncef0 is called that number of times, the profile is displayed so that the user may see the profile
that the results will be based on.

7



f0 {
time1 = GET_CYCLES();
...
f0,0();
...
f0,i();
...
f0,n();
...
time2 = GET_CYCLES();
latency = time2 - time1;
record_latency_in_histogram(latency);

}

Figure 3.3: The instrumentation DARC adds tof0 when DARC is started.f0,0, f0,i, andf0,n are
functions thatf0 calls.

3.3 Main f0 Instrumentation

Once a peak is chosen, the original instrumentation is replaced by the instrumentation shown in
Figure 3.5. Whenf0 is executed, DARC measures the latencies off0 and its callees. The maximum
latency for each function is stored in the appropriate fnode. The maximum is used because a
function may be called more than once in the case of loops (this is explained further later in this
section). Because the latencies of the callees are measuredfrom within f0, the latency stored in the
fnode off0,i is guaranteed to be the latency off0,i when called byf0. The latencies are processed
only if the latency off0 lies in the range of the peak being analyzed. Otherwise, theyare discarded.
Note that in Figure 3.5, thestart and latencyvariables in the fnode are thread-local to support
multi-threaded workloads.

The goal of theprocess latencies function (see Figure 3.5) is to find the largest latency
contributors amongf0 and its callees. Theprocess latencies function first approximates the
latency off0 itself:

latencyf0
− (

n∑

i=0

latencyf0,i
) (3.1)

It then finds the maximum latency amongf0 and its callees. The largest latency contributors are
those whose latency has the same logarithm as the maximum latency. In other words,f0 is chosen if
log2(latencyf0

) = log2(latencymax), and anf0,i is chosen iflog2(latencyf0,i
) = log2(latencymax).

To improve accuracy, DARC does not make root cause decisionsbased on a single call off0.
Instead, it increments a counter,maxcount , in the fnodes of the largest latency contributors. Root
cause decisions are made after a user-defined amount of timeswhere the latency off0 has been
in the range of the peak being analyzed. The main latency contributors are those whose value
of maxcount are within a user-defined percentage (defined by themaxcount percentage
parameter) of the largestmaxcount value. These functions are root cause functions, and their
fnodes are marked as such. DARC always clears the latencies that were recorded beforef0 returns.
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f0 address: 3222666524
total operations: 12426
total cycles: 33484691285
profile: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43 11981 266 106 5 0 3
22 0 0 0 0 0 0 0 0

10000 | .
1000 | .
100 | ...
10 | .... .
1 | ..... ..
------------------------------------------
bin: 01234567890123456789012345678901
peaks: 11111 22

Figure 3.4: The OSprof profile and peaks that DARC presents tothe user.

Case Is the condition Should fc be a root Is fc the only function that
true? cause function? should be a root cause function?

A Y Y Y
B Y Y N
C Y N -
D N Y Y
E N Y N
F N N -

Table 3.1: Possible scenarios for a function contained within a conditional block.

3.4 Loops and Conditional Blocks

We can now consider the case of a functionfl being called from a loop. In this case, DARC should
designatefl as being the root cause if it has a high latency, regardless ofbeing in the loop. If the
latency is due tofl being called from a loop, then DARC should designate the calling function as
the root cause. To accomplish this, DARC uses the maximum latency offl, so that it is as iffl was
called once. The latencies forfl in other iterations of the loop are then automatically attributed to
the calling function, as per Equation 3.1 that approximatesthe latency off0.

The case of conditional blocks, such asif , else , andcase requires no special handling. We
refer to the function that is contained within the conditional asfc. We have three questions whose
answers will affect how DARC handles conditional blocks. First, is the condition true?fc will be
called only if the condition is true. Second, shouldfc be a root cause function? In other words, is
it a main latency contributor to the specified peak? Third, isfc the only function that should be a
root cause function? In other words, is there another function that should also be considered as a
main latency contributor?

We present the possible scenarios in Table 3.1. The cases arehandled as follows:
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f0 {
root->start = GET_CYCLES();
...
f0,0();
...
c = root->child[i];
c->start = GET_CYCLES();
f0,i();
c->latency = GET_CYCLES() - c->start;
if (c->latency > c->maxlatency) {

c->maxlatency = c->latency;
}
...
f0,n();
...
root->latency = GET_CYCLES() - root->start;
if (is_in_peak_range(root->latency)) {

process_latencies();
num_calls++;

}
if (num_calls == decision_calls == 0) {

choose_root_causes();
num_calls = 0;

}
reset_latencies();

}

Figure 3.5: The instrumentation DARC adds tof0 after a peak is chosen. The instrumentation for
f0,0 andf0,n is similar to that off0,i, and was elided to conserve space.

A Here,fc’s maxcount value will be incremented, as expected.

B Themaxcount value forfc will be incremented, along with potentially any other function that
should be chosen as a root cause function during this round ofanalysis, as expected.

C The latency offc will be measured, but becausefc should not be a root cause function, its
maxcount value will not be incremented.

D As fc is the only function that should be chosen to be a root cause function during the current
round of analysis, the latency off0 should not be within the range of the desired peak iffc is
not called.

E Althoughfc should be chosen as a root cause function, its latency was notmeasured during this
iteration because the condition was false. Becausefc is not the only function that should
be chosen as a root cause function, it is possible that themaxcount value of some other
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functions were incremented, and thereforefc may ultimately not be selected to be a root
cause function. The user must adjust themaxcount percentage parameter iffc is to
be chosen—lower values will allow functions with lowermaxcount values to be identified
as root cause functions. However, the root cause functions thatwerechosen will have had a
bigger impact, and so the omission offc is acceptable.

F The latency offc will not be measured, and consequently it will not be a candidate to have its
maxcount value incremented. This is acceptable, asfc should not be a root cause function.

3.5 Left Shift

Before describing how descendants off0 that have been marked as root cause functions are instru-
mented, the concept ofleft shiftmust be introduced. As DARC descends deeper into the code, the
peak being analyzed shifts to the left. To understand why this occurs, assume the peak is in binN

of f0’s profile. Further, the main latency contributor for this peak isf0,i. The peak, as seen in the
profile of f0, includes the latency forf0 itself, as well as the latencies for the other functions that
f0 calls. However, the peak inf0,i does not contain these additional latencies, and so the peakmay
shift to the left in the profile off0,i.

We can see the effects of left shift in Figure 3.6. Here we repeatedly called thestat system
call on a single file and captured OSprof profiles of the root cause functions, beginning with the top-
level stat function. The appropriate Linux kernel functions were manually instrumented to collect
these profiles. The profiles for the call-path are presented in descending order, with the top-level
function,vfs stat , on top. The machine that this was run on is described in Chapter 6. We can
see in the figure that the vast majority of operations fall into bin 11 in thevfs stat profile, and
this progressively shifts to bin 10 as we move to lower-levelfunctions.

3.6 Lower Function Instrumentation

To avoid the effects of left shift, DARC does not calculate the location of the peak inf0,i. Instead,
DARC keeps the decision logic inf0. Root cause functions other thanf0 are instrumented as shown
in Figure 3.7. Assumef0 calls functionsf0,0 to f0,n, andf0,i is chosen as a root cause. Further,f0,i

callsf0,i,0 to f0,i,m. In f0,i, latencies for eachf0,i,j are calculated, but not processed. DARC does
not add instrumentation to measure the latency off0,i because it is measured inf0. DARC creates
fnodes for eachf0,i,j, with f0,i as the parent.

Each new root cause function (f0,i in our example) is added to a list of nodes thatf0 processes
before returning. Before returning, iff0’s latency is within the peak, DARC traverses this list to
process latencies, and possibly chooses the next round of root cause functions. Placing the latency
information on a queue to be processed off-line by a separatethread may minimize the impact of the
decision code on the latency off0. We evaluate this design decision in Chapter 8. DARC removes
instrumentation that is no longer needed using a second lower-priority queue for the instrumentation
removal requests. This is because removing instrumentation is a performance optimization and can
be a slow operation, and so the delays on the analysis should be minimized.

When DARC determines that a function (and not any of the functions that it calls) is responsible
for the specified peak, DARC stops exploring along that call-path. DARC also stops exploring
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Figure 3.6: OSprof profiles for the root cause path functionsunder the stat workload. Each function
whose profile is shown here calls the function whose profile isshown below it.
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f0,i {
...
c = parent->child[j];
c->start = GET_CYCLES();
f0,i,j();
c->latency = GET_CYCLES() - c->start;
if (c->latency > c->maxlatency) {

c->maxlatency = c->latency;
}
...

}

Figure 3.7: The instrumentation DARC adds tof0,i. Functionf0,i,j is a function thatf0,i calls.

a call-path if it reaches a function that does not call any functions, or after the root cause path
has grown to the user-specified length. When all call-paths have completed, DARC removes all
remaining instrumentation and the program continues to runas normal. DARC’s status may be
queried by the user at any time. This status includes the latency histogram forf0, the analysis status
(“in progress,” “maximum depth reached,” or “root cause found”), the ftree, and themaxcount
values for each fnode.

3.7 Tracking Function Nodes

Before instrumenting a function, DARC must check if the function has already been instrumented
to avoid duplicating instrumentation. An example of how this could occur is shown in Figure 3.8.
Here the latency offy is measured fromfw andfx. DARC then determines thatfy is a root cause
of both paths. Becausefy was chosen as a root cause twice, it would be instrumented twice to
measure the latency offz. We avoid this by using a hash table to track which functions have been
instrumented. The first time DARC tries to instrumentfy, it searches the hash table using the
address offy as the key. It is not found, and sofy is instrumented, and an entry is inserted into
the hash table. Before DARC tries to instrumentfy a second time, it searches the hash table, finds
the entry forfy, and therefore does not instrument it a second time. A hash table is used because
instrumented functions cannot be tracked by marking fnodes, because there may be multiple fnodes
for a single function.

When more than one fnode exists for each instrumentation point, the fnode cannot be tied to
the instrumentation. For example, there are two fnodes forfy, so fy ’s instrumentation cannot
always use the same fnode. To solve this, DARC decouples the fnode tracking from the instru-
mentation by using a global (thread-local) fnode pointer,current fnode , which points to the
current fnode. This pointer is always set tof0 at the start off0. Each instrumented function sets
thecurrent fnode pointer by moving it to a specific child of the fnode thatcurrent fnode
is pointing to. It does so using the fnode identifiers (see labels on the call-graph edges in Fig-
ure 3.8(a)). These fnode identifiers are simply an enumeration of the callees of the parent function.
In addition, each fnode contains a thread-localsaved fnode pointer, where the value of the
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Figure 3.8: An example of a call-graph (left) with a possiblecorresponding ftree (right) that requires
a hash table to avoid duplicate instrumentation. Labels on the edges of the call-graph are fnode
identifiers, which are enumerations of each fnode’s children. All nodes belong to root cause paths.

global pointer is saved so that it can be restored after the function call. In Figure 3.8,fy ’s instru-
mentation will savecurrent fnode , and then change it to point to the first child of the current
fnode. This will causecurrent fnode to point to the correctfy fnode regardless of whether it
was called viafw or fx.

3.8 Filtering

DARC performs two types of filtering to ensure that only relevant latencies are measured and
analyzed. First, process ID (PID) filtering ensures that only function calls that are called in the
context of the target process or thread group are analyzed. This is important for functions that reside
in shared libraries or the operating system. Second, it performscall-path filtering. It is possible
for functions that are not part of a root cause path to call a function that DARC has instrumented.
In this case, latency measurements should not be taken, because they may reduce the accuracy of
the analysis. For example, lower-level functions are generally called from several call-paths, as the
functions tend to be more generic. Performing this filteringcan increase the accuracy of DARC’s
analysis by reducing noise in the captured latencies. Call-path filtering also ensures that no function
that is called from outside of the root cause paths will modify thecurrent fnode pointer.

