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Abstract of the Dissertation

Analyzing Root Causes of Latency Distributions
by

Avishay Traeger

Doctor of Philosophy
in
Computer Science

Stony Brook University

2008

OSprof is a versatile, portable, and efficient profiling noetblogy based on the analysis of
latency distributions. Although OSprof offers severalgue benefits and has been used to uncover
several interesting performance problems, the latendyiloligions that it provides must be analyzed
manually. These latency distributions are presented @asdgrams and contain distinct groups of
data, called peaks, that characterize the overall beha¥itve running code. Our thesis is that by
automating the analysis process, we make it easier to talentate of OSprof’s unique features.

We have developed the Dynamic Analysis of Root Causes syd&RC), which finds root
cause paths in a running program’s call-graph using runtatency analysis. A root cause path
is a call-path that starts at a given function and includeddigest latency contributors to a given
peak. These paths are the main causes for the high-leveVibelilaat is represented as a peak
in an OSprof histogram. DARC uses dynamic binary instrum@gon to analyze running code.
DARC performs PID and call-path filtering to reduce overteeandd perturbations, and can handle
recursive and indirect calls. DARC can analyze preemptelglior and asynchronous call-paths,
and can also resume its analysis from a previous state, whigeful when analyzing short-running
programs or specific phases of a program’s execution.

In this dissertation we present the design and implememtati DARC. Our implementation
is able to find user-space and kernel-space root cause path&ll as paths that originate in user-
space and terminate in kernel-space. We also investigagossibility of using OSprof and DARC
in virtual machine environments. We show DARC'’s usefuln@gsanalyzing behaviors that were
observed in several interesting scenarios. We compareahtlgsis of these behaviors when using
DARC to the manual analysis required by the original OSpretimdology, and found that DARC
provides more concrete evidence about root causes whilerieg| less time, expertise, and intu-
ition. In our performance evaluation, we show that DARC hegligible elapsed time overheads
for normal use cases.
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Chapter 1

Introduction

An important goal of performance analysis is finding the rcaises for some high-level behavior
that a user observes. OSprof [27—30] presents these highdehaviors to the user by collecting
latency distributions for functions in histograms. Thessdgram profiles contain groups of oper-
ations, called peaks. Figure 2.1 shows example OSprof esdiir single and multiple processes
calling thefork operation. We discuss this profile further in Chapter 2. Fiw,mote that there
are two distinct peaks in the multi-process profile (whiteslrathe first spans bins 15-19, and
the second spans bins 20-25. These types of peaks are ehiatacof OSprof profiles, and are
indicative of some high-level behavior. In this case, tHepeak characterizes the latency of the
actual fork operation, and the right peak shows a lock cditten

These histogram profiles are presented to the user, and v@8rdd the user then manually
analyzes the profiles using a variety of techniques. Onentgak is to compare peaks from two
different profiles to reach some conclusion. To analyze théimprocessfork workload shown
in the white bars of Figure 2.1, a user would need to have tpertise and insight to compare the
profile to a single-process workload’s profile. Because itjetfmost peak does not appear in the
single-process profile, the user can guess that a lock cioneraused the peak.

Despite the manual analysis required to analyze profilepr@$s a versatile, portable, and
efficient profiling methodology. It includes features that gacking in other profilers, such as
the ability to collect time-lapse profiles, small profileesz and low overheads (in terms of time,
memory usage, and code size). Based on user experiences;léar that interesting behavior

single-process m—
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Figure 1.1: Profiles of FreeBSD 6f0rk operations with single-process (black bars) and multi-
process (white bars) workloads.



can be observed from these high-level profiles. We belieae BIARC can help users take full
advantage of OSprof.

We designed the Dynamic Analysis of Root Causes (DARC) systeremedy the problem of
manual profile analysis [74]. DARC dynamically instrumentaning code to find the functions
that are the main latency contributors to a given peak in argprofile. We call these functiomsot
causes DARC'’s output is the call-paths that begin with the funotleeing analyzed, and consist
of root cause functions. This provides the user with the £gaquence of functions that were
responsible for the peak of interest.

DARC can narrow down root causes to basic blocks and can zmadgursive code as well as
code containing indirect functions. If the root cause of akpis a preemptive event, DARC can
determine the type of event (a disk interrupt, for examp®)RC can also analyze asynchronous
paths in the context of the main process. Although DARC gdhedoes not require much time
to perform its analysis, DARC may not be able to fully analpeegrams with short runtimes, and
longer running programs with short phases that are of istef€ solve these issues, DARC can
resume its analysis from a previous point. The program canfpagain, and the analysis continues
from the previous point. An OSprof profile from the previous rcan optionally be automatically
compared to a profile from the current run to ensure that theme environment has not changed
significantly. To minimize false positives and reduce oeads, DARC performs both process
ID (PID) and call-path filtering. PID filtering ensures thatly calls made by a specific process
or thread group are analyzed. Call-path filtering ensuras BARC analyzes only calls which
originate from the function of interest and proceed througtt cause functions.

We implemented DARC and present several use cases that Beaadvantages of automatic
root cause analysis. Not only is DARC'’s analysis faster timamual analysis, but it also provides
more definitive explanations than those obtained from miaamelysis while requiring less exper-
tise and intuition from the user.

Our current DARC implementation can report root cause p#ihsreside in user-space, in
the kernel, and those that originate in user-space andneatmin the kernel. This allows users
to analyze behaviors that are observed in user-space butenioot cause lies in the kernel. In
addition to running in user-space and in the kernel, we alscuds the possibility of using OSprof
and DARC in virtual machine environments.

We measured DARC'’s overheads and show that they are actefiiabormal usage. Although
DARC can make fast memory-bound operations run up to 50%eslaive analysis can be com-
pleted quickly, resulting in a negligible effect on overdpsed time. Further, our instrumentation
adds no noticeable overhead on slower I/O-bound operations

To aid in reproducing our results [75], we have made DARCisrse code available, as well as
a detailed description of our experimental testbeds andenchmark results at
http://lwww.fsl.cs.sunysb.edu/docs/darc/

1.1 Dissertation Organization

The remainder of the dissertation is organized as follows déscribe OSprof in Chapter 2. We de-
tail our design in Chapter 3 and our implementation in Chiagt&Ve discuss DARC'’s limitations in
Chapter 5. Chapter 6 describes the test machine that we aisalll €xperiments. Chapter 7 shows
examples of how DARC finds root causes. We evaluate the pegioce of DARC in Chapter 8.



Chapter 9 discusses various methods for comparing OSpafilgs. We describe how OSprof
and DARC behave in virtual machine environments in Chap@er We discuss related work in
Chapter 11. We conclude and discuss future work in Chapter 12



Chapter 2
OSprof

OSprof [27-30] is a powerful profiling methodology. Latessifor a specified function are mea-
sured using the CPU cycle counter (TSC on x86) and presentedtogram form. OSprof mea-
sures latency using CPU cycles because it is a highly precidesfficient metric available at run-
time. Figure 2.1 shows an actual profile of the FreeBSDi&Kk operation. Thdork operation
was called concurrently by one process (black bars) and nyfmcesses (white bars) on a dual-
CPU SMP system. The operation name is shown in the top righecof the profile. The lower
x-axis shows the bin (or bucket) numbers, which are caledlats the logarithm of the latency in
CPU cycles. The y-axis shows the number of operations wlateady falls into a given bin. Note
that both axes are logarithmic. For reference, the labeds@lhe profile give the bins’ average
latency in seconds. In Figure 2.1, the two peaks in the nputicess histogram correspond to two
paths of the fork operation: (1) the left peak corresponda p@ath without lock contention, and
(2) the right peak corresponds to a path with a lock contentibhe methods used to reach this
conclusion are described later in this chapter.