Figure 3.9 demonstrates the need for call-path filtering. Here we used thegrep utility to search
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the Linux kernel sources recursively for a non-existent string. This workload is further described
in Chapters 6 and 7. We manually instrumented the appropriate Linux kernel functions to collect
these profiles. To add filtering, we added an extra parameter to the functions. The added parameter
was off by default, and was turned on only along the root causepath. Profiling was enabled only
if the added parameter was set. In Figure 3.9 we can see the root cause path that begins with the
ext2 readdir function, which reads a directory listing. We can see that bin 16–23 are nearly
identical in the first four profiles (ext2 readdir , ext2 get page , read cache page ,
read cache page async ) for both the filtered and unfiltered cases. However, the left-
most bin look quite different when filtering is enabled. Further, theext2 readpage and
mpage readpage functions look similar for the filtered and unfiltered cases.This is because
these functions are called mostly for reading metadata; data is read using the corresponding
readpages functions rather than thereadpage functions, which perform readahead. The
final two functions,mpage bio submit andsubmit bio , show large differences between the
filtered and unfiltered versions. This is because these functions are low-level, generic block I/O
functions, and are used to perform both data and metadata I/O.

DARC uses an efficient and portable call-path–filtering technique. Each fnode contains a
thread-local flag to specify that it was called along a root cause path. The flag inf0’s fnode is
always set. Before a root cause function calls another root cause function, it sets the flag of its
callee’s fnode if its own flag is set. The latency measurements and analysis are only executed when
the flag of the current fnode is set.

Others have used a relatively expensive stack walk to perform call-path filtering [6]. Although
it has been shown that a full stack walk is not necessary [22],a stack walk is highly architecture and
compiler-dependent. Our method is more portable, and we canprove its correctness. We first show
inductively that if a function is called as part of a root cause path, then the flag in its corresponding
fnode that indicates this fact is set.

Proof: Base case:f0 is always the start of a root cause path. The flag forf0 is always set by
definition.

Inductive step: Assume that the flag is set for the firsti functions of a root cause path. The flag
for function(i + 1) will be set byi because the flag for functioni is set, and(i + 1) is a root cause
function.

We now show that if a function is not called as part of a root cause path, then its flag will not be
set.

Proof: Consider a call-pathP , which is composed of three segments,P = XY Z. The functions in
X andZ are root cause functions, while those inY are not (X ≥ 0, Y ≥ 1, Z ≥ 1). We show that
the flags for functions inY andZ are not set. We have already shown that functions inX will have
their flags set. Before the last function inX, Xlast, calls the first function inY , Yfirst, it checks if
Yfirst is a root cause function. Because it is not, the flag inYfirst is not set. Alternatively, ifX = 0,
the flagYfirst will not be set because no root cause function has set it. Because the flag inYfirst is
not set, any subsequent function inY will not have its flag set. BecauseYlast does not have its flag
set, it will not set the flag ofZfirst, and so no function inZ will have its flag set.
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3.9 Profiling Basic Blocks

If the instrumentation method used to implement DARC has knowledge about basic blocks, DARC
can instrument these as well. This is useful in two cases. First, when DARC reaches the end of
a root cause path, DARC can then proceed to narrow down the root cause to a basic block in that
function. DARC acts on basic blocks in the same way as it does on functions: it creates an fnode
for each basic block, and sub-blocks are treated as callees of those blocks. When displaying the
ftree, DARC reports the type of basic block instead of a function name.

The second case where basic block instrumentation is usefulis if a function calls a large number
of other functions. Instrumenting all of the functions at once may add too much overhead. The user
may specify a threshold for the maximum number of functions to be instrumented at once. If this
threshold is about to be exceeded, DARC instruments only those function calls that are not called
from a basic block nested within the function, and also instruments any basic block containing a
function call. There is no need to instrument basic blocks that do not call functions because their
latencies will be automatically attributed to the functionitself (recall that the latency of the calling
function is estimating by subtracting the latencies of its callees from its latency). After DARC
narrows down the root cause to a basic block, it may further instrument that block to continue its
analysis.

DARC can be set to always instrument basic blocks before function calls. This reduces the
overhead incurred at any given point in time. The trade-off is that because there are more steps to
finding a root cause, the period of time in which overheads areincurred is prolonged. In addition,
DARC consumes more memory because the ftree contains basic blocks as well as functions.

3.10 Resuming DARC

DARC can use its output as input in a future run, allowing it tocontinue a root cause search
without repeating analysis. After parsing the previous output, DARC rebuilds the ftree (including
themaxcount values), and inserts the appropriate call-path filtering and latency instrumentation.
The ability to resume analysis is important in two cases. First, a user may search for root cause
paths up to a specified length and later need more information. Second, a program may not run
for enough time to fully analyze it, or the user may be analyzing a specific phase of a program’s
execution. In this case, the program may signal DARC on when to begin and end the analysis.

If desired, a new OSprof profile forf0 can be collected before DARC resumes analysis, and
this profile can be compared to the previous profile to ensure that the latency distribution has not
changed. A change in the distribution may be caused by factors such as changes in the execution
environment or different input to the process. DARC compares the profiles using the Earth Mover’s
Distance (EMD), which is an algorithm commonly used in data visualization as a goodness-of-fit
test [63]. Further discussion on profile comparison methodscan be found in Chapter 9.

3.11 Recursion

To handle recursion, the ftree needs to have one fnode for every instance of a function call, as
described in Section 3.7. Additionally, DARC needs to know when the code execution goes past
a leaf in the ftree and then re-enters it by way of recursion. For example, in Figure 3.10, DARC
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Figure 3.10: A recursive call-graph (left) with a corresponding ftree (right), where onlyfx has been
identified as a root cause at this point. The numbers on the edges of the call-graph are the fnode
identifiers.

must know that afterfy calls a function, it is no longer in the ftree. This is becausefy may callfx,
which would incorrectly setcurrent fnode to fx. To solve this, DARC has a thread-local flag
that tracks when the execution leaves the ftree. In this example, the instrumentation would look
like the code in Figure 3.11. DARC uses therecursion count variable to ensure that the same
function execution that setin tree to false also sets it totrue . This is needed to prevent the
second execution offx from settingin tree to true , whereas the first execution offx set it to
false .

3.12 Analyzing Preemptive Behavior

Preemptive behavior refers to any case where the primary thread that is being investigated is stopped
and another piece of code is set to run. This can be when the main process is preempted for
another process to run or when an interrupt occurs. Preemptive behavior may concern us when the
latency of a secondary code path is incorporated into the latencies that DARC measures, although
in general these latencies may be ignored [28]. The originalOSprof methodology used system-
specific knowledge about the quantum length to determine when the process was preempted, and
intuitive guesses to determine when interrupts caused peaks.

DARC measures preemptive behavior only if the added latencywill be incorporated into the
current latency measurements. This happens if the code being preempted in the primary thread is
in the subtree of an fnode that is currently being investigated. These fnodes contain extra variables
to store preemption and interrupt latencies. In cases wheremultiple preemptive events of the same
type occur, DARC stores the sum of their latencies (recall that DARC resets latency information
after each execution off0).

If the name or address of the appropriate scheduler functionis available, DARC can instrument
it to check if the target process was preempted, and for how long. DARC stores the total amount
of time spent while preempted in the appropriate fnode, and uses this data when searching for root
causes. If preemption was the main factor in the peak, DARC reports “preemption” as the cause.
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fx {
...
if (in_tree) {

current_fnode = fnode(fx);
// latency measurement code for fy
fnode(fx)->recursion_count++;
in_tree = false;

}
fy();
fnode(fx)->recursion_count--;
if (fnode(fx)->recursion_count == 0) {

in_tree = true;
// latency measurement code for fy
current_fnode = saved_global;

}
...

}

Figure 3.11: The instrumentation DARC adds tofx around the call tofy in the example shown in
Figure 3.10 to handle recursion.

For interrupts, if the name or address of the main interrupt routine is known, DARC instruments
it to record the latencies in an array contained in the properfnode that is indexed by the interrupt
number. Latencies are only recorded if the target process was executing in the subtree of a function
being analyzed. In addition, DARC keeps a small auxiliary array to handle the case where an
interrupt occurs while processing an interrupt. If an interrupt is determined to be a root cause,
DARC reports the interrupt number and handler routine name.

3.13 Analyzing Asynchronous Paths

An asynchronous path refers to a secondary thread that acts upon some shared object. Examples
of this are a thread that routinely examines a system’s data cache and writes modified segments
to disk, or a thread that takes I/O requests from a queue and services them. Asynchronous paths
are not uncommon, and it may be desirable to analyze the behavior of these paths. Work done by
asynchronous threads will generally not appear in a latencyhistogram, unless the target process
waits for a request to be completed (forcing synchronous behavior). An example of such behavior
can be seen in the Linux kernel, where a request to read data isplaced on a queue, and a separate
thread processes the request. Because the data must be returned to the application, the main thread
waits for the request’s completion.

To analyze asynchronous paths, the user may choose a function on the asynchronous path to
be f0. This requires no extra information, other than the name or address off0. However, if it
is desirable to analyze an asynchronous path in the context of a main path, DARC requires extra
information. For cases with a request queue, DARC needs to know the address of the request
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structure. DARC adds call-path filtering along the main pathup to the point where the request
structure is available to DARC. At this point, DARC adds the request structure’s address to a hash
table if the PID and call-path filtering checks all pass. Whenthe secondary thread uses the request
object, DARC checks the hash table for the object’s address.If it is there, DARC knows that the
target process enqueued the object along the call-path thatis of interest to the user.

In the case where the asynchronous thread is scanning all objects (with no request queue), the
object can be added to the hash table when appropriate. This technique requires the same extra
knowledge as the situation with a request queue: the call-path to filter and the name of the request
object. In the case where this information is not available,DARC proceeds without PID or call-path
filtering.
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Chapter 4

Implementation

In implementing DARC, we aimed to make it efficient while being easy and feasible to use in a
variety of environments. The user interface is the part of the implementation that the user directly
sees. We describe the user interface that we implemented in Section 4.1.

With regard to instrumentation, we investigated two options: compile-time source code mod-
ification and dynamic binary instrumentation (DBI). We selected the latter for several reasons,
including the ability to instrument without recompiling and restarting the application, smaller to-
tal code size, reduced overheads for inactive instrumentation, and handling of indirect calls. We
discuss these reasons further in Section 4.2.

Our initial version of DARC only supported analysis of Linuxkernel functions [74]. This
decision was dictated by two facts. First, the Linux kernel provides kprobes, a robust mechanism
for binary instrumentation of its code [17, 43]. Second, theability to dynamically add modules
to the kernel allows us to easily have the instrumented code and the instrumentation in the same
address space. This implementation is detailed in Section 4.2.1. However, the kprobes mechanism
is too rich for our specific needs, and therefore too expensive in terms of instrumentation overheads.
This realization brought us to reduce the overheads by implementing several optimizations that we
detail in Section 4.2.2.

DARC’s unique features can be helpful not only in analyzing operating system kernels, but
user-space applications as well. Our DARC implementation allows users to find root cause paths
that reside in user-space programs, in the Linux kernel, or those that cross the user-kernel boundary.
We extended DARC so that the user may specify the start function,f0, to be any function in a user
application or the kernel. Iff0 is a user-space function, the root cause search may potentially
continue into the kernel via the system call interface. Thiswould help users to determine if the
root cause of a behavior that is observed in user-space is actually caused by the kernel. Figure 4.1
shows an example of an ftree that crosses the user-kernel boundary. We discuss this further in
Section 4.2.4.

Two major problems arise when extending DARC to handle user-space applications. First, it is
usually difficult to find a place in the application’s addressspace to store DARC’s instrumentation
safely while the program is running. This means that we may need to store the instrumentation in
the address space of some other process or the kernel. In the case of another process, a context
switch is unavoidable every time DARC’s instrumentation isexecuted, which can cause excessive
overheads. Therefore, we chose to store the instrumentation in kernel space. This also allowed us to
analyze root cause paths that cross the user-kernel boundary transparently: no data synchronization
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vfs_readdo_sync

Figure 4.1: An example of an ftree that crosses the user-kernel boundary. Only root cause fnodes
are shown.

is required between the user-space and kernel portions of the function tree. The second problem
in implementing DARC for user-space applications is the lack of reliable in-kernel mechanisms
for binary instrumentation of user-space applications. Several developers have attempted to create
solutions that are similar to kprobes, but none were accepted by the Linux kernel community [33,
34, 56, 57]. We selected one of these solutions [57] and simplified it with the hope that it will
increase reliability. The reduced framework is powerful enough for DARC’s purposes, but does not
include any additional functionality.

The extended DARC implementation with support for user applications is presented in Sec-
tion 4.2.3.

4.1 Interaction

The first step to start using DARC is to insert the kernel module into the running kernel via the
insmod command. When loaded, the module creates the/proc/darc file which provides the
basic interface between the user and DARC. Reading from thisfile provides information about
the progress of analysis, while performingioctl operations on it controls DARC. To facilitate
the control process, DARC includes a user-level program, called darcctl , that interacts with the
kernel component usingioctl s.

After the module is loaded, the user invokesdarcctl with parameters that describe the anal-
ysis to be performed. Because the list of parameters can be rather long, DARC includes a script
that takes a configuration file as input, translates some parameters, loads the module and calls
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darcctl with the appropriate arguments. A simple configuration file can be seen in Figure 4.2.
If a program name is given for theprogram name parameter, the script translates it to a PID

before passing it to the DARC kernel module. This option can only be used if the name maps
to a single PID—otherwise, a PID must be passed to DARC. Similarly, thestart function
parameter is translated to a code address. If the function islocated in a user application, then the
binary parameter should be specified. In this case, the script extracts symbol information from
the binary and passes it to the module. Section 4.2.3 explains why symbol information is required
by DARC. The script also passes the address of the system calltable to the module iff0 is located
in a user application. DARC uses this address to determine which system call was called if the
user-kernel boundary was crossed.

Our DARC implementation is designed to be used in two modes: manual and automatic. In
the first case, after DARC is started, the user manually selects the peak of interest and when
DARC should select the next round of root cause functions. Alternatively, the user may specify
thedecision time , start ops , andstart peak parameters in the configuration file at the
very beginning; if so, DARC performs all these actions automatically. Manual mode is preferred
when a user is first starting to analyze a latency distribution, while automatic is better when working
with familiar distributions and for reproducing the results at a later time.

The script and configuration file make DARC easier to use, because the user does not need
to look up the PID and code address manually. In addition, theuser may save configuration files
for future use or reference. Internally, DARC does not use any function names, so its output con-
tains only function addresses. DARC includes a user-level script to process the output, translating
addresses to function names and interrupt numbers to interrupt names.

4.2 Instrumentation

DARC operates by using dynamic binary instrumentation (DBI) to find the root causes of a peak.
An alternative to DBI would be a compile-time method, where all of the instrumentation is added
to the source code [12, 31]. A compile-time method has the benefits of lower overheads to activate
instrumentation and the ability to report the names of inline functions. However, there are five
main drawbacks to compile-time methods. First, the build system would need to be changed to
add the code. In large projects, this may be a daunting task. Second, the application would need
to be stopped to run the version with the new instrumentation. This is a problem for critical or
long-running applications. Third, because all instrumentation must be inserted ahead of time, there
can be a large increase in code size, and all code paths would incur overheads even when skipping
over the instrumentation. Fourth, all source code needs to be available. Although application code
is usually available to its developers, libraries and kernel code may not be. Finally, indirect calls
can only be resolved at runtime, and so not all of the functions that require instrumentation can be
known at compile time.

4.2.1 Kernel-Level Instrumentation

The current DARC prototype is implemented as a kernel modulefor the Linux 2.6.23 kernel. Ex-
cluding the optimizations discussed in Section 4.2.2, it uses kprobes for DBI [17]. Simply put, a
kprobereplaces a given instruction with the following sequence: acall to an optionalpre-handler
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# Name or PID of program to analyze.
program_name = grep

# Name of function to start analyzing.
start_function = vfs_readdir

# Number of function calls (within the latency range) betwee n
# decisions. Raising this value increases the number of func tion
# calls that decisions are based on, possibly improving accu racy,
# but also increasing the analysis time.
decision_time = 50

# DARC stops its analysis at this depth if not already finishe d.
max_depth = 10

# Percent closeness to maximum maxcounts values, used to cho ose which
# functions will be chosen as the next level of root causes.
# Acceptable values range from 0 to 100. Higher values will pr oduce
# more conservative results, but may omit some less frequent ly called
# functions. Lower values will allow for more functions to
# potentially be chosen as root causes, but may also increase the
# amount of false positives. We recommend starting with a val ue of at
# least 90, which should be suitable for most situations, and lowering
# it if more root cause options are necessary.
maxcount_percentage = 97

# Smallest allowable latency for a root cause function (spec ified by
# an OSprof bucket number). This can be used so that DARC does n ot
# continue its analysis once it chooses a root cause function whose
# latency is too low to matter. For example, when analyzing an I/O
# function, buckets representing faster CPU-bound operati ons may be
# ignored.
min_bucket = 6

# Number of elements to collect in the OSprof histogram befor e
# choosing a peak (optional). The peak that will be chosen is
# specified by the ’start_peak’ parameter. This value shoul d be high
# enough to ensure that the histogram peaks are stable. These
# parameters are generally used only for automating the anal ysis
# process while benchmarking.
start_ops = 100

# Peak to choose - see comments for the ’start_ops’ parameter
# for more information (optional).
start_peak = 1

Figure 4.2: A simple DARC configuration file.
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function, the instruction itself, and a call to an optionalpost-handlerfunction. The main steps in
a kprobe’s execution are shown in Figure 4.3. In more detail,when DARC registers a kprobe, the
probed instruction is saved, and the instruction is replaced with an interrupt. A trap occurs when
this interrupt instruction is executed, the kernel saves the context, and it then calls the kprobes
interrupt handler. The handler first disables preemption and saves the flags from the exception con-
text. In the saved context, it disables interrupts, gets ready to single-step or execute the replaced
instruction, and calls the pre-handler if it is defined. Whenreturning from the trap, the kernel re-
stores the context and the original instruction is executed. At this point, another trap occurs, and
the kernel once again saves the context and calls the interrupt handler. Now the handler calls the
post-handler if it is defined, restores the saved flags, fixes program-counter–relative results, sets the
saved program counter, and restores preemption. The handler then returns, and the kernel restores
the context and continues executing the code from the instruction after the replaced instruction.

Most DARC instrumentation is inserted using ordinary kprobes. However, the instrumentation
that is executed beforef0 returns (see end of Figure 3.3) is inserted using akretprobe, or a “return
kprobe.” This type of kprobe is executed before a function returns from any point. Additionally, to
handle function pointers (i.e., indirect calls), DARC addsadditional code to the kprobe at the call
site that checks the appropriate register for the target address.

We used kprobes for two reasons. First, it is part of the mainline Linux kernel. Code inside the
mainline kernel tends to be stable and well-maintained, andis available in any recent kernel version.
Kprobes are currently available for the i386, x8664, ppc64, ia64, and sparc64 architectures and
it can be expected that other architectures that Linux supports will be supported by kprobes in the
future. The second reason is that kprobes provide a minimalistic interface common to most DBI
techniques—they place a given section of code at a given codeaddress. This shows that DARC
can be implemented using any DBI mechanism, and can be portedto other operating systems and
architectures.

We considered two alternative DBI frameworks for implementing DARC. Kerninst [72, 73],
which is available for Sun UltraSparc I/II/III, x86, and IBMPowerPC, was not suitable for us
because of its cumbersome API and instability. Kerninst requires that code that is to be inserted be
constructed using their API. For example, a simple instruction such as incrementing a variableA,
would look like:

kapi_arith_expr incr_A(kapi_plus, A, 1);
kapi_arith_expr assign_A(kapi_assign, A, incr_A);

In addition to the API problems, Kerninst failed to instrument some kernel functions that we tested,
resulting in kernel crashes.

The second DBI framework that we considered was PinOS [10]. This is an operating system
version of the user-space DBI framework called Pin [40]. Unfortunately, the code for this project
was not made available, and therefore we could not test its suitability.

DARC requires a disassembler in order to identify appropriate instrumentation points, such as
calls, returns, and interrupts. We used a disassembler thatwe modified from the Hacker Disassem-
bler Engine v0.8 [59]. We chose this disassembler because itis very small and lightweight (298
lines of assembly in our version). We converted the NASM syntax to GNU assembler syntax using
intel2gas [51], and converted the opcode table from NASM to C. We also added a C function that
returns the callsites of a given function, which took 84 lines of code. This function also handles
tail-call optimizations, where if a functionx calls a functiony immediately before returning, the
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Figure 4.4: An uninstrumented call site. Functionfoo is called, and another instruction is executed
after returning from the call.

call and return are be replaced by a jump toy, andy then returns tox’s return address. This pro-
vides the minimum functionality necessary for DARC except for the identification of basic blocks,
which our current prototype does not yet support.

An earlier DARC prototype inserted two kprobes per call site: one on the call instruction itself
and one on the subsequent instruction. Figure 4.4 illustrates an uninstrumented call site, while
Figure 4.5 depicts the same call site patched by DARC. We willrefer to this instrumentation as
2-kprobes . This implementation option may cause problems if the code path jumps to the
address of the second kprobe without executing the first one.We had to include an extra check to
ensure that the code in the second kprobe was executed only ifthe first kprobe was called.

Another problem with the2-kprobes implementation is that if the function body contains
two consecutive call instructions, then two kprobes will beplaced on the address of the second call:
the second kprobe for the first call site and the first kprobe for the second call site. In this scenario,
the order in which the kprobes are placed is important. One more obstacle appears in the presence of
tail calls: the instruction after such a call resides beyondthe function body. Section 4.2.2 illustrates
how our optimizations solve these problems above in addition to improving DARC’s performance.

One more interesting aspect of DARC’s instrumentation is related to synchronization. DARC
instruments the code of the running process without stopping it. This fact creates the possibility
that some of DARC’s instrumentation can be inserted asynchronously and consequently executed
(or not executed) unexpectedly. We assume in our design thatthe time spent on code modifications
by DARC is much shorter then the duration of the workload being analyzed. We then ensure that
any DARC instrumentation will not crash in the case of an unexpected invocation. A possible error
that could occur in this case is that incorrect time measurements are associated with some function
nodes around the time of instrumentation. However, we can safely disregard these situations, as the
amount of time needed to modify the code is small.

4.2.2 Optimizations

Each kprobe hit causes an interrupt, which is very costly on all computer architectures. Conse-
quently, our earlier prototype, which used two kprobes per function invocation, was quite ineffi-
cient, especially if the ftree was wide. Our optimizations aim to reduce the number of kprobes used
by DARC. In addition to improving performance, these optimizations provide other benefits that
are discussed below. The performance impact of these optimizations is described in Chapter 8.
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Figure 4.5: The standard way that DARC instruments functioncalls with kprobes (the2-kprobes
implementation). Here the call tofoo was replaced with a trap for one kprobe, and the next
instruction was replaced by a trap for the second kprobe.
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Figure 4.6: A kernel-level DARC return probe optimization that reduces the number of kprobes by
half (therettramp implementation). The pre-instrumentation code modifies the return address
of foo on the stack so that it points to the post-instrumentation. The next instruction that was
shown in Figure 4.4 is not affected and is not shown.
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Figure 4.7: Using light-weight call trampolines instead ofkprobes to instrument call sites (the
calltramp optimization). The original call destination (foo ) is replaced so that it points to
pre instrumentation . The next instruction that was shown in Figure 4.4 is not affected and
is not shown.

The first optimization we have developed is the removal of kprobes that intercept exits from
a function (the second kprobe placed on a call site). To accomplish this, the kprobe installed on
the call instruction saves the return address of the function f that is being called. The kprobe
then modifiesf ’s return address on the stack to point to DARC’s function that essentially contains
the code of the second kprobe handler. This function, after measuring the latency of the callee,
jumps to the saved return address, as illustrated in Figure 4.6. We refer to this as therettramp
optimization, for return trampoline.

The rettramp optimization has five benefits. First, it guarantees that thecode contained in
the second kprobe is executed only when the entrance instrumentation was also executed. Second,
we no longer need to specially handle the installation precedence of the kprobes. Third, DARC
now uses only one kprobe per function call, which improves performance. Fourth, tail calls are
automatically handled by this instrumentation. Finally, therecursion count variable that was
introduced in Section 3.11 is no longer needed.

Another part of therettramp optimization is in the instrumentation off0. This function
has a kprobe at its start which cannot be removed using the above techniques. However, we can
remove the return kprobe forf0 by using the same approach: saving the original return address and
replacing it by the address of post-instrumentation function.