The relative simplicity of the profiling code makes OSprdijltly portable. It has been used to
find and diagnose interesting problems on Linux, FreeBSD Vd@imdows XP, and has been used to
profile from user-space and at several kernel instrumematoints. OSprof can be used for gray-
box OS profiling. For example, binary instrumentation wasdi® instrument Windows XP system
calls. The latency distributions of these system callsudetl information about the Windows
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Figure 2.1: Profiles of FreeBSD 6fork operations with single-process (black bars) and multi-
process (white bars) workloads. This figure is a duplicatBigfire 1.1, and is recreated here for
convenience.



kernel. OSprof is also versatile: it can profile CPU time,,llI@cks, semaphores, interrupts, the
scheduler, and networking protocols.

OSprof has negligible performance overheads. Its smafilpsoand code size minimize the
effects on caches. Additionally, having small profiles desl®Sprof to collect time-lapse profiles,
where a separate profile is used for each time segment. Tongsathe user to see how latency dis-
tributions change over time. The performance overheadrufiling an operation is approximately
40 cycles per call. This is much faster than most measurectiturs, especially since OSprof is
generally used to profile high-level functions.

The drawback of OSprof is the manual investigation requicetind the root cause of a par-
ticular behavior, which is seen as a peak in a profile. Thestigation typically requires some
deep understanding of the code, as well as taking the timeofdegpmore sections of code. Let us
consider the profile shown in Figure 2.1 in more detail. In siregle-process case, only the left-
most peak is present. Therefore, it is reasonable to assuahéhere is some contention between
processes inside of the fork function. In addition to théedéntial profile analysis technique used
here, other techniques have also been used, such as usingmowledge of latencies, layered
profiling, correlating latencies to variables, and proféenpling [28]. We show some examples of
these techniques in Chapter 7, where we compare the analgd®ds of OSprof with DARC.



Chapter 3

Design

We define a root cause function to be a function that is a majenty contributor to a given peak

in an OSprof profile. The key to searching for root causesihigse fact that latencies are additive:
the latency of a function’s execution is roughly equal toldtency of executing the function itself,

plus the latency to execute its callees. This concept caxteaded recursively to the entire call-

graph, providing us with an effective method for finding tlaegest latency contributors. DARC

searches the call-graph one level at a time, identifyingntlaén latency contributors at each step,
and further searching the sub-trees of those functions.

When starting DARC, the user specifies the process ID (Plijefarget program, the function
to begin analyzing (we refer to this dg), and the maximum search depth. We call a path fifgm
to a root cause ot cause pathDARC's goal is to find root cause paths and present them to the
user.

3.1 The Function Tree

Over time, DARC creates an in-memory tree that represemtguthction calls along root cause
paths. We call this the Function Tree, ftree, and it is composed dhodes. Initially, there is a
single fnode in the tree, representing callsf§o The depth of the ftree increases during DARC’s
analysis, until either the specified maximum depth is redcbe DARC has finished its analysis.
The PID is used to ensure that only function calls that areked on behalf of the given process
or thread group are analyzed.

It is important to note that fnodes do not represent funstidout rather function calls in the
context of call-paths. For example, we can see in Figurea3th@t bothf, and fz call fo. In
this case, there would be two nodes fior, as shown in Figure 3.1(b). This concept also holds for
situations where one function calls a different functiomcev In this case, there will be one node
for each call site, as shown in Figure 3.2. The ftree is a prtnee, as it contains only sequences
of function calls, and so it does not contain loops or nodeh wiore than one parent. The ftree
grows as DARC finds more functions that belong to root causiespa
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Figure 3.1: An example of a call-graph (left) with a possibteresponding ftree (right), where a
function appears in the ftree twice.
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Figure 3.2: An example of a call-graph (left) with a possibteresponding ftree (right), where a
function calls a different function twice.

3.2 Initial f, Instrumentation

DARC begins by instrumenting, with OSprof code, as shown in Figure 3.3. In our notation,
the callees off, are fy, to f,,. The ellipses represent any code present in the origingrpm
that is not relevant to our discussion. T&&ETCYCLESfunction reads the current value of the
register which contains the current number of clock tickstenCPU (e.g.RDTSCon x86). These
notations are also used for Figures 3.5, 3.7, and 3.11.

The instrumentation accumulates profile data, which isldisal to the user upon request.
DARC examines changes between bins in the histogram toifggmataks, and displays the peak
numbers to the user along with the histogram. The peak asdbises the logarithmic values of
the y-axis into account, mimicking the way a human might tdgrpeaks. The output that the
user sees is presented in Figure 3.4. Here we can see thessaddyfg, the total number of times
fo was called, the total latency of the profiled callsfig the profile in array form, and a visual
representation of the profile. The peak numbers are showeruhd bin numbers.

At this point, the user may communicate the desired peak tROADARC then translates the
peak into a range of bins. If the desired peak is known ahe#ithef the user may specify the peak
number and the number of timgg should be called before translating the peak into a bin range
Oncef, is called that number of times, the profile is displayed s¢ i@ user may see the profile
that the results will be based on.



fo {

timel = GET_CYCLES();

f0,0();

f0,i();

fo,n();

time2 = GET_CYCLES();

latency = time2 - timel;

record_latency_in_histogram(latency);
}

Figure 3.3: The instrumentation DARC addsfiowhen DARC is started f o, fo.:, and fy,, are
functions thatf, calls.

3.3 Main f, Instrumentation

Once a peak is chosen, the original instrumentation is cepldoy the instrumentation shown in
Figure 3.5. Whery, is executed, DARC measures the latencief @nd its callees. The maximum
latency for each function is stored in the appropriate fnodéae maximum is used because a
function may be called more than once in the case of loops (ghexplained further later in this
section). Because the latencies of the callees are medsomedvithin f;, the latency stored in the
fnode of f; ; is guaranteed to be the latency ff; when called byf;. The latencies are processed
only if the latency off, lies in the range of the peak being analyzed. Otherwise,aheediscarded.
Note that in Figure 3.5, thetart and latencyvariables in the fnode are thread-local to support
multi-threaded workloads.

The goal of theprocess _latencies  function (see Figure 3.5) is to find the largest latency
contributors among, and its callees. Thprocess _atencies  function first approximates the
latency off; itself:

latencyy, — (Y latencyy,,) (3.1)
=0
It then finds the maximum latency amorigand its callees. The largest latency contributors are
those whose latency has the same logarithm as the maximentiatin other wordsf is chosen if
loga(latencyy,) = loga(latencyma, ), and anfy; is chosen ifog, (latencyy, ) = loga(latencymas ).

To improve accuracy, DARC does not make root cause decisiassd on a single call gf,.
Instead, it increments a countaraxcount , in the fnodes of the largest latency contributors. Root
cause decisions are made after a user-defined amount of Wwhere the latency of, has been
in the range of the peak being analyzed. The main latencyribatdrs are those whose value
of maxcount are within a user-defined percentage (defined bynilacount _percentage
parameter) of the largeshaxcount value. These functions are root cause functions, and their
fnodes are marked as such. DARC always clears the latemaesére recorded beforg returns.
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Figure 3.4: The OSprof profile and peaks that DARC presenisdaiser.
Case|| Is the condition | Should f. be a root Is f. the only function that
true? cause function? | should be a root cause function?
A Y Y Y
B Y Y N
C Y N -
D N Y Y
E N Y N
F N N -

Table 3.1: Possible scenarios for a function containedimvaliconditional block.

3.4 Loops and Conditional Blocks

We can now consider the case of a functjpibeing called from a loop. In this case, DARC should
designatef; as being the root cause if it has a high latency, regardlebgiofy in the loop. If the
latency is due tgf; being called from a loop, then DARC should designate thentpflinction as
the root cause. To accomplish this, DARC uses the maximuendgtof f;, so that it is as iff; was
called once. The latencies f@yin other iterations of the loop are then automatically httted to
the calling function, as per Equation 3.1 that approxims#tedatency off,.