The rettramp DARC implementation installs kprobes only on call instructions (except for
the kprobes inf0). This observation allowed us to perform an additional optimization. Rather than
placing a kprobe on the call instruction, DARC saves the original address of the callee (which is
encoded in the instruction itself) and replaces it with the address of the first DARC handler. When
this patched instruction is executed, the DARC handler is called: it performs its required job and
jumps to the address of the original callee. This is illustrated in Figure 4.7, and we refer to this
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optimization ascalltramp .
With thecalltramp optimization, DARC does not use kprobes for function calls.The no-

table exception here is indirect calls. The size of the indirect call instruction is only two bytes on
the x86 architecture with one byte for the address, so there is no possibility to overwrite this address
by the handler’s address, and DARC is forced to use a kprobe inthis case. Fortunately, systems
almost always use direct calls. For example, this optimization can instrument approximately 95.7%
of calls in the Linux kernel itself, and 97.5% of calls found in Linux kernel modules. Additionally,
this limitation does not exist for architectures with fixed-width instructions.

Chapter 8 evaluates the effects of our optimizations on DARC’s performance.

4.2.3 User-Space Instrumentation

Two related questions arise when implementing DARC for analyzing user-space applications:
whether to perform the instrumentation in user-space or kernel-space, and which binary instru-
mentation framework will work best. We developed thesuprobes(simple user probes) framework,
which is a modified version of IBM’s uprobes (user probes) framework [34]. There are three main
differences between the existing uprobes implementation and suprobes. First, uprobes requires the
user to specify the application using a file system identifierand inode number. To make the inter-
face more similar to our existing kernel implementation of DARC, we changed this to use the PID
of the running process instead. Second, we added the abilityto assign priorities, which is useful if
more than one suprobe is placed on a given instruction. Third, the code was updated to run on our
newer kernel.

Suprobes resemble kprobes, but allow for the insertion of probes into user-space applications.
In addition to a code address and the addresses of handlers required by kprobes, the PID of the
process must be provided to suprobes. Internally, suprobeswork similarly to kprobes: they replace
the first byte of the instruction at the specified address witha trap instruction. When the trap fires, a
kernel handler is called. The suprobes framework is implemented as a kernel module with a small
patch for the kernel itself (35 lines), which exports some required kernel functions to the module.

Using our suprobes framework, we implemented DARC using almost the same code as for the
kernel implementation: we only had to replace kprobes by suprobes where necessary. Our current
implementation does not utilize any of the optimizations that we used in the kernel portion because
the return and call trampolines need instrumentation addresses in user-space to jump to. To provide
such addresses safely, DARC would need to examine the process’s mapped page ranges and insert
the instrumentation functions in a range of unused addresses. Further, the data structures would
reside in user-space, and the kernel portion of DARC would map them into its own memory to
avoid data copies across the user-kernel boundary. This means that the overhead for using DARC to
analyze user-space applications is higher than the overhead for using DARC in the kernel. Chapter 8
provides detailed performance evaluations and comparisons.

In order to detect call instructions, DARC uses a disassembler. To search for call instructions,
we need to know the length of the function’s body so that we know when to conclude our search. In
the kernel, this information is provided by the in-kernel symbol table. For user-space applications,
we extract the symbol information before DARC starts its analysis and load it into the kernel using
thedarcctl tool.

To instrument the return fromf0, the kernel portion of DARC uses a special type of kprobe
called areturn kprobe. However, the suprobes framework does not support this typeof probe, as it

30



pre_instrumentation

post_instrumentation

system call

trap

return

return

trap
suprobe

suprobe

return
syscall

syscall

T
im

e

Figure 4.8: Using suprobes to instrument system calls. The probes are placed on the instruction
before and after the system call being instrumented.

would require the instrumentation code to reside in user-space. Because of this, we scan the body of
f0 to find all return instructions and place suprobes on them. Note that if we have a call instruction
immediately followed by a return instruction inf0’s body, then two suprobes will be placed on the
return instruction. Moreover, the second suprobe for the call should be called before the suprobe
for f0’s return. We used the priority feature of suprobes to handlethis case, which allows us to
properly arrange the order of suprobes invocations.

4.2.4 Crossing the User-Kernel Boundary

An interesting feature of our DARC implementation is the ability to cross the user-kernel bound-
ary [49]. To accomplish this, we place suprobes on the two instructions surrounding interrupt,
syscall, and sysenter instructions. This is illustrated inFigure 4.8. We cannot place suprobes di-
rectly on these instructions because according to the suprobes design, these instructions will be
executed in a single-stepped atomic context. This will break the blocking system calls, such as
read andwrite . When entering the kernel, we record the system call number and translate it to
the system call handler using the system call table. If the system call is selected as a root cause
function, its handler is instrumented as a kernel function.
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Chapter 5

Limitations

DARC has three main limitations. First, DARC assumes that the latency distribution off0 is fairly
static. If the behavior of the code being analyzed changes during analysis, DARC may not be able
to conclude the analysis. However, we expect this to be rare.Second, inline functions and macros
cannot be analyzed separately because this DARC implementation uses binary instrumentation.
Third, if the source of the code being analyzed is not available, the binary should include symbols
so that the output can be translated from function addressesto names. The function names should
also be descriptive enough for the user to guess what the function does. Otherwise, the user must
disassemble the binary to understand the root cause.
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Chapter 6

Experimental Setup

We now describe the experimental setup used for our use cases(Chapter 7) and our performance
evaluation (Chapter 8). The test machine was a Dell PowerEdge SC 1425 with a 2.8GHz Intel Xeon
processor, 2MB L2 cache, and 2GB of RAM, and a 800MHz front side bus. The machines were
equipped with two 73GB, 10,000 RPM, Seagate Cheetah ST373207LW Ultra320 SCSI disks. We
used one disk as the system disk, and the additional disk for the test data.

The operating system was Fedora Core 6, with patches as of October 08, 2007. The system
was running a vanilla 2.6.23 kernel that with the suprobes patch applied. The file system was ext2,
unless otherwise specified. Some relevant program versions, obtained by passing the--version
flag on the command line, along with the Fedora Core package and version are GNU grep 2.5.1
(grep 2.5.1-54.1.2.fc6) and GNU stat 5.97 (coreutils 5.97-12.5.fc6).

To aid in reproducing these experiments, the DARC and workload source code, a list of installed
package versions, the kernel configuration, and benchmark results are available at
http://www.fsl.cs.sunysb.edu/docs/darc/ .
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Chapter 7

Use Cases

In this section we describe some interesting examples that illustrate DARC’s ability to analyze
root causes. To highlight the benefits of using DARC, we show three usage examples that were
first published in the OSprof paper [28]. We compare the use ofDARC to the manual analysis
described in the OSprof paper. We show that DARC does not require as much expertise from the
user, is faster, and gives more definitive results.

The use cases that we present highlight three of DARC’s interesting aspects: analyzing inter-
rupts, investigating asynchronous paths, and finding intermittent lock contentions. We recreated
all of the test cases on our test machine. The first example used a workload that reads zero bytes
of data in a loop. The remaining two examples used agrep workload, where thegrep utility
searched recursively through the Linux 2.6.23 kernel source tree for a nonexistent string, thereby
reading all of the files. The kernel was compiled using themake defconfigandmakecommands.
We will specify the values of thestart ops anddecision time parameters (described in
Chapter 4) for each use case.

7.1 Analyzing Interrupts

Figure 7.1 shows a profile of the read operation issued by two processes that were repeatedly
reading zero bytes of data from a file. This profile contains three peaks, and we order them from
left to right: first (bins 7–9), second (10–13), and third (14–18). The first peak is clearly the usual
case when the read operation returns immediately because the request was for zero bytes of data.
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Figure 7.1: A profile of the read operation that reads zero bytes of data.
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Figure 7.2: A profile of the ext2 readdir operations capturedfor a single run of grep -r on a Linux
2.6.23 kernel source tree.

For this peak, DARC reports a root cause path showing the readpath up to the point where the size
of the read is checked to be zero. At this point, the functionsreturn because there is no work to be
done. The root cause path as shown by DARC is:

vfs read →
do sync read →

generic file aio read

Note that the second and third functions here are indirect calls, but DARC displays name of the
target function. This output tells us that the read operation is responsible for the peak.

In the OSprof paper, the authors hypothesized that the second peak was caused by the timer
interrupt. They based this on the total runtime of the workload, the number of elements in the
peak, and the timer interrupt frequency. Recall from Section 3.12 that DARC instruments the main
interrupt handling routine (do IRQ in our case). This instrumentation checks if the target process
was executing a function that DARC is currently analyzing. If so, it records the latencies for each
interrupt type and attributes these measurements to the executing function.

In our case, we setf0 to vfs read , as before. DARC reported “interrupt 0” as the root cause,
which our post-processing script translated as “timer interrupt.” DARC arrived at this conclusion
because after comparing the latencies ofvfs read , its callees, and the latencies for each interrupt
number, interrupt 0 always had the highest latency. Although it was possible to determine the cause
of the peak without DARC, doing so would have required deep insight and thorough analysis. Even
so, the cause of the peak could not be confirmed with manual analysis. DARC confirmed the cause,
while requiring much less expertise from the user.

DARC discovered that the third peak was caused by interrupt 14 (the disk interrupt). This was
not reported in the OSprof paper, as it is very difficult to analyze manually. DARC analyzed this
third peak in the same way as it did with the second, and reported the root cause clearly and easily.

For analyzing this profile, we setstart ops to 100 anddecision time to 20. From our
experience, we found these values to be generally sufficient.

7.2 Analyzing Asynchronous Paths

Running thegrep workload on ext2 resulted in the profile shown in Figure 7.2. There are four
peaks in the profile of thereaddir operation, ordered from left to right: first (bin 9), second (11–
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14), third (16–17), and fourth (18–23). In the OSprof paper,prior knowledge was used as a clue
to the cause of the first peak. The OSprof authors noted that the latency is similar to the latency
of reading zero bytes (see the first peak in Figure 7.1). This implies that the operation completes
almost immediately. The OSprof authors guessed that the cause of the peak is reading past the
end of the directory. They confirmed this by modifying the OSprof code to correlate the latency
of the first peak with the condition that thereaddir request is for a position past the end of the
directory. We ran DARC to analyze this first peak, and the resulting root cause path consisted of
a single function:ext2 readdir . This is because the function immediately checks for reading
past the end of the directory and returns.

The causes of the remaining peaks were analyzed in the OSprofpaper by examining the profile
for the function that reads data from the disk. The OSprof authors noted that the number of disk
read operations corresponded to the number of operations inthe third and fourth peaks. This
indicates that the operations in the second peak are probably requests that are satisfied from the
operating system’s cache, and the operations in the third and fourth peaks are satisfied directly from
disk. Further, based on the shape of the third peak, they guessed that the operations in that peak
were satisfied from the disk’s cache. Based on the knowledge of the disk’s latency specifications,
they further guessed that the operations in the fourth peak were affected by disk-head seeks and
rotational delay.

When DARC analyzed the second peak, it displayed the following root cause path, which
clearly indicates that the root cause is reading cached data:

ext2 readdir →
ext2 get page →

read cache page →
read cache page async →

read cache page

For the third peak, DARC produced the following root cause path:

ext2 readdir →
ext2 get page →

read cache page →
read cache page async →

ext2 readpage →
mpage readpage →

mpage bio submit →
submit bio

Notice that first portion of the root cause path is the same as for the second peak. However, after
calling the read cache page function to read data from the cache, it callsext2 readpage ,
which reads data from disk. Eventually the request is placedon the I/O queue, with the
submit bio function (bio is short for block I/O). For all of the use cases, DARC was tracking
asynchronous disk requests, as described in Section 3.13. If a request reaches thesubmit bio
function and is not filtered by PID or call-path filtering, DARC records the address for the current
block I/O structure in a hash table. After DARC analyzed thispeak for the first time, we restarted
DARC, giving it the previous call-path output as input. We set f0 to the function that dequeues
the requests was the queue. This allowed us to analyze the asynchronous portion of the root cause
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Figure 7.3: Reiserfs 3.6 file-system profiles sampled at 1.5 second intervals.

path while retaining the PID and call-path filtering from themain path. DARC then produced the
following output:

make request →
elv add request →

elv insert →
cfq insert request →

blk start queueing →
scsi request fn

In this root cause path, make request removes the request from the queue. The
cfq insert request function is a function pointer that is specific to the I/O scheduler that
the kernel is configured to use (CFQ in this case). Finally,scsi request fn is a SCSI-specific
function that delivers the request to the low-level driver.The root cause path for the fourth peak
was identical to that of the third, indicating that disk reads are responsible for both peaks, as
reported by OSprof. Unfortunately, because requests from both peaks are satisfied by the disk,
the factor that differentiates the two peaks is hardware, and therefore software techniques cannot
directly find the cause. In this case, one must use manual analysis to infer the causes.