The case of conditional blocks, suchiis, else , andcase requires no special handling. We
refer to the function that is contained within the condiibas f.. We have three questions whose
answers will affect how DARC handles conditional blockgsgiis the condition true7, will be
called only if the condition is true. Second, shoyldoe a root cause function? In other words, is
it a main latency contributor to the specified peak? Thirdf ithe only function that should be a
root cause function? In other words, is there another fondinat should also be considered as a
main latency contributor?

We present the possible scenarios in Table 3.1. The casbamdéed as follows:



fo {
root->start = GET_CYCLES();

0,00):

c = root->childli];

c->start = GET_CYCLES();

f0,i();

c->latency = GET_CYCLES() - c->start;

if (c->latency > c->maxlatency) {
c->maxlatency = c->latency;

}
l;é,n();

root->latency = GET_CYCLES() - root->start;
if (is_in_peak_range(root->latency)) {
process_latencies();
num_calls++;

}

if (num_calls == decision_calls == 0) {
choose_root_causes();
num_calls = 0;

}

reset_latencies();

Figure 3.5: The instrumentation DARC addsftpafter a peak is chosen. The instrumentation for
foo andfq,, is similar to that off ;, and was elided to conserve space.

A Here, f.'s maxcount value will be incremented, as expected.

B Themaxcount value for f. will be incremented, along with potentially any other fuoatthat
should be chosen as a root cause function during this rouadaif/sis, as expected.

C The latency off. will be measured, but becauge should not be a root cause function, its
maxcount value will not be incremented.

D As f. is the only function that should be chosen to be a root causaifin during the current
round of analysis, the latency ¢§ should not be within the range of the desired peak i
not called.

E Although f. should be chosen as a root cause function, its latency waseadured during this
iteration because the condition was false. Becafise not the only function that should
be chosen as a root cause function, it is possible thatidwecount value of some other
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functions were incremented, and therefgremay ultimately not be selected to be a root
cause function. The user must adjust thaxcount _percentage parameter iff. is to

be chosen—Ilower values will allow functions with lowmaxcount values to be identified
as root cause functions. However, the root cause functimatsvierechosen will have had a
bigger impact, and so the omission ffis acceptable.

F The latency off, will not be measured, and consequently it will not be a caatdido have its
maxcount value incremented. This is acceptablefashould not be a root cause function.

3.5 Left Shift

Before describing how descendantsfgpthat have been marked as root cause functions are instru-
mented, the concept &ft shiftmust be introduced. As DARC descends deeper into the coele, th
peak being analyzed shifts to the left. To understand whgydbcurs, assume the peak is in Bin
of fyo’s profile. Further, the main latency contributor for thisaes f; ;. The peak, as seen in the
profile of fy, includes the latency fof, itself, as well as the latencies for the other functions that
fo calls. However, the peak ify ; does not contain these additional latencies, and so therpagk
shift to the left in the profile offy ;.

We can see the effects of left shift in Figure 3.6. Here we atglly called thestat system
call on a single file and captured OSprof profiles of the roasegunctions, beginning with the top-
level stat function. The appropriate Linux kernel funcBamere manually instrumented to collect
these profiles. The profiles for the call-path are presentetbscending order, with the top-level
functionyfs _stat , ontop. The machine that this was run on is described in @n&ptWe can
see in the figure that the vast majority of operations fabbinin 11 in thevfs _stat profile, and
this progressively shifts to bin 10 as we move to lower-léuactions.

3.6 Lower Function Instrumentation

To avoid the effects of left shift, DARC does not calculate kbcation of the peak irf ;. Instead,
DARC keeps the decision logic ify. Root cause functions other th@nare instrumented as shown
in Figure 3.7. Assumg, calls functionsf, , to f; .., andf; is chosen as a root cause. Furthfgr,
calls fo;0 to fo.m. INn fo,, latencies for eaclf ; ; are calculated, but not processed. DARC does
not add instrumentation to measure the latency,gfbecause it is measured fg. DARC creates
fnodes for eacty, ; ;, with f,; as the parent.

Each new root cause functioffy(; in our example) is added to a list of nodes tliaprocesses
before returning. Before returning, jf’s latency is within the peak, DARC traverses this list to
process latencies, and possibly chooses the next roundbtaose functions. Placing the latency
information on a queue to be processed off-line by a septrsgad may minimize the impact of the
decision code on the latency @f. We evaluate this design decision in Chapter 8. DARC removes
instrumentation that is no longer needed using a second4pria@ity queue for the instrumentation
removal requests. This is because removing instrumentetia performance optimization and can
be a slow operation, and so the delays on the analysis sheutdrbmized.

When DARC determines that a function (and not any of the fonstthat it calls) is responsible
for the specified peak, DARC stops exploring along that path. DARC also stops exploring
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Figure 3.6: OSprof profiles for the root cause path functiomder the stat workload. Each function
whose profile is shown here calls the function whose profighmvn below it.
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f0,i {

c = parent->child[j];

c->start = GET_CYCLES();

f0,1,j0);

c->latency = GET_CYCLES() - c->start;

if (c->latency > c->maxlatency) {
c->maxlatency = c->latency;

}

Figure 3.7: The instrumentation DARC addsftq. Functionf, ; is a function thatf, ; calls.

a call-path if it reaches a function that does not call anycfioms, or after the root cause path
has grown to the user-specified length. When all call-patwe ltompleted, DARC removes all
remaining instrumentation and the program continues toasimormal. DARC'’s status may be
queried by the user at any time. This status includes thedgteistogram forf,, the analysis status
(“in progress,” “maximum depth reached,” or “root causerfd), the ftree, and thenaxcount
values for each fnode.

3.7 Tracking Function Nodes

Before instrumenting a function, DARC must check if the fiime has already been instrumented
to avoid duplicating instrumentation. An example of howstbould occur is shown in Figure 3.8.
Here the latency of, is measured fronf,, and f,. DARC then determines th4, is a root cause
of both paths. Becausg, was chosen as a root cause twice, it would be instrumentexnt tioi
measure the latency gf. We avoid this by using a hash table to track which functicagehbeen
instrumented. The first time DARC tries to instrumefit it searches the hash table using the
address off, as the key. It is not found, and g9 is instrumented, and an entry is inserted into
the hash table. Before DARC tries to instrum¢nt second time, it searches the hash table, finds
the entry forf,, and therefore does not instrument it a second time. A hdsb ts.used because
instrumented functions cannot be tracked by marking fnoolesause there may be multiple fnodes
for a single function.

When more than one fnode exists for each instrumentationt pibie fnode cannot be tied to
the instrumentation. For example, there are two fnodesfforso f,’s instrumentation cannot
always use the same fnode. To solve this, DARC decouplemtideftracking from the instru-
mentation by using a global (thread-local) fnode pointerrent _fnode , which points to the
current fnode. This pointer is always set fpat the start off,. Each instrumented function sets
thecurrent _fnode pointer by moving it to a specific child of the fnode tltatrrent _fnode
Is pointing to. It does so using the fnode identifiers (seelibn the call-graph edges in Fig-
ure 3.8(a)). These fnode identifiers are simply an enunwerati the callees of the parent function.
In addition, each fnode contains a thread-losated _fnode pointer, where the value of the
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Figure 3.8: An example of a call-graph (left) with a possitieresponding ftree (right) that requires
a hash table to avoid duplicate instrumentation. Labelshenetdges of the call-graph are fnode
identifiers, which are enumerations of each fnode’s childddl nodes belong to root cause paths.

global pointer is saved so that it can be restored after thetion call. In Figure 3.8f,’s instru-
mentation will saveeurrent  _fnode , and then change it to point to the first child of the current
fnode. This will causeurrent _fnode to point to the correcy, fnode regardless of whether it
was called viaf,, or f,.

3.8 Filtering

DARC performs two types of filtering to ensure that only relet latencies are measured and
analyzed. First, process ID (PID) filtering ensures thatdahction calls that are called in the
context of the target process or thread group are analyZsd.iSimportant for functions that reside
in shared libraries or the operating system. Second, itop@d call-path filtering It is possible
for functions that are not part of a root cause path to callnetion that DARC has instrumented.
In this case, latency measurements should not be takendetaey may reduce the accuracy of
the analysis. For example, lower-level functions are galhecalled from several call-paths, as the
functions tend to be more generic. Performing this filteriag increase the accuracy of DARC'’s
analysis by reducing noise in the captured latencies. @dh-filtering also ensures that no function
that is called from outside of the root cause paths will mpthiecurrent _fnode pointer.

Figure 3.9 demonstrates the need for call-path filteringehiee used thgrep utility to search
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the Linux kernel sources recursively for a non-existeribgtr This workload is further described
in Chapters 6 and 7. We manually instrumented the apprepki@ux kernel functions to collect
these profiles. To add filtering, we added an extra parameteetfunctions. The added parameter
was off by default, and was turned on only along the root caagk. Profiling was enabled only
if the added parameter was set. In Figure 3.9 we can see theaose path that begins with the
ext2 _readdir function, which reads a directory listing. We can see that1§—23 are nearly
identical in the first four profilesext2 _readdir , ext2 _get _page, read _cache _page,
read _cache _page _async ) for both the filtered and unfiltered cases. However, the- left
most bin look quite different when filtering is enabled. et theext2 _readpage and
mpage_readpage functions look similar for the filtered and unfiltered cas@sis is because
these functions are called mostly for reading metadataa datread using the corresponding
readpages functions rather than theeadpage functions, which perform readahead. The
final two functionsmpage_bio _submit andsubmit _bio , show large differences between the
filtered and unfiltered versions. This is because these ifumstare low-level, generic block 1/10
functions, and are used to perform both data and metadata I/O

DARC uses an efficient and portable call-path—filtering reghe. Each fnode contains a
thread-local flag to specify that it was called along a roatseapath. The flag irfy’s fnode is
always set. Before a root cause function calls another raose function, it sets the flag of its
callee’s fnode if its own flag is set. The latency measurementl analysis are only executed when
the flag of the current fnode is set.

Others have used a relatively expensive stack walk to partall-path filtering [6]. Although
it has been shown that a full stack walk is not necessary &ffack walk is highly architecture and
compiler-dependent. Our method is more portable, and w@uare its correctness. We first show
inductively that if a function is called as part of a root cagsth, then the flag in its corresponding
fnode that indicates this fact is set.

Proof: Base case:f, is always the start of a root cause path. The flag fiors always set by
definition.

Inductive step: Assume that the flag is set for the fifsinctions of a root cause path. The flag
for function (i + 1) will be set by: because the flag for functioris set, andi + 1) is a root cause
function.

We now show that if a function is not called as part of a rootsegpath, then its flag will not be
set.

Proof: Consider a call-patt#, which is composed of three segmerits= XY Z. The functionsin
X andZ are root cause functions, while thoseYinare not > 0,Y > 1, Z > 1). We show that
the flags for functions i andZ are not set. We have already shown that function¥ will have
their flags set. Before the last function ¥, X, calls the first function it’, Yy;,s, it checks if
Y}irst IS @ root cause function. Because it is not, the flagjin,; is not set. Alternatively, ifX = 0,
the flagY7;,.+ will not be set because no root cause function has set it. Becte flag it is
not set, any subsequent functionYnwill not have its flag set. Becausg,,; does not have its flag
set, it will not set the flag o ;,..;, and so no function it¥ will have its flag set.
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3.9 Profiling Basic Blocks

If the instrumentation method used to implement DARC hashedge about basic blocks, DARC
can instrument these as well. This is useful in two casest,Fithen DARC reaches the end of
a root cause path, DARC can then proceed to narrow down theause to a basic block in that
function. DARC acts on basic blocks in the same way as it dodsiactions: it creates an fnode
for each basic block, and sub-blocks are treated as calfeb®®e blocks. When displaying the
ftree, DARC reports the type of basic block instead of a fiomchame.

The second case where basic block instrumentation is usefal function calls a large number
of other functions. Instrumenting all of the functions atemay add too much overhead. The user
may specify a threshold for the maximum number of functianbe instrumented at once. If this
threshold is about to be exceeded, DARC instruments onlsetfianction calls that are not called
from a basic block nested within the function, and also ims&nts any basic block containing a
function call. There is no need to instrument basic bloclks tlo not call functions because their
latencies will be automatically attributed to the functitself (recall that the latency of the calling
function is estimating by subtracting the latencies of aflees from its latency). After DARC
narrows down the root cause to a basic block, it may furthstriment that block to continue its
analysis.

DARC can be set to always instrument basic blocks beforetimmealls. This reduces the
overhead incurred at any given point in time. The trade®that because there are more steps to
finding a root cause, the period of time in which overheadsrarerred is prolonged. In addition,
DARC consumes more memory because the ftree contains Haskstas well as functions.

3.10 Resuming DARC

DARC can use its output as input in a future run, allowing itctmtinue a root cause search
without repeating analysis. After parsing the previougpatitDARC rebuilds the ftree (including
themaxcount values), and inserts the appropriate call-path filtering latency instrumentation.
The ability to resume analysis is important in two casesstFa user may search for root cause
paths up to a specified length and later need more informats&atond, a program may not run
for enough time to fully analyze it, or the user may be analgz specific phase of a program'’s
execution. In this case, the program may signal DARC on whdregin and end the analysis.

If desired, a new OSprof profile fof, can be collected before DARC resumes analysis, and
this profile can be compared to the previous profile to endwaethe latency distribution has not
changed. A change in the distribution may be caused by fastach as changes in the execution
environment or different input to the process. DARC compdée profiles using the Earth Mover’s
Distance (EMD), which is an algorithm commonly used in dasaalization as a goodness-of-fit
test [63]. Further discussion on profile comparison methuaatsbe found in Chapter 9.

3.11 Recursion

To handle recursion, the ftree needs to have one fnode fay éwstance of a function call, as
described in Section 3.7. Additionally, DARC needs to knolew the code execution goes past
a leaf in the ftree and then re-enters it by way of recursioor. é&xample, in Figure 3.10, DARC
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Figure 3.10: A recursive call-graph (left) with a corresgdony ftree (right), where only, has been
identified as a root cause at this point. The numbers on thesedfgthe call-graph are the fnode
identifiers.

must know that afteyf, calls a function, it is no longer in the ftree. This is becayisenay call f,,,
which would incorrectly seturrent _fnode to f,. To solve this, DARC has a thread-local flag
that tracks when the execution leaves the ftree. In this @k@nthe instrumentation would look
like the code in Figure 3.11. DARC uses tleeursion _count variable to ensure that the same
function execution that sé _tree tofalse also setsittdrue . Thisis needed to prevent the
second execution of, from settingin _tree totrue , whereas the first execution ¢f set it to
false

3.12 Analyzing Preemptive Behavior

Preemptive behavior refers to any case where the primagathihat is being investigated is stopped
and another piece of code is set to run. This can be when the pracess is preempted for
another process to run or when an interrupt occurs. Pregenp&havior may concern us when the
latency of a secondary code path is incorporated into tlemé&¢s that DARC measures, although
in general these latencies may be ignored [28]. The origdfaprof methodology used system-
specific knowledge about the quantum length to determinenviine process was preempted, and
intuitive guesses to determine when interrupts causedspeak

DARC measures preemptive behavior only if the added lateviltybe incorporated into the
current latency measurements. This happens if the codg pegempted in the primary thread is
in the subtree of an fnode that is currently being inveséiga hese fnodes contain extra variables
to store preemption and interrupt latencies. In cases wineigple preemptive events of the same
type occur, DARC stores the sum of their latencies (recalt DARC resets latency information
after each execution gf)).