7.3 Analyzing Intermittent Behavior

On Reiserfs, thegrep workload resulted in the profiles shown in Figure 7.3. These are time-lapse
profiles. Because OSprof profiles are small, OSprof can storelatency measurements in different
histograms over time to show how the distributions change. The x-axis represents the bin number,
as before. The y-axis is the elapsed time of the benchmark in seconds, and the height of each bin
is represented using different patterns. The profile on the left is for thewrite super operation,
which writes the file system’s superblock structure to disk.This structure contains information
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pertaining to the entire file system, and is written to disk bya buffer flushing daemon every five
seconds by default. The profile on the right is for theread operation.

The bins on the right side of theread profile correspond to the bins in thewrite super
profile. This indicates that there is some resource contention between the two operations, but the
OSprof analysis methods cannot confirm this, nor can they give more information about the re-
source in question. The OSprof authors attributed this behavior to a known lock contention. A user
that was not informed about this lock contention would struggle to analyze this behavior manually.
First, the user may be confused as to why the file system is writing metadata during a read-only
workload. The user must know that reading a file changes the time it was last accessed, oratime.
Further, the atime updates are written by the buffer flushingdaemon, which wakes periodically.
This would lead the user to collect a time-lapse profile for this case. In the end, only source code
investigation would provide an answer.

Using DARC, we analyzed both profiles shown in Figure 7.3. We first ran DARC on the read
path. We setstart ops to 5,000 so that enough delayed read operations would be executed, and
we setdecision time to 5, because the read operations do not get delayed very often. The root
cause path that DARC displayed was:

vfs read →
do sync read →

generic file aio read →
do generic mapping read →

touch atime →
mark inode dirty →

reiserfs dirty inode →
lock kernel

We can see from this that the read operation (vfs read ) caused the atime to be updated
(touch atime ). This caused thelock kernel function to be called. This function takes the
global kernel lock, also known as the big kernel lock (BKL). To understand why this happens, we
can look at the siblings of thelock kernel fnode (not shown above because they are not root
causes):journal begin , journal end , andunlock kernel . This tells us clearly that
Reiserfs takes the BKL when it writes the atime information to the journal.

For thewrite super operation, we turned off PID filtering because the superblock is not
written on behalf of a process. We set bothstart ops anddecision time to 5, because the
write super operation does not get called frequently. DARC produced thefollowing root cause
path:

reiserfs write super →
reiserfs sync fs →

lock kernel
Again, the siblings of thelock kernel fnode are journal-related functions. We now know

that the lock contention is due to Reiserfs taking the BKL when writing atime and superblock
information to the journal.
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Chapter 8

Performance Evaluation

We first measured the performance of the pure instrumentation. The results are described in Sec-
tion 8.1. For measuring the performance of DARC, we had two main requirements for choosing a
workload. First, it should run for a long enough time to obtain stable results—we ensured that all
tests ran for at least ten minutes [75]. Second, the workloadshould call one function repeatedly.
This function will be the one DARC analyzes, so the DARC instrumentation will be executed as
often as possible. We measured DARC’s performance using three workloads. The first workload
measures the overhead of DARC on an artificial source code tree. We varied the fanout and height
of the tree to see how these parameters affect DARC’s overheads. We call this thesyntheticwork-
load, and it is described in Section 8.2. The second, described in Section 8.3, repeatedly executes
thestat system call on a single file, which returns cached information about the file. This shows
DARC’s overhead when investigating a relatively low-latency, memory-bound operation. This is
a worst-case scenario, as DARC is operating on a single fast function that is called at a very high
rate. The third workload reads a 1GB file in 1MB chunks 50 timesusing direct I/O (this causes
data to be read from disk, rather than the cache). This shows the overheads when investigating a
higher-latency, I/O-bound operation. This workload is further discussed in Section 8.4.

Recall the two parameters that affect DARC’s overhead that we described in Chapter 7:
start ops anddecision time . For thestat andread benchmarks, we chose these values
such that the analysis does not finish by the time the benchmark concludes, forcing DARC to
run for the entire duration of the benchmark. We present the values of these parameters for each
benchmark, which are orders of magnitude higher than the values used in the use cases presented
in Chapter 7.

We used the Autopilot v.2.0 [81] benchmarking suite to automate the benchmarking procedure.
We configured Autopilot to run all tests at least ten times, and computed the 95% confidence inter-
vals for the mean elapsed, system, and user times using the Student-t distribution. In each case, the
half-width of the interval was less than 5% of the mean. We report the mean of each set of runs. To
minimize the influence of consecutive runs on each other, alltests were run with cold caches. We
cleared the caches by re-mounting the file systems between runs. In addition, the page, inode, and
dentry caches were cleaned between runs on all machines using the Linux kernel’sdrop caches
mechanism. This clears the in-memory file data, per-file structures, and per-directory structures,
respectively. We called thesync function first to write out dirty objects, as dirty objects are not
free-able.
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8.1 Instrumentation Overheads

Instrumentation Method Overhead (µs)
2-kprobes (post-handlers) 2.75
2-kprobes (pre-handlers) 1.89
rettramp 1.54
calltramp 0.76
suprobes 4.59

Table 8.1: Overheads for various instrumentation methods.

DARC makes do with minimalistic instrumentation: the instrumentation need only insert code
at a specific code address. We used several instrumentation methods in DARC’s implementation,
as discussed in Section 4.2.2.

To measure the overhead of each instrumentation method, we created a benchmark where the
parent function calls a child function2 × 108 times. We measured the time required to execute
the benchmark without any instrumentation. We then measured the time required to execute the
same program, but added instrumentation to the call of the child function. We used the results to
compute the mean overhead for a single instrumented function invocation. Table 8.1 summarizes
the results for the various instrumentation methods:2-kprobes , rettramp (one kprobe and a
return trampoline),calltramp (a call trampoline and a return trampoline), andsuprobes (2
suprobes).

We use the first four techniques shown in the table only in the kernel. We implemented the
2-kprobes technique using kprobes’ post-handlers and pre-handlers.Using pre-handlers is
faster, because kprobes that use post-handlers require twoexceptions and four context switches,
as described in Section 4.2.1. Depending on the replaced instruction, kprobes that utilize only a
pre-handler are implemented using only one exception and two context switches. This is because
there is no need to execute a post-handler, so after executing the replaced instruction the kernel
can resume executing from the instruction following the kprobe. For the remainder of this chapter,
2-kprobes refers to the pre-handler technique. Therettramp technique is faster still, but it
must use a post-handler in the kprobes that it inserts, and sothe benefits of the optimization should
be compared to the post-handler version of2-kprobes . Finally, thecalltramp optimization
is the fastest, as expected.

For user-space instrumentation, we see that thesuprobes technique is more expensive than
any kernel technique. This is because a suprobe requires twocontext switches into the kernel: one
to execute the handler, and another to single-step the replaced instruction. This means that each
replaced instruction incurs four context switches. We expect that porting the kernel optimizations
to DARC’s user-space instrumentation will yield significant improvements.

8.2 Synthetic Workload

DARC’s overhead depends not only on the instrumentation method used, but also on the structure
of the analyzed source tree. A larger fanout means that more call sites need to be instrumented for
a particular level. A deeper tree means that there will be more levels, and more analysis must be
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Figure 8.1: Results for the synthetic workload with the in-kernel trees for fanouts of 2, 4, and 8.
The analysis here is performed asynchronously.

performed. The synthetic workload presented here illustrates how DARC’s overhead is affected by
the structure of the tree.

We ran this benchmark with three configurations. In the first,the tree resides entirely in a kernel
module. The kernel code is executed by the benchmark using the ioctl system call. In the second
configuration, the source tree resides entirely in a user-space program. In the third configuration,
the initial half of the tree resides in a user-space program,and the second half resides in the kernel.
To execute the kernel portion, the user-space code executesa system call that we created: the
corresponding handler is the root of the kernel portion of the tree. The depth of each tree is 8
levels, and we used trees that had a fanout of 2, 4, and 8. Only one function in the leaf of each
tree has a latency that is higher than the others, providing aunique root cause path to the bottom
of the tree. The benchmark invokes thef0 function enough times so that the elapsed time for the
uninstrumented case is more than 10 minutes.

For this benchmark we had DARC descend into the code differently than for thestat or
random-read benchmarks. Here, rather than have DARC descend through the levels of the tree in
equally-spaced intervals throughout the benchmark, we forced DARC to descend to the required
level at the start of the benchmark. DARC analyzed at that level for the entire duration of the
benchmark. This allowed us to measure the overheads for eachphase of DARC’s analysis sepa-
rately, based on the depth in the source tree. We also measured the overhead for the phase where
only the OSprof instrumentation (see Figure 3.3) is inserted. We refer to this as depth 0. In depth
1, the overhead for the instrumentation shown in Figure 3.5 is measured. Subsequent depths have
more functions instrumented, as shown in Figure 3.7.

Figure 8.1 presents the results for the kernel trees. We tested only thecalltramp implemen-
tation, as it clearly performs the best. For depth 0, the overheads were approximately the same for
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Depth
0 1 2 3 4 5 6 7 8

Fanout
2 12 15 15 15 15 15 15 15 15
4 12 15 15 15 15 15 15 15 15
8 13 15 15 15 15 15 15 15 15

Table 8.2: The minimum OSprof bucket numbers whose elementsdo not shift on average due to
DARC’s overheads in the kernel. The analysis here is performed asynchronously.

Depth
0 1 2 3 4 5 6 7 8

Fanout
2 12 14 14 14 14 14 14 14 14
4 12 14 14 14 14 14 14 14 14
8 13 15 15 15 15 15 15 15 15

Table 8.3: The minimum OSprof bucket numbers whose elementsdo not shift on average due to
DARC’s overheads in the kernel. The analysis here is performed synchronously.

all the trees. This makes sense, as the fanout should not affect the OSprof phase. When DARC
begins to measure latencies of callees in depth 1, fanout starts to affect the overhead, with the ad-
dition of f trampolines (wheref is the fanout). For each level between depths 1 and 8, we remove
f − 1 trampolines from the previous level (we uninstrument all call sites except for the root cause
function), and addf trampolines to the current level, so in total we add 1 trampoline for each level.
Notice that there is a large increase in overhead between depths 0 and 1, and then the overhead
increases gradually when DARC descends to lower levels between depths 1 and 8. The large initial
increase happens because at this point DARC begins to gatherand process the latencies. This tells
us that the latency analysis code affects overheads much more than the instrumentation.

Table 8.2 shows the minimum OSprof bucket numbers whose elements do not shift due to
DARC’s overheads while running in the kernel. We arrive at these numbers by calculating the
average latency for each OSprof bucketi:

3

2
2icycles ×

106µs

2.8 × 109cycles
(8.1)

Bucketi has a range from2i to 2i+1 cycles, so we take the midpoint of this range. We then convert
this value from cycles toµs for a 2.8GHz CPU (the speed of the CPU used for the benchmarks).
We see here that operations up to bucket 15 will be shifted by at least one bucket due to DARC’s
overheads. As we can see from Figure 7.2, this means that latencies corresponding to CPU oper-
ations will generally be shifted. Although we do experienceshifts in lower buckets, we showed
in Section 7.1 and 7.2 that we were able to use DARC to analyze fast CPU operations between
buckets 7 and 9. Still, lowering DARC’s overheads would improve the user’s experience.

We theorized that performing the analysis asynchronously was actually hurting performance.
This is because each operation required allocating a data structure, copying the latency information
into it, locking the request queue, and then placing the request on the queue. We modified the
code to perform the analysis synchronously. The results areshown in Figure 8.2. The increase in
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Figure 8.2: Results for the synthetic workload with the in-kernel trees for fanouts of 2, 4, and 8.
The analysis here is performed synchronously.

latencies between levels 0 and 1 has now been significantly reduced. As expected, the remainder
of the results improve by the same constant, as the amount of analysis stays constant regardless of
depth. The overall improvement was between 25.2% and 48.1%,with an average of 34.8%. We
can see in Table 8.3 that the bucket values were lowered by 1 for fanouts of 2 and 4. We use only
the synchronous implementation for the remainder of the synthetic tests.