If the name or address of the appropriate scheduler fun@iavailable, DARC can instrument
it to check if the target process was preempted, and for hog.I®@ARC stores the total amount
of time spent while preempted in the appropriate fnode, a&s this data when searching for root
causes. If preemption was the main factor in the peak, DAR®GIts “preemption” as the cause.
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fx {

if (in_tree) {
current_fnode = fnode(fx);
/I latency measurement code for fy
fnode(fx)->recursion_count++;
in_tree = false;

}

fy();

fnode(fx)->recursion_count--;

if (fnode(fx)->recursion_count == 0) {
in_tree = true;
/I latency measurement code for fy
current_fnode = saved_global;

Figure 3.11: The instrumentation DARC addsftoaround the call tof, in the example shown in
Figure 3.10 to handle recursion.

For interrupts, if the name or address of the main interraptine is known, DARC instruments
it to record the latencies in an array contained in the propede that is indexed by the interrupt
number. Latencies are only recorded if the target processwecuting in the subtree of a function
being analyzed. In addition, DARC keeps a small auxiliamayarto handle the case where an
interrupt occurs while processing an interrupt. If an iniet is determined to be a root cause,
DARC reports the interrupt number and handler routine name.

3.13 Analyzing Asynchronous Paths

An asynchronous path refers to a secondary thread that potssome shared object. Examples
of this are a thread that routinely examines a system’s dathecand writes modified segments
to disk, or a thread that takes I/O requests from a queue anitsg them. Asynchronous paths
are not uncommon, and it may be desirable to analyze the lmetathese paths. Work done by
asynchronous threads will generally not appear in a latémstpgram, unless the target process
waits for a request to be completed (forcing synchronousaehn). An example of such behavior
can be seen in the Linux kernel, where a request to read dptaded on a queue, and a separate
thread processes the request. Because the data must Imedatonithe application, the main thread
waits for the request’'s completion.

To analyze asynchronous paths, the user may choose a famstithe asynchronous path to
be f,. This requires no extra information, other than the namedalr@ss off,. However, if it
is desirable to analyze an asynchronous path in the contextmin path, DARC requires extra
information. For cases with a request queue, DARC needs @ khe address of the request
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structure. DARC adds call-path filtering along the main paphto the point where the request
structure is available to DARC. At this point, DARC adds tequest structure’s address to a hash
table if the PID and call-path filtering checks all pass. Wtiensecondary thread uses the request
object, DARC checks the hash table for the object’s addréssis there, DARC knows that the
target process enqueued the object along the call-patistb&interest to the user.

In the case where the asynchronous thread is scanning alttsi{with no request queue), the
object can be added to the hash table when appropriate. dd¢hsitjue requires the same extra
knowledge as the situation with a request queue: the c#il{pdilter and the name of the request
object. In the case where this information is not availabkR C proceeds without PID or call-path
filtering.
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Chapter 4

Implementation

In implementing DARC, we aimed to make it efficient while gpi@asy and feasible to use in a
variety of environments. The user interface is the part efithplementation that the user directly
sees. We describe the user interface that we implementestiiog 4.1.

With regard to instrumentation, we investigated two optstocompile-time source code mod-
ification and dynamic binary instrumentation (DBI). We stdel the latter for several reasons,
including the ability to instrument without recompiling cinestarting the application, smaller to-
tal code size, reduced overheads for inactive instrumientaand handling of indirect calls. We
discuss these reasons further in Section 4.2.

Our initial version of DARC only supported analysis of Linkernel functions [74]. This
decision was dictated by two facts. First, the Linux kermeMaes kprobes, a robust mechanism
for binary instrumentation of its code [17,43]. Second, #hdity to dynamically add modules
to the kernel allows us to easily have the instrumented codetlze instrumentation in the same
address space. This implementation is detailed in Sectidid.4However, the kprobes mechanism
is too rich for our specific needs, and therefore too experiaiterms of instrumentation overheads.
This realization brought us to reduce the overheads by imerging several optimizations that we
detail in Section 4.2.2.

DARC'’s unique features can be helpful not only in analyzipgrating system kernels, but
user-space applications as well. Our DARC implementatitanva users to find root cause paths
that reside in user-space programs, in the Linux kernehasé that cross the user-kernel boundary.
We extended DARC so that the user may specify the start fomcfj, to be any function in a user
application or the kernel. Iffy is a user-space function, the root cause search may pdlgntia
continue into the kernel via the system call interface. Mmsild help users to determine if the
root cause of a behavior that is observed in user-spaceualbctaused by the kernel. Figure 4.1
shows an example of an ftree that crosses the user-kernelddaou We discuss this further in
Section 4.2.4.

Two major problems arise when extending DARC to handle apace applications. First, it is
usually difficult to find a place in the application’s addrepsce to store DARC'’s instrumentation
safely while the program is running. This means that we madre store the instrumentation in
the address space of some other process or the kernel. Irasieeof another process, a context
switch is unavoidable every time DARC's instrumentatioexgcuted, which can cause excessive
overheads. Therefore, we chose to store the instrumentatiernel space. This also allowed us to
analyze root cause paths that cross the user-kernel boumdasparently: no data synchronization
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Figure 4.1: An example of an ftree that crosses the userk&wundary. Only root cause fnodes
are shown.

is required between the user-space and kernel portionsediutiction tree. The second problem
in implementing DARC for user-space applications is the latreliable in-kernel mechanisms
for binary instrumentation of user-space applications.e®d developers have attempted to create
solutions that are similar to kprobes, but none were acdepyehe Linux kernel community [33,
34,56,57]. We selected one of these solutions [57] and #iexblit with the hope that it will
increase reliability. The reduced framework is powerfubegh for DARC’s purposes, but does not
include any additional functionality.

The extended DARC implementation with support for user i@pfibns is presented in Sec-
tion 4.2.3.

4.1 Interaction

The first step to start using DARC is to insert the kernel mednto the running kernel via the
insmod command. When loaded, the module createdphec/darc  file which provides the
basic interface between the user and DARC. Reading fromfiteiprovides information about
the progress of analysis, while performimartl  operations on it controls DARC. To facilitate
the control process, DARC includes a user-level progratieddarcctl , that interacts with the
kernel component usinigctl  s.

After the module is loaded, the user involdegcctl  with parameters that describe the anal-
ysis to be performed. Because the list of parameters cantberdmng, DARC includes a script
that takes a configuration file as input, translates somenpetaas, loads the module and calls
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darcctl  with the appropriate arguments. A simple configuration fda be seen in Figure 4.2.

If a program name is given for therogram _name parameter, the script translates it to a PID
before passing it to the DARC kernel module. This option caly ®e used if the name maps
to a single PID—otherwise, a PID must be passed to DARC. Silpilthestart _function
parameter is translated to a code address. If the functitot#ed in a user application, then the
binary parameter should be specified. In this case, the scriptagtsgmbol information from
the binary and passes it to the module. Section 4.2.3 exyldity symbol information is required
by DARC. The script also passes the address of the systerabldlto the module if; is located
in a user application. DARC uses this address to determirielmgdystem call was called if the
user-kernel boundary was crossed.

Our DARC implementation is designed to be used in two modemnual and automatic. In
the first case, after DARC is started, the user manually selde peak of interest and when
DARC should select the next round of root cause functiongerAatively, the user may specify
thedecision _time ,start _ops, andstart _peak parameters in the configuration file at the
very beginning; if so, DARC performs all these actions awtically. Manual mode is preferred
when a user is first starting to analyze a latency distrilbytichile automatic is better when working
with familiar distributions and for reproducing the resudtt a later time.