We expect that using function replacement [52] for instrumenting code will yield further perfor-
mance improvements. This technique makes a copy of a given function and places the instrumenta-
tion directly in this copy. The first instruction of the original function is then replaced by a jump to
the new function. Function replacement can be used to removethe relatively expensive kprobe that
is currently needed to instrumentf0. It may also prove faster than ourcalltramp optimization
for other instrumented functions. Another optimization would be to use adjproberather than a
kprobe for instrumentingf0. A djprobe replaces a given instruction with a jump instruction rather
than an interrupt. This significantly reduces the overheadsof the probe [24], but djprobes have
several problems, and are still under development [55]. Theproblems mostly arise from the fact
that jump instructions on the x86 architecture may be longerthan other instructions because they
require a destination parameter (between two and five bytes), while interrupt instructions require
only one byte.

The results for DARC operating on the user-space source treeare shown in Figure 8.3. Here
we see the same large increase between depths 0 and 1 as we did with the kernel tree. However,
in this case, descending to lower levels is more expensive than in the kernel. The reason is the
high overhead of the suprobes framework, as discussed in Section 8.1. These results indicate
that although we were able to analyze this short-running function, it would be worthwhile to port
DARC’s kernel optimizations to user space to reduce overheads.

43



 0

 20

 40

 60

 80

 100

 0  1  2  3  4  5  6  7  8

O
ve

rh
ea

d 
(µ

s/
in

vo
ca

tio
n)

Depth

2
4
8

Figure 8.3: Results for the synthetic workload with the user-space trees for fanouts of 2, 4, and 8.
The analysis here is performed synchronously.
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kernel boundary. The analysis here is performed synchronously.
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always drawn, but may be too small to see.

Finally, we measured the overhead of DARC operating on the benchmark that crosses the user-
kernel boundary. The results are presented in Figure 8.4. Until depth 4, the graph resembles that
of the user-space graph shown in Figure 8.3. This is logical,as this is the user-space portion of the
tree. The code at depth 5 is located in the kernel, and here theoverhead decreases. This is because
when DARC moves from depth 4 to depth 5, it removes all of the suprobes from the previous level
except for those that correspond to the root cause functions. For example, in the tree of fanout
4, it means that 6 suprobes are removed (3 call sites, each with 2 suprobes). In the next level,
which is in the kernel, 8 call/return trampolines are added,but these add very little overhead. In
addition, between depths 5 and 8, the variation in performance between different fanout levels is
minimal. This is because the same number of suprobes are in place in all cases, because they
are only present along the root cause path, which is the same in all cases. Now the performance
difference between fanouts is due to in-kernel call trampolines, which impose significantly lower
overheads as compared to suprobes.

8.3 Stat Workload

We ran thestat workload with 300 million operations, resulting in an elapsed time of approxi-
mately 689 seconds without DARC. We then used DARC to analyzethestat call, and saw that
there was one peak, with a single root cause path that is five levels deep (shown later). The number
of fnodes in each level of the ftree, from top to bottom, were 3, 3, 11, 1, and 6. Because we wanted
DARC to reach the maximum depth without finishing its analysis, we setstart ops to 1,000
operations anddecision time to 60,000,000 operations.

The results are summarized in Figure 8.5. At first we ran all ofour configurations with DARC’s
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Figure 8.6: The overheads for running DARC with the stat benchmark using different values for
thedecision time variable. Results without running DARC are shown as a baseline. Note that
the x-axis is logarithmic.

analysis being performed asynchronously. The runtime withthe 2-kprobes version of DARC
took approximately 5,294 seconds, or about 7.7 times longerthan running without DARC. The
rettramp version reduced the overhead to 5.8 times, and finally thecalltramp version re-
duced it to 3.3 times. We refer to the portion of time that is not counted as user or system time as
wait time(seen as the white portion of the bars). This is the time that the process was not using
the CPU. In this case, we hypothesized that the wait time overhead was mostly due to the asyn-
chronous analysis, as the a spinlock was protecting the request queue. This was not affected by the
instrumentation optimizations. The system time overhead,however, did improve.

We then ran the version with thecalltramp optimization with synchronous analysis. We
call this configurationcalltramp-sync . We can see that the wait time overhead is no longer
present, and that the system time improved as well. The elapsed time overhead dropped to 49.5%.
It is still somewhat high because thestat operation returns very quickly—the average latency of
a stat operation is 2.3 microseconds, and the DARCcalltramp-sync implementation adds
approximately 1.1 microseconds per operation.

It is important to note that these figures depict a worst-casescenario. Under realistic conditions,
such as in the use cases presented in Chapter 7,decision time was on the order of tens of
operations, whereas here it was on the order of tens ofmillions of operations. DARC is designed
to analyze longer-running applications, and the time spentperforming the analysis is negligible
compared to the application’s total run time.

To show how thedecision time variable affects overheads, we ran the benchmark with dif-
ferent values fordecision time , and keptstart ops at 1,000 operations. The results for the
calltramp-sync implementation are shown in Figure 8.6. The results for DARCwith values
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Figure 8.7: Results for the random-read benchmark. Note that error bars are always drawn, but
may be too small to see.

of up to 60,000 and the results when not running DARC at all were statistically indistinguishable.
In addition, we calculated that DARC analyzed latencies forone second or less for these values.
When we setdecision time to 6× 105, 6× 106, and6× 107, the overheads were 0.8%, 5.7%,
and 49.5%, respectively (note that the last data point here is the same one depicted in Figure 8.5).
For these same values, DARC performed its analysis for approximately 1.5%, 14.1%, and 100% of
the total runtime. This shows how the overheads increase as DARC’s analysis was prolonged.

The percentage of time that DARC was running may be approximated as:

elapsed time full

total operations
× total darc operations

elapsed time part
× 100 (8.2)

whereelapsed time full is the elapsed time when DARC’s analysis is running for the entire dura-
tion of the benchmark,elapsed time part is the elapsed time whendecision time is lowered,
andtotal darc operations is calculated as:

(decision time × ftree depth) + start ops (8.3)

DARC reported the same root cause path for all cases:

vfs stat fd →
user walk fd →

do path lookup →
path walk →

link path walk

This shows that DARC has negligible overheads for real-world configurations, and that the analysis
can complete in less than one second while remaining sound.

8.4 Random-Read Workload

For the random-read benchmark, we set the start function to the top-level read function in the
kernel. There was only a single peak in the profile, and DARC informed us that there was one
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root cause path consisting of eight functions. Because the benchmark executes 51,200 operations,
we setstart ops to 1,000 operations, anddecision time to 6,500. This allowed DARC to
reach the final root cause function without completing the analysis. The root cause path for this
benchmark was:

vfs read →
do sync read →

generic file aio read →
generic file direct IO →

ext2 direct IO →
blockdev direct IO →

io schedule

The ftree for this benchmark was rather large, with the levels of the ftree having 1, 7, 3, 4, 5,
1, 39, 3, and 28 fnodes, from top to bottom. The results are shown in Figure 8.7. Running the
benchmark with and without DARC produced statistically indistinguishable runtimes, regardless
of the instrumentation method used, with the elapsed times for all configurations averaging ap-
proximately 726 seconds. Therefore, we only present the results for the worst-case2-kprobes
implementation. There is no distinguishable elapsed time overhead because the overheads are small
compared to the time required to read data from the disk. The average read operation latency was
approximately 14 milliseconds, and we saw from thestat benchmark that DARC adds only a few
microseconds to each operation.
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Chapter 9

OSprof Profile Comparison Methods

It is often useful to compare two OSprof profiles. DARC performs this comparison when it is
restarted to ensure that the runtime environment had not changed (see Section 3.10). Comparing
profiles is also essential to the OSprof methodology. A user may collect profiles for dozens of
operations at once. It is often useful to compare this set of profiles to another set that were collected
under different conditions to analyze some behavior of the system. For example, a profile of one
version of a file system or one type of workload may be comparedwith a profile of a different file
system or the same file system under a different workload. This technique is calleddifferential
analysis. Generally only a few profiles will differ between the two sets, and automatically filtering
out the ones that are similar allows the user to focus on important changes.

There are several methods of comparing histograms where only bins with the same index are
matched. Some examples are the chi-squared test, the Minkowski form distance [71], histogram
intersection, and the Kullback-Leibler/Jeffrey divergence [37]. The drawback of these algorithms
is that their results do not take factors such as distance into account because they report the differ-
ences between individual bins rather than looking at the overall picture. For example, consider a
histogram with items only in bucket 1. In a latency profile, shifting the contents of that bucket to
the right by ten buckets would be much different than shifting by one (especially since the scale is
logarithmic). These algorithms, however, would view both cases as simply removing some items
from bucket 1, and adding some items to another bucket, so they would report the same difference
for both. We implemented the chi-square test as a representative of this class of algorithms because
it is “the accepted test for differences between binned distributions” [61].

Cross-bin comparison methods compare each bin in one histogram to every bin in the other
histogram. These methods include the quadratic-form, match, and Kolmogorov-Smirnov dis-
tances [14]. Ideally, the algorithm we choose would comparebins of one histogram with only
the relevant bins in the other. These algorithms do not make such a distinction, and the extra
comparisons result in high numbers of false positives. We did not test the Kolmogorov-Smirnov
distance because it applies only to continuous distributions.

The Earth Mover’s Distance (EMD) algorithm is a goodness-of-fit test commonly used in data
visualization [63]. The idea is to view one histogram as a mass of earth, and the other as holes in
the ground; the histograms are normalized so that we have exactly enough earth to fill the holes.
The EMD value is the least amount of work needed to fill the holes with earth, where a unit of work
is moving one unit by one bin. This algorithm does not suffer from the problems associated with
the bin-by-bin and the cross-bin comparison methods, and isspecifically designed for visualization.
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The EMD algorithm can also compare time-lapse profiles, as itwas originally intended for inputs
that have those dimensions. As we show in Section 9.2, EMD indeed outperformed the other
algorithms.

9.1 Implementation

We have implemented several scripts that allow us to comparepairs of individual profiles. Auto-
matic profile-independence tests are useful to select a small subset of operations for manual analysis
from a large set of all operations. Also, such tests are useful to verify similarity of two profiles, as
DARC does when it resumes analysis from a previous state. Letus call the number of operations
in the bth bucket of one profilenb, and the number of operations in the same bucket of the same
operation in another profilemb. Our goodness-of-fit tests return percent differenceD between two
profiles:

TOTOPS The degree of difference between the profiles is equal to the normalized difference of
the total number of operations:

D =
|
∑

ni −
∑

mi|∑
ni

× 100

TOTLAT The degree of difference between the profiles is equal to the normalized difference of
the total latency of a given operation:

D =
|
∑

3

2
2ni −

∑
3

2
2mi|

∑
3

2
2ni

× 100 =
|
∑

2ni −
∑

2mi|
∑

2ni
× 100

CHISQUARE We have implemented the chi-square test as a representativeof the class of algo-
rithms that performs bin-by-bin comparisons. It is defined for two histograms as follows:

χ2 =
∑ (ni − mi)

2

ni + mi

The χ value can be mapped to the probability valueP between 0 and 1, where a small
value indicates a significant difference between the distributions. To match the semantics
and scale of the previous two tests, we presentD = (1− P )× 100. We utilized the standard
Statistics::Distributions Perl library [36] in the implementation.

EARTHMOVER We implemented the calculation of the EMD value as a greedy algorithm. After
normalizing the two histograms, one is arbitrarily chosen to represent the mounds of earth,
sayn, and the other represents the holes in the ground, saym. The algorithm moves from
left to right, and keeps track of how much earth is being carried, which is calculated as the
amount currently being carried, plusni − mi. Note that this value can be negative, which
handles the case where the holes appear before the mounds of earth. The absolute value of
the carrying value is then added to the EMD value.
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We also created several profile comparison methods that combine simple techniques that we use
when manually comparing profiles. We distinguish the peaks on the profiles using derivatives. This
is the same technique that DARC uses to display the peaks to the user, as described in Chapter 3.
If the number of peaks differs between the profiles, or their locations are not similar, the profiles
are considered to be different (score of 100). As we will see in Section 9.2, these preparation steps
alone significantly decrease the number of incorrectly classified profiles. If, after these preparation
steps, the profile analysis is still not over, then we can perform further comparisons based on the
previously described algorithms (TOTOPS, TOTLAT, CHISQUARE, andEARTHMOVER). We have
implemented the following two methods that first examine thedifferences between peaks, and then
compare the profiles using another method if the peaks are similar:

GROUPOPS If the peaks in the profiles are similar, the score is the normalized difference of
operations for individual peaks.

GROUPLAT This method is same asGROUPOPS, except that we calculate latency differences
for individual peaks.

9.2 Evaluation

To evaluate our profile-analysis automation methods we compared the results of the automatic
profile comparison with manual profile comparison. In particular, we analyzed 150 profiles of
individual operations. We manually classified these profiles into “different” and “same” categories.
A false positive (or a type I error) is an error when two profiles are reported different whereas they
are same according to the manual analysis. A false negative (or a type II error) is an error when two
profiles are reported same whereas they are different according to the manual analysis. Our tests
return the profile’s difference value. A difference threshold is the value that delimits decisions of
our binary classification based on the test’s return values.

Figures 9.1–9.6 show the dependencies of the number of falsepositives and false negatives
on the normalized difference of the two profiles calculated by the six of the profile comparison
methods that we have implemented. As we can see, the EMD algorithm has a threshold region
with the smallest error rates of both types, though all algorithms have a point where both error
rates were below 5%. However, both our custom-made methodsGROUPOPSandGROUPLAThave
a wide range of difference thresholds where both errors are below 5%. This means that these
methods can produce reliable and stable results for a wide range of profiles.
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Figure 9.1:TOTOPStest results compared with manual profile analysis.
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Figure 9.2:TOTLATtest results compared with manual profile analysis.
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Figure 9.3:CHISQUAREtest results compared with manual profile analysis.
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Figure 9.4:EARTHMOVERtest results compared with manual profile analysis.

 0

 5

 10

 15

 20

 0  20  40  60  80  100

E
rr

or
 r

at
e 

(%
)

Difference threshold (%)

False Positives
False Negatives

Figure 9.5:GROUPOPStest results compared with manual profile analysis.
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Figure 9.6:GROUPLATtest results compared with manual profile analysis.
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Chapter 10

OSprof and DARC in Virtual Machine
Environments

Virtual machine technology is becoming more pervasive, mainly being used for server consolida-
tion, and so exploring how OSprof and DARC behave when used invirtual machine environments
is important. The suitability of OSprof for use within virtual machines depends mainly on the ac-
curacy of the clock cycle register in virtual machines. DARC’s suitability additionally depends on
acceptable overheads.

Conceptually, operating system profiling inside of virtualmachines is not different from ordi-
nary profiling. However, it is important to understand that the host (underlying) operating system
and the virtual machine itself affect the guest operating system’s behavior [45]. Therefore, the
benchmarking and profiling results collected in virtual machines do not necessarily represent the
behavior of the guest operating system running on bare hardware. Other virtual machines running
on the same system exacerbate the problem even more.

Nevertheless, there are two situations when profiling in virtual machines is necessary:

1. It is not always possible or safe to benchmark or profile on areal machine directly.

2. Developers of virtual machines developers or systems intended to run in virtual environments
naturally benchmark and profile systems running in virtual environments.

These situations have contradicting requirements. In the first case, it is necessary to minimize
the influence of virtualization on the guest operating system. In the second case, it is necessary
to profile the interactions between the virtual machines as well as their interactions with the host
operating system. We will focus on the first case, and describe situations in which the behavior seen
in virtual machine environments differs from those seen when running directly on the operating
system.

An interesting research direction would be to use VMware’s VProbes [79] to extend DARC.
These probes can instrument a running virtual machine to collect latency information, allowing
DARC to cross the guest-host barrier.

We next describe the setup for the experiments that we ran with VMware Workstation and Xen
in Section 10.1. In Section 10.2, we introduce several virtual machine technologies. Then, in
Section 10.3, we measure the accuracy of the clock cycle register; and in Section 10.4 we measure
the overheads of running DARC in a virtual machine.
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10.1 Experimental Setup

The experimental setup for this chapter differs from the oneused in Chapters 7 and 8 because we
needed more machines to run the benchmarks. We used two identical test machines, one configured
with VMware Workstation 6.0.1 [32] (hereafter referred to as WS601) and one with Xen 3.1.0 [5].
The test machines were Dell PowerEdge 1800s with 2.8GHz Intel Xeon processors, 2MB L2 cache,
and 1GB of RAM, and a 800MHz front side bus. The machines were equipped with six 250GB,
7,200 RPM Maxtor 7L250S0 SCSI disks. We used one disk as the system disk, one disk for the
virtual machine to run on, and the additional disk for the test data.

The operating system was Fedora Core 6, with patches as of October 08, 2007. The system was
running a vanilla 2.6.18 kernel and the file system used was ext2. We chose 2.6.18 because that is
the default Xen kernel, and we were wary of using the 2.6.23 kernel that we used in the rest of the
dissertation because Xen modifies its guest operating systems. We made the kernel configurations
for the VMware Workstation and Xen machines as similar as possible, but the two virtual machine
technologies require some different configuration options. The differences were mainly in drivers
and processor features that do not impact performance.

To aid in reproducing these experiments, the list of installed package versions, workload source
code, and kernel configurations are available at
http://www.fsl.cs.sunysb.edu/docs/darc/ .

10.2 Virtual Machine Technologies

Several types of virtual machine technology exist for x86 systems today. What they all have in
common is a virtualization layer called a hypervisor that resides somewhere between the guest
operating system and the host’s hardware. The hypervisor virtualizes components such as CPUs,
memory, and I/O devices. We focus on CPU virtualization here, as this has the largest effect on our
results.

One distinction between hypervisors is the location of the hypervisor in the hardware-software
stack. With ahostedhypervisor, the virtualization layer is run as an application inside the host’s
operating system. A hosted hypervisor is employed by VMwarein their Workstation, Player, and
ACE products [78], as well as by Microsoft Virtual Server [46], Parallels Desktop, and Parallels
Workstation [58]. On the other hand, a native, or “bare-metal” hypervisor is located directly on
the hardware, with no host operating system in between. Examples of these include Xen [82] and
VMware’s ESX Server. Guest operating systems running on bare-metal hypervisors are gener-
ally faster than those running on hosted hypervisors, because there are fewer layers between the
hardware and the guest operating system.

A second feature that distinguishes hypervisors is how theyhandle privileged instructions that
are generated by a guest operating system. VMware products historically employed binary transla-
tion to translate any privileged code into unprivileged code or code that jumps into the hypervisor
to emulate the instruction. This allows guest operating systems to run unmodified. Xen, on the
other hand, historically usedparavirtualization. With paravirtualization, guest operating systems
are modified to use calls to the hypervisor (hypercalls) in place of privileged instructions. Recently,
CPU manufacturers have extended their instruction sets to aid virtualization [1, 26]. Xen can now
utilize these instructions to run unmodified guest operating systems. VMware’s ESX server uses
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these new instructions in some cases as well.
Linux kernels after version 2.6.20 includekvm, the Kernel-based Virtual Machine, which uti-

lizes the virtualization provided by these CPUs [35]. However, we did not benchmarkkvm because
we had to use kernel version 2.6.18 because of Xen. In addition, kvm was still marked as “experi-
mental” even in the newer 2.6.23 kernel that we used in the remainder of the dissertation.

We cannot make any fair comparisons between VMware Workstation and Xen when presenting
our results because they employ different virtualization technologies (hosted hypervisor with binary
translation vs. bare-metal hypervisor with a modified guestoperating system). Instead, our goal is
to analyze how OSprof and DARC perform on each one.

10.3 Clock Counter Accuracy

OSprof and DARC both rely on the CPU’s clock counter read instruction (RDTSC on x86), so we
conducted an experiment to determine how accurate this instruction is on the virtual machines. With
Xen, we always used the standard instruction. With WS601, however, we tried two alternatives.
First, we used the guest operating system’s (apparent) time, which is the same CPU clock counter
read instruction that we normally use. This would allow timing information to reflect the amount of
time the virtual machine actually received because the virtual TSC register should increment only
when the guest is allowed to run. Unfortunately, this does not provide I/O isolation and depends on
the quality of the clock counter virtualization. Second, weused the host operating system’s (wall
clock) time, by specifying

monitor control.virtual rdtsc = false
in WS601’s configuration file [76, 77]. This allows us to include the CPU time spent not executing
the guest.

Figure 10.1 shows user-mode profiles of an idle-loop workload generated by one process and
captured with four different configurations. This workloadconsists of a loop that gets executed
100,000,000 times. The loop only reads the clock cycle counter twice and plots the difference in
an OSprof profile. We would expect most of the profile to be on the very left, because no work
is being done between the clock counter readings. The top-most profile of Figure 10.1, labeled
“Host” shows this workload as it runs on the host. Most of the events fell into the first few buckets,
as expected. We also have some events in buckets 9–19, which are due to clock and disk interrupts,
as described in Section 7.1.

The second profile shown in Figure 10.1, labeled “Xen” is the same workload running on Xen.
This profile is very similar to that of running on the host, which tells us that using the clock counter
is not a problem for Xen. The third profile, labeled “WS601Apparent” is for the workload run-
ning on WS601 using the apparent, or virtualized, clock counter. We can see that there is a large
difference here due to WS601’s virtualization. This difference is not present in the fourth profile,
labeled “WS601Real,” which shows WS601 using the host operating system’s clock counter. We
therefore recommend turning off thevirtual rdtsc option when using OSprof and DARC in
VMware Workstation. In the remainder of this chapter, we turn off clock counter virtualization.
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Figure 10.1: Idle-loop profiles captured on the host, on Xen,on VMware Workstation 6.0.1 cap-
tured using the guest operating system’ (apparent) time, and on VMware Workstation 6.0.1 cap-
tured using host operating system’s real time.

10.4 DARC Overheads

To determine how DARC behaves in virtual environments, we decided to run the synthetic work-
load described in Section 8.2 on both WS601 and Xen. We chose this benchmark because it pro-
vides us with data describing how the fanout and depth of the tree affect performance. Additionally,
we used the tree that crosses the user-kernel boundary, because this shows us how DARC behaves
both in user-space and in the kernel. For all tests, we used the calltramp implementation of
DARC that performs synchronous analysis. Our main concernswere the overheads imposed by
virtualization and the interrupt-handling capabilities of WS601 and Xen (each call site that is in-
strumented with a suprobe requires four interrupts). To allow for fair comparisons between running
on virtual machines and directly on hardware, we present theresults for this benchmark with no
virtualization on the same machines used in this chapter in Figure 10.2.

Figure 10.3 shows the results for the workload running on WS601. Note that the shape of the
graph is very similar to the one depicting this workload running without virtualization (Figure 8.4):

Levels 0–1: There is a large initial increase due to the suprobes and DARCanalysis code.

Levels 1–4: There is a more gradual slope that reflects one additional instrumented call site per
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Figure 10.2: Results for the synthetic workload with trees of fanouts 2, 4, and 8 that cross the
user-kernel boundary with no virtualization.
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Figure 10.3: Results for the synthetic workload with trees of fanouts 2, 4, and 8 that cross the
user-kernel boundary in VMware Workstation 6.0.1.
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Depth
0 1 2 3 4 5 6 7 8

Fanout
2 16 18 18 18 18 18 18 18 18
4 16 18 18 18 18 18 18 18 18
8 16 18 18 18 18 18 18 18 18

Table 10.1: The minimum OSprof bucket numbers whose elements do not shift on average due to
DARC’s overheads when running the synthetic workload that crosses the user-kernel boundary in
VMware Workstation 6.0.1. The analysis here is performed synchronously.

Depth
0 1 2 3 4 5 6 7 8

Fanout
2 15 16 16 17 17 17 17 17 17
4 15 17 17 17 17 17 17 17 17
8 15 17 17 18 18 17 17 17 17

Table 10.2: The minimum OSprof bucket numbers whose elements do not shift on average due to
DARC’s overheads when running the synthetic workload that crosses the user-kernel boundary in
Xen. The analysis here is performed synchronously.

level.

Levels 5–8: The graph is fairly flat during this interval, and the resultsare not affected much by
the fanout. This is because the only suprobes in place at thispoint are along the root cause
path in user-space, and so we have the same number of suprobesregardless of fanout. In the
kernel portion, DARC uses call trampolines, which are significantly faster than suprobes, and
so the incline of the graph is hard to see.

The fact that the shape of the graph is not affected by virtualization indicates to us that DARC’s
behavior is not affected significantly when running in WS601. However, we note that the overheads
are rather high—we can see that the benchmark runs several times slower on WS601. Table 10.1
shows the minimum OSprof bucket numbers whose elements do not shift due to DARC’s overheads
when running in WS601. We can see that the bucket numbers are now in the range of I/O operations,
meaning that analyzing faster CPU-bound operations can be difficult. In fact, we had to increase
the latency of the operation being executed in the benchmarkso that DARC could reliably locate
the peak. However, most of this overhead is due to suprobes, and so we expect that implementing
some of the optimizations discussed in Section 8.2 will remedy this problem.