The script and configuration file make DARC easier to use, imedhe user does not need
to look up the PID and code address manually. In additionueg may save configuration files
for future use or reference. Internally, DARC does not usefanction names, so its output con-
tains only function addresses. DARC includes a user-lesrgbtsto process the output, translating
addresses to function names and interrupt numbers to uptemames.

4.2 Instrumentation

DARC operates by using dynamic binary instrumentation (BIfind the root causes of a peak.
An alternative to DBI would be a compile-time method, whdtefthe instrumentation is added
to the source code [12, 31]. A compile-time method has thefitsrof lower overheads to activate
instrumentation and the ability to report the names of mlfanctions. However, there are five
main drawbacks to compile-time methods. First, the builstesyn would need to be changed to
add the code. In large projects, this may be a daunting taskorfl, the application would need
to be stopped to run the version with the new instrumentatibms is a problem for critical or
long-running applications. Third, because all instruraéioh must be inserted ahead of time, there
can be a large increase in code size, and all code paths wauldaverheads even when skipping
over the instrumentation. Fourth, all source code needs @vhilable. Although application code
is usually available to its developers, libraries and kkoogle may not be. Finally, indirect calls
can only be resolved at runtime, and so not all of the funstibiat require instrumentation can be
known at compile time.

4.2.1 Kernel-Level Instrumentation

The current DARC prototype is implemented as a kernel moftuléhe Linux 2.6.23 kernel. Ex-
cluding the optimizations discussed in Section 4.2.2, ésugorobes for DBI [17]. Simply put, a
kprobereplaces a given instruction with the following sequencealato an optionapre-handler
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# Name or PID of program to analyze.
program_name = grep

# Name of function to start analyzing.
start_function = vfs_readdir

# Number of function calls (within the latency range) betwee n
# decisions. Raising this value increases the number of func tion
# calls that decisions are based on, possibly improving accu racy,

# but also increasing the analysis time.
decision_time = 50

# DARC stops its analysis at this depth if not already finishe d.
max_depth = 10

# Percent closeness to maximum maxcounts values, used to cho ose which
# functions will be chosen as the next level of root causes.

# Acceptable values range from 0 to 100. Higher values will pr oduce

# more conservative results, but may omit some less frequent ly called

# functions. Lower values will allow for more functions to

# potentially be chosen as root causes, but may also increase the

# amount of false positives. We recommend starting with a val ue of at
# least 90, which should be suitable for most situations, and lowering
# it if more root cause options are necessary.

maxcount_percentage = 97

# Smallest allowable latency for a root cause function (spec ified by
# an OSprof bucket number). This can be used so that DARC does n ot
# continue its analysis once it chooses a root cause function whose
# latency is too low to matter. For example, when analyzing an /0
# function, buckets representing faster CPU-bound operati ons may be
# ignored.

min_bucket = 6

Number of elements to collect in the OSprof histogram befor e
choosing a peak (optional). The peak that will be chosen is

specified by the ’start_peak’ parameter. This value shoul d be high
enough to ensure that the histogram peaks are stable. These

parameters are generally used only for automating the anal ysis
process while benchmarking.

start_ops = 100

HHHHHH

# Peak to choose - see comments for the ’start_ops’ parameter
# for more information (optional).
start_peak = 1

Figure 4.2: A simple DARC configuration file.
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Figure 4.3: The main steps required to execute a kprobe thiaes both pre-handlers and post-
handlers.
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function, the instruction itself, and a call to an optiopakt-handlerfunction. The main steps in
a kprobe’s execution are shown in Figure 4.3. In more detdien DARC registers a kprobe, the
probed instruction is saved, and the instruction is remlagigh an interrupt. A trap occurs when
this interrupt instruction is executed, the kernel savesdbntext, and it then calls the kprobes
interrupt handler. The handler first disables preemptiahsaves the flags from the exception con-
text. In the saved context, it disables interrupts, getdyda single-step or execute the replaced
instruction, and calls the pre-handler if it is defined. Wheturning from the trap, the kernel re-
stores the context and the original instruction is execuf&cthis point, another trap occurs, and
the kernel once again saves the context and calls the iptdmandler. Now the handler calls the
post-handler if it is defined, restores the saved flags, fixagrpm-counter—relative results, sets the
saved program counter, and restores preemption. The hahdlereturns, and the kernel restores
the context and continues executing the code from the ictstruafter the replaced instruction.

Most DARC instrumentation is inserted using ordinary kgebHowever, the instrumentation
that is executed beforg returns (see end of Figure 3.3) is inserted usitkgedprobe or a “return
kprobe.” This type of kprobe is executed before a functidomes from any point. Additionally, to
handle function pointers (i.e., indirect calls), DARC addilitional code to the kprobe at the call
site that checks the appropriate register for the targetessd

We used kprobes for two reasons. First, it is part of the mariLlinux kernel. Code inside the
mainline kernel tends to be stable and well-maintainedjsadailable in any recent kernel version.
Kprobes are currently available for the i386, x88, ppc64, ia64, and sparc64 architectures and
it can be expected that other architectures that Linux sippall be supported by kprobes in the
future. The second reason is that kprobes provide a minsti@lnterface common to most DBI
techniques—they place a given section of code at a given addeess. This shows that DARC
can be implemented using any DBI mechanism, and can be portgtier operating systems and
architectures.

We considered two alternative DBI frameworks for impleniegitDARC. Kerninst [72, 73],
which is available for Sun UltraSparc I/1l/1ll, x86, and IBMowerPC, was not suitable for us
because of its cumbersome API and instability. Kerninstireg that code that is to be inserted be
constructed using their API. For example, a simple instomcsuch as incrementing a variable
would look like:

kapi_arith_expr incr_A(kapi_plus, A, 1);
kapi_arith_expr assign_A(kapi_assign, A, incr_A);

In addition to the API problems, Kerninst failed to instrumhsome kernel functions that we tested,
resulting in kernel crashes.

The second DBI framework that we considered was PinOS [18]s iE an operating system
version of the user-space DBI framework called Pin [40]. &ifnately, the code for this project
was not made available, and therefore we could not testiistslity.

DARC requires a disassembler in order to identify apprdpriastrumentation points, such as
calls, returns, and interrupts. We used a disassemblewthatodified from the Hacker Disassem-
bler Engine v0.8 [59]. We chose this disassembler becausevéry small and lightweight (298
lines of assembly in our version). We converted the NASM aymd GNU assembler syntax using
intel2gas [51], and converted the opcode table from NASM.td\V€ also added a C function that
returns the callsites of a given function, which took 84 $ired code. This function also handles
tail-call optimizations, where if a function calls a functiony immediately before returning, the
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call

call foo E> foo

return

Time

next
Y instruction

Figure 4.4: An uninstrumented call site. Functfoon is called, and another instruction is executed
after returning from the call.

call and return are be replaced by a jumptandy then returns ta’s return address. This pro-
vides the minimum functionality necessary for DARC exceptthe identification of basic blocks,
which our current prototype does not yet support.

An earlier DARC prototype inserted two kprobes per call:sitee on the call instruction itself
and one on the subsequent instruction. Figure 4.4 illlegran uninstrumented call site, while
Figure 4.5 depicts the same call site patched by DARC. Weref#lr to this instrumentation as
2-kprobes . This implementation option may cause problems if the coald pumps to the
address of the second kprobe without executing the first Weehad to include an extra check to
ensure that the code in the second kprobe was executed ahg/fifst kprobe was called.

Another problem with th&-kprobes implementation is that if the function body contains
two consecutive call instructions, then two kprobes wilpteced on the address of the second call:
the second kprobe for the first call site and the first kprolétfe second call site. In this scenario,
the order in which the kprobes are placed is important. Onerbstacle appears in the presence of
tail calls: the instruction after such a call resides beyibredfunction body. Section 4.2.2 illustrates
how our optimizations solve these problems above in addttamproving DARC’s performance.

One more interesting aspect of DARC'’s instrumentation listeel to synchronization. DARC
instruments the code of the running process without st@ppinThis fact creates the possibility
that some of DARC'’s instrumentation can be inserted asymgusly and consequently executed
(or not executed) unexpectedly. We assume in our desigiitbaime spent on code modifications
by DARC is much shorter then the duration of the workload beinalyzed. We then ensure that
any DARC instrumentation will not crash in the case of an yeeted invocation. A possible error
that could occur in this case is that incorrect time measargsare associated with some function
nodes around the time of instrumentation. However, we ctalysdisregard these situations, as the
amount of time needed to modify the code is small.

4.2.2 Optimizations

Each kprobe hit causes an interrupt, which is very costly lboanputer architectures. Conse-
guently, our earlier prototype, which used two kprobes p@ction invocation, was quite ineffi-
cient, especially if the ftree was wide. Our optimizatiom o reduce the number of kprobes used
by DARC. In addition to improving performance, these op#ations provide other benefits that
are discussed below. The performance impact of these gtiions is described in Chapter 8.
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trap

kprobe _ _
pre_instrumentatior

foo

[l

return

kprobe : :
post_instrumentation

)

' return

Figure 4.5: The standard way that DARC instruments funatadls with kprobes (th&-kprobes
implementation). Here the call tmo was replaced with a trap for one kprobe, and the next
instruction was replaced by a trap for the second kprobe.

trap
kprobe \_> - "
pre_instrumentation
]
: —
= — |
return
<::|[ post_instrumentation
v return

Figure 4.6: A kernel-level DARC return probe optimizatidrat reduces the number of kprobes by
half (therettramp implementation). The pre-instrumentation code modifiesrdturn address
of foo on the stack so that it points to the post-instrumentatiohe fiext instruction that was
shown in Figure 4.4 is not affected and is not shown.
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call

call pre_inst >
]

jump
=
]

return

pre_instrumentation

Time

foo

<—:|> post_instrumentation

' return

Figure 4.7: Using light-weight call trampolines insteadkpirobes to instrument call sites (the
calltramp  optimization). The original call destinatioiop ) is replaced so that it points to
pre _instrumentation . The next instruction that was shown in Figure 4.4 is notciéfd and
is not shown.

The first optimization we have developed is the removal obkps that intercept exits from
a function (the second kprobe placed on a call site). To aptismthis, the kprobe installed on
the call instruction saves the return address of the funcfidhat is being called. The kprobe
then modifiesf’s return address on the stack to point to DARC'’s functior #ssentially contains
the code of the second kprobe handler. This function, aftemsuring the latency of the callee,
jumps to the saved return address, as illustrated in Figiire\We refer to this as theettramp
optimization, for return trampoline.

Therettramp  optimization has five benefits. First, it guarantees thatcthige contained in
the second kprobe is executed only when the entrance instriation was also executed. Second,
we no longer need to specially handle the installation mtenee of the kprobes. Third, DARC
now uses only one kprobe per function call, which improvedgsmance. Fourth, tail calls are
automatically handled by this instrumentation. Finalhgtecursion _count variable that was
introduced in Section 3.11 is no longer needed.

Another part of therettramp  optimization is in the instrumentation gf. This function
has a kprobe at its start which cannot be removed using thesalechniques. However, we can
remove the return kprobe fgf by using the same approach: saving the original return addred
replacing it by the address of post-instrumentation fuoncti

Therettramp DARC implementation installs kprobes only on call instrans (except for
the kprobes infy). This observation allowed us to perform an additionalmitation. Rather than
placing a kprobe on the call instruction, DARC saves theionalgaddress of the callee (which is
encoded in the instruction itself) and replaces it with tdrass of the first DARC handler. When
this patched instruction is executed, the DARC handler lie@dait performs its required job and
jumps to the address of the original callee. This is illusttlain Figure 4.7, and we refer to this
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optimization asalltramp

With the calltramp  optimization, DARC does not use kprobes for function callbe no-
table exception here is indirect calls. The size of the exticall instruction is only two bytes on
the x86 architecture with one byte for the address, so tisare possibility to overwrite this address
by the handler’'s address, and DARC is forced to use a kproll@srcase. Fortunately, systems
almost always use direct calls. For example, this optinopatan instrument approximately 95.7%
of calls in the Linux kernel itself, and 97.5% of calls foumdLiinux kernel modules. Additionally,
this limitation does not exist for architectures with fixeddth instructions.

Chapter 8 evaluates the effects of our optimizations on DARErformance.

4.2.3 User-Space Instrumentation

Two related questions arise when implementing DARC for yria user-space applications:
whether to perform the instrumentation in user-space onddespace, and which binary instru-
mentation framework will work best. We developed gwprobegsimple user probes) framework,
which is a modified version of IBM’s uprobes (user probesifesvork [34]. There are three main
differences between the existing uprobes implementatorsaprobes. First, uprobes requires the
user to specify the application using a file system identdiet inode number. To make the inter-
face more similar to our existing kernel implementation &R, we changed this to use the PID
of the running process instead. Second, we added the abilétgsign priorities, which is useful if
more than one suprobe is placed on a given instruction. Tthielcode was updated to run on our
newer kernel.

Suprobes resemble kprobes, but allow for the insertion ob@s into user-space applications.
In addition to a code address and the addresses of handignse by kprobes, the PID of the
process must be provided to suprobes. Internally, supmbdssimilarly to kprobes: they replace
the first byte of the instruction at the specified address aitlap instruction. When the trap fires, a
kernel handler is called. The suprobes framework is impleeeas a kernel module with a small
patch for the kernel itself (35 lines), which exports somguieed kernel functions to the module.

Using our suprobes framework, we implemented DARC usingatrthe same code as for the
kernel implementation: we only had to replace kprobes byahgs where necessary. Our current
implementation does not utilize any of the optimizatioret thie used in the kernel portion because
the return and call trampolines need instrumentation ad@®in user-space to jump to. To provide
such addresses safely, DARC would need to examine the g'eceapped page ranges and insert
the instrumentation functions in a range of unused addsedSerther, the data structures would
reside in user-space, and the kernel portion of DARC woulg th@&m into its own memory to
avoid data copies across the user-kernel boundary. Thiaesrkat the overhead for using DARC to
analyze user-space applications is higher than the ovefbeasing DARC in the kernel. Chapter 8
provides detailed performance evaluations and compasison

In order to detect call instructions, DARC uses a disassemlbb search for call instructions,
we need to know the length of the function’s body so that wexkwhien to conclude our search. In
the kernel, this information is provided by the in-kernefrgyol table. For user-space applications,
we extract the symbol information before DARC starts itslgsia and load it into the kernel using
thedarcctl  tool.

To instrument the return fronfy, the kernel portion of DARC uses a special type of kprobe
called areturn kprobe However, the suprobes framework does not support thisaypeobe, as it
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trap
suprobe \_> , _
:1, pre_instrumentation
return
syscall
o | syscall >
£ system call
|_
return
trap
suprobe \_> _ _
<:| post_instrumentation

' return

Figure 4.8: Using suprobes to instrument system calls. Tobgs are placed on the instruction
before and after the system call being instrumented.

would require the instrumentation code to reside in usacspBecause of this, we scan the body of
fo to find all return instructions and place suprobes on thente Nt if we have a call instruction
immediately followed by a return instruction ify’s body, then two suprobes will be placed on the
return instruction. Moreover, the second suprobe for tHesteuld be called before the suprobe
for fy’'s return. We used the priority feature of suprobes to hahie case, which allows us to
properly arrange the order of suprobes invocations.