We present a similar evaluation for DARC running on Xen in Figure 10.4 and Table 10.2. Once
again, we see a similar shape for the graph, but the overheadsare now close to what we saw for
DARC running without virtualization. This is because Xen’shypervisor is close to the hardware,
while WS601’s hypervisor is a process running on the host operating system.

We can conclude that DARC’s general operation is not inhibited by virtualization. In cases
where user-space code is being analyzed, the higher overhead of suprobes combined with the over-
heads of VMware Workstation 6.0.1 make it difficult to analyze some low-latency behaviors. Port-
ing DARC’s kernel optimizations to user space will mitigatethese problems.
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Figure 10.4: Results for the synthetic workload with trees of fanouts 2, 4, and 8 that cross the
user-kernel boundary in Xen.
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Chapter 11

Related Work

Previous work in this area has focused on dynamic binary instrumentation (DBI) frameworks, using
call-paths as a unit for metric collection, and using DBI to investigate bottlenecks. We discuss each
of these topics in turn.

11.1 Dynamic Binary Instrumentation

One method for performing binary instrumentation is staticbinary instrumentation, where the bi-
nary is instrumented before it is executed [18, 21, 39, 62, 70]. Tools also exist that modify binaries
to optimize performance [3, 7, 15]. However, we focus on dynamic binary instrumentation, as that
is the method that our DARC implementation uses.

Many dynamic binary instrumentation frameworks exist today that modify user-space applica-
tions. We discuss them in an approximate chronological order. Shade [16], is an important earlier
work that influenced other DBI frameworks, but is now obsolete. On Windows, the Detours li-
brary can be used to insert new instrumentation into arbitrary Win32 functions during program
execution [25]. It implements this by rewriting the target function images. Vulcan [69] is another
DBI framework for Windows, but is only used internally at Microsoft. Strata [64, 65], DELI [20],
DynamoRIO [8], and DIOTA [41, 42] can perform both dynamic binary instrumentation and opti-
mization. The Valgrind framework [52–54, 66], available for Linux on x86 architectures, is widely-
used, and has been utilized to create several checkers and profilers. We did not consider using these
frameworks for DARC because they do not have counter-parts in the kernel, which would necessi-
tate separate user-space and kernel implementations of DARC.

Theptrace interface allows for limited user-space application modification. Although it does
not actually modify the binary, the process-tracing facility allows amonitor to intercept and mod-
ify system calls and signals [23]. However, the overheads for usingptrace are rather restrictive
because of an increased number of context switches for system calls. This was addressed by ex-
panding the interface [68, 80].

Our user-space instrumentation framework, suprobes, is a modified version of uprobes [56, 57].
We describe both in Section 4.2.3.

For kernel instrumentation, users may use kprobes on Linux (described in Chapter 4). System-
tap [60] allows users to write instrumentation scripts thatget translated into kernel modules that
use kprobes (and soon, uprobes as well). This makes kprobes and uprobes easier to use, although
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it also restricts what can be done with them.
Some frameworks exist that allow users to instrument both user-space and kernel-space binaries.

For example, Sun’s Dtrace [13, 47] allows users to insert instrumentation at pre-defined hooks
or user-specified locations in both user programs and in the Solaris kernel. Dyninst [9] allows
users to instrument user applications on a variety of architectures, and Kerninst [72, 73], which
was developed by the same laboratory, allows users to instrument a running kernel. These two
frameworks can be used together to instrument an entire running system [49]. Finally, another pair
of frameworks also allow for whole-system instrumentation. Pin [40] can be used to instrument
user programs, and PinOS [10] can instrument kernels. The latter works by having the kernel run
in a virtual machine.

11.2 Call-Path Profiling

Others have explored using call-paths as a main abstractionfor performance profiling. These
projects have also utilized dynamic binary instrumentation for their profiling. PP [4] implements an
algorithm for path profiling, which counts the execution frequencies of all intra-procedural acyclic
paths by encoding the paths as integers. This work was extended to use hardware metrics rather
than relying on execution frequencies and to use acalling context tree(CCT) to store metrics [2].
The CCT is similar to our ftree, but has a bounded size becauseit does not contain multiple entries
for loops, and it does not differentiate between a function calling another function multiple times.
Our ftree can afford to be contain these extra nodes because it contains few paths, rather than an
entire call-tree, and is also bounded by the user-specified maximum depth. PP was also extended
to handle inter-procedural paths [38, 44].

The TAU parallel performance system [67] has various profiling, tracing, and visualization
functionality to analyze the behavior of parallel programs. One mode of operation which is sim-
ilar to DARC is call-path profiling. Here, TAU generates its own call stack by instrumenting all
function calls and returns. This method handles both indirect and recursive calls. This stack is
used to provide profiling data that is specific to the current call-path. An extension to TAU, called
KTAU [50], was created to supplement TAU with latency information from the kernel. However,
KTAU only collects simple latency measurements from pre-defined locations in the kernel and uses
source instrumentation, so a meaningful quantitative comparison could not be made here either.

CATCH associates hardware metrics with call-path information for MPI and OpenMP applica-
tions [19]. It builds a static call-graph for the target application before it is executed. CATCH uses
a method similar to that of DARC to keep track of the current node that is executing, but uses loops
in its tree for recursive programs. It is also possible for users to select subtrees of the call-graph to
profile rather than tracking the entire execution of the program. CATCH cannot cope with applica-
tions that use a function name for more than one function, andcannot profile applications that use
indirect calls.

A major difference between these projects and DARC is that DARC performs call-pathfiltering,
rather than call-pathprofiling. This means that DARC instruments only the portion of the code that
is currently being investigated, rather than the entire code-base. Additionally, it generally runs for
a shorter period of time. However, DARC also collects less information than profiling tools.

Another project, iPath, provides call-path profiling by instrumenting only the functions that are
of interest to the user [6]. Whereas DARC searches for the causes of behavior seen in higher-level
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functions, iPath analyzes lower-level functions and distinguishes latencies based on the call-paths
used to reach them. It does so by walking the stack to determine the current call-path, sampling the
desired performance metric, and then updating the profile for that call-path with the performance
data. This provides two main benefits. First, overheads are incurred only for functions that the user
is profiling. Second, iPath walks the stack, so it does not need any special handling for indirect
or recursive calls. The main problem with performing stack walks is that they are architecture
and compiler-dependent. There are some compiler optimizations that iPath cannot cope with, and
it would be difficult to port iPath to use other compilers and optimizations. In contrast, DARC’s
method relies more on simple and portable dynamic binary instrumentation techniques.

Combining call-path profiling with sampling,csprof samples the running program’s stack
periodically, and attributes a metric to the call-path [22]. It also introduces a technique to limit the
depth of the stack walk when part of that stack has been seen before. However, although the stack
walk is more efficient than that of iPath,csprof is also tied to the code of a specific compiler and
its optimizations.

11.3 Dynamic Bottleneck Investigation

Kperfmon [73] is a tool that uses the Kerninst [72] dynamic instrumentation framework. For a given
function or basic block, Kperfmon can collect a metric, suchas elapsed time, processor time, or
instruction cache misses. A user may search for a root cause by examining the results and running
Kperfmon again to measure a new section of code.

CrossWalk [49] combines user-level [9] and kernel-level [72] dynamic instrumentation to find
CPU bottlenecks. Starting at a program’smainfunction, CrossWalk performs a breadth-first search
on the call-graph for functions whose latency is greater than a pre-defined value. If the search
enters the kernel via a system call, the search will continuein the kernel. It is not clear if CrossWalk
can handle multiple paths in the call-graph. CrossWalk doesnot handle multi-threaded programs,
asynchronous kernel activities, or recursion. It does not perform call-path or PID filtering.

Paradyn [48] uses the Dyninst dynamic instrumentation framework [9] to find bottlenecks in
parallel programs. It does this using a pre-defined decisiontree of bottlenecks that may exist in
programs. Paradyn inserts code to run experiments at runtime to determine the type of bottleneck
and where it is (synchronization object, CPU, code, etc.). Instances when continuously measured
values exceed a fixed threshold are defined as bottlenecks. Paradyn can narrow down bottlenecks
to user-defined phases in the program’s execution. Paradyn’s original code-search strategy was
replaced by an approach based on call-graphs [11].

One difference between the two code search strategies in Paradyn is that the original used
exclusivelatencies and the new strategy usedinclusivelatencies, because they are faster and simpler
to calculate. To calculate the exclusive latency of a function, Paradyn stopped and started the timer
so that the latencies of the function’s callees would not be included. DARC can use exclusive
latencies because the latencies of the callees are already being calculated, so it does not add much
overhead. Paradyn’s search strategy was also changed. Originally, Paradyn first attempted to isolate
a bottleneck to particular modules, and then to particular functions in those modules. They did this
by choosing random modules and functions to instrument [11]. This was replaced by a method that
began at the start of the executable, and continued to searchdeeper in the call-graph as long as the
bottleneck was still apparent.
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DARC is both more flexible and more accurate than these solutions. It has the ability to search
for the causes of any peak in an OSprof profile, rather than checking only for pre-defined bottle-
necks. Additionally, these methods would not be suitable for finding the causes of intermittent
behavior. DARC also introduces several new features, such as call-path filtering, distinguishing
recursive calls, resuming searches, and investigating asynchronous events.
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Chapter 12

Conclusions

We designed DARC, a new performance-analysis method that allows a user to easily find the causes
of a given high-level behavior that is seen in an OSprof profile. DARC allows the user to analyze
a large class of programs, including those containing recursive and indirect calls. Short-lived pro-
grams and programs with distinct phases can be analyzed easily using DARC’s resume feature. Ac-
cess to more source code information allows the user to use DARC to analyze preemptive behavior
and asynchronous paths. DARC minimizes false positives through the use of PID and call-path
filtering.

Our DARC implementation can be used to analyze source trees that reside in the kernel, in
user-space, and those that originate in user-space and cross the user-kernel boundary. The over-
heads when analyzing high-latency operations, such as diskreads, were statistically insignificant.
For faster operations, such as retrieving in-memory file information, the runtime with DARC can
increase by up to 50%. However, these overheads are imposed only for the time that DARC is
analyzing the code. DARC is designed for analyzing long-running applications, and the period of
time that this overhead is incurred is negligible compared to the overall run time. In the benchmark
exercising a fast operation, described in Section 8.3, we showed that DARC required less than one
second to perform its analysis. This was also seen in all of the use cases that we presented. In
addition, DARC’s overheads did not affect the analysis in any case.

We have shown how DARC can be used to analyze behaviors that were previously more difficult
to explain. These cases include preemptive behavior, asynchronous paths, and intermittent behav-
ior. Whereas OSprof was generally helpful for users to guessabout the causes of these behaviors,
DARC provided more direct evidence, while requiring less time, expertise, and intuition.

12.1 Future Work

In this section we describe four possible future research directions for our root cause analysis
method.

1. Our DARC implementation currently does not include basicblock instrumentation. The
ability to identify basic blocks would allow DARC to narrow down root causes to basic
blocks and minimize any perturbations caused by the instrumentation. Adding this ability
would add to DARC’s usefulness, but the biggest challenge would be implementing this
functionality in DARC’s disassembler.
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2. Overheads can be reduced by further optimizing the instrumentation. For example, as de-
scribed in Section 8.2, the kprobe at the start off0 can be removed by making a copy of
the function that includes the instrumentation, and jumping to this new function from the
original. Additionally, the kernel instrumentation optimizations can be made to work for the
user-space instrumentation as well.

3. Our current DARC implementation can cross the user-kernel boundary. Future DARC imple-
mentations may benefit from the ability to cross the guest-host boundary in virtual machine
environments (described in Chapter 10) and the ability to cross the client-server boundary in
client-server environments.

4. Users may not always be aware of abnormal performance behavior in running systems, and,
by the time they notice it, it may be too late to analyze. To remedy this situation, DARC can
be made to run automatically. OSprof profiles can be collected and automatically analyzed
over time for abnormal behavior using an algorithm such as the Earth Mover’s Distance (see
Chapter 9). If some abnormal behavior is detected, DARC can be made to run automatically
to provide an administrator with information about the detected behavior.
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