4.2.4 Crossing the User-Kernel Boundary

An interesting feature of our DARC implementation is thelipto cross the user-kernel bound-
ary [49]. To accomplish this, we place suprobes on the twtrinsons surrounding interrupt,
syscall, and sysenter instructions. This is illustrateéigure 4.8. We cannot place suprobes di-
rectly on these instructions because according to the begrdesign, these instructions will be
executed in a single-stepped atomic context. This will b blocking system calls, such as
read andwrite . When entering the kernel, we record the system call numhetranslate it to
the system call handler using the system call table. If tletesy call is selected as a root cause
function, its handler is instrumented as a kernel function.
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Chapter 5

Limitations

DARC has three main limitations. First, DARC assumes thatakency distribution of, is fairly
static. If the behavior of the code being analyzed changaaglanalysis, DARC may not be able
to conclude the analysis. However, we expect this to be @&eeond, inline functions and macros
cannot be analyzed separately because this DARC impleti@nizses binary instrumentation.
Third, if the source of the code being analyzed is not aviglahe binary should include symbols
so that the output can be translated from function addrassesmes. The function names should
also be descriptive enough for the user to guess what theidmndoes. Otherwise, the user must
disassemble the binary to understand the root cause.
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Chapter 6

Experimental Setup

We now describe the experimental setup used for our use ¢@bepter 7) and our performance
evaluation (Chapter 8). The test machine was a Dell PowexBSd1425 with a 2.8GHz Intel Xeon
processor, 2MB L2 cache, and 2GB of RAM, and a 800MHz fron¢ ¢ids. The machines were
equipped with two 73GB, 10,000 RPM, Seagate Cheetah STIT82WItra320 SCSI disks. We
used one disk as the system disk, and the additional diskéaiest data.

The operating system was Fedora Core 6, with patches as ob&c08, 2007. The system
was running a vanilla 2.6.23 kernel that with the suprobestpapplied. The file system was ext2,
unless otherwise specified. Some relevant program versitained by passing theversion
flag on the command line, along with the Fedora Core packagesarsion are GNU grep 2.5.1
(grep 2.5.1-54.1.2.fc6) and GNU stat 5.97 (coreutils 51975.fc6).

To aid in reproducing these experiments, the DARC and waikkpurce code, a list of installed
package versions, the kernel configuration, and benchneatkts are available at
http://lwww.fsl.cs.sunysb.edu/docs/darc/
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Chapter 7

Use Cases

In this section we describe some interesting examples Hoatrate DARC’s ability to analyze
root causes. To highlight the benefits of using DARC, we shHuoed usage examples that were
first published in the OSprof paper [28]. We compare the usPAIRC to the manual analysis
described in the OSprof paper. We show that DARC does noineegs much expertise from the
user, is faster, and gives more definitive results.

The use cases that we present highlight three of DARC’sastagrg aspects: analyzing inter-
rupts, investigating asynchronous paths, and finding nmtéznt lock contentions. We recreated
all of the test cases on our test machine. The first examplt ais@rkload that reads zero bytes
of data in a loop. The remaining two examples usegtep workload, where thgrep utility
searched recursively through the Linux 2.6.23 kernel setnee for a nonexistent string, thereby
reading all of the files. The kernel was compiled using ke defconfignd makecommands.
We will specify the values of thetart _ops anddecision _time parameters (described in
Chapter 4) for each use case.

7.1 Analyzing Interrupts

Figure 7.1 shows a profile of the read operation issued by twogsses that were repeatedly
reading zero bytes of data from a file. This profile containeetpeaks, and we order them from
left to right: first (bins 7-9), second (10-13), and third{18). The first peak is clearly the usual
case when the read operation returns immediately becaagsedest was for zero bytes of data.

15
Bucket number: dog,(latency in CPU cycles)Od

Figure 7.1: A profile of the read operation that reads zeredypf data.
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Figure 7.2: A profile of the ext2 readdir operations captuigd single run of grep -r on a Linux
2.6.23 kernel source tree.

For this peak, DARC reports a root cause path showing thepatdup to the point where the size
of the read is checked to be zero. At this point, the functietsrn because there is no work to be
done. The root cause path as shown by DARC is:

vfs read —
do_sync read —
generic _file _aio _read

Note that the second and third functions here are indirdtd,daut DARC displays name of the
target function. This output tells us that the read opernasaesponsible for the peak.

In the OSprof paper, the authors hypothesized that the gegeak was caused by the timer
interrupt. They based this on the total runtime of the woaklothe number of elements in the
peak, and the timer interrupt frequency. Recall from Sec8d 2 that DARC instruments the main
interrupt handling routinedo _IRQ in our case). This instrumentation checks if the target @ssc
was executing a function that DARC is currently analyzirfgsd, it records the latencies for each
interrupt type and attributes these measurements to tleeigmg function.

In our case, we sef) tovfs _read , as before. DARC reported “interrupt 0” as the root cause,
which our post-processing script translated as “timerrmf&.” DARC arrived at this conclusion
because after comparing the latenciesfsf _read , its callees, and the latencies for each interrupt
number, interrupt O always had the highest latency. Altiatgas possible to determine the cause
of the peak without DARC, doing so would have required despgint and thorough analysis. Even
so, the cause of the peak could not be confirmed with manublsasaaDARC confirmed the cause,
while requiring much less expertise from the user.

DARC discovered that the third peak was caused by interrdftHe disk interrupt). This was
not reported in the OSprof paper, as it is very difficult to lgpa manually. DARC analyzed this
third peak in the same way as it did with the second, and regdite root cause clearly and easily.

For analyzing this profile, we setart _ops to 100 anddecision _time to 20. From our
experience, we found these values to be generally sufficient

7.2 Analyzing Asynchronous Paths

Running thegrep workload on ext2 resulted in the profile shown in Figure 7.2efe are four
peaks in the profile of theeaddir  operation, ordered from left to right: first (bin 9), secodd{
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14), third (16-17), and fourth (18-23). In the OSprof papeior knowledge was used as a clue
to the cause of the first peak. The OSprof authors noted tledatbncy is similar to the latency
of reading zero bytes (see the first peak in Figure 7.1). Thdies that the operation completes
almost immediately. The OSprof authors guessed that theecafithe peak is reading past the
end of the directory. They confirmed this by modifying the @8ode to correlate the latency
of the first peak with the condition that tmeaddir  request is for a position past the end of the
directory. We ran DARC to analyze this first peak, and thelteguroot cause path consisted of
a single functioniext2 _readdir . This is because the function immediately checks for readin
past the end of the directory and returns.

The causes of the remaining peaks were analyzed in the Ofgpef by examining the profile
for the function that reads data from the disk. The OSprofhaug noted that the number of disk
read operations corresponded to the number of operatiotiseirthird and fourth peaks. This
indicates that the operations in the second peak are prploadplests that are satisfied from the
operating system’s cache, and the operations in the thaddamnth peaks are satisfied directly from
disk. Further, based on the shape of the third peak, theysgdeat the operations in that peak
were satisfied from the disk’s cache. Based on the knowletigeealisk’s latency specifications,
they further guessed that the operations in the fourth pesde &ffected by disk-head seeks and
rotational delay.

When DARC analyzed the second peak, it displayed the foligwbot cause path, which
clearly indicates that the root cause is reading cached data

ext2 _readdir —
ext2 _get page —
read _cache _page —
read _cache _page _.async —
__read _cache _page

For the third peak, DARC produced the following root caustpa

ext2 _readdir —
ext2 _get _page —
read _cache _page —
read _cache _page _.async —
ext2 _readpage —
mpage_readpage —
mpage_bio _submit —
submit _bio

Notice that first portion of the root cause path is the sameiabh €& second peak. However, after
calling the__read _cache _page function to read data from the cache, it caligd2 _readpage ,
which reads data from disk. Eventually the request is plasedthe I/O queue, with the
submit _bio function pio is short for block 1/0O). For all of the use cases, DARC wasknag
asynchronous disk requests, as described in Section J. A3etuest reaches tlseibmit _bio
function and is not filtered by PID or call-path filtering, DARecords the address for the current
block 1/O structure in a hash table. After DARC analyzed fiesk for the first time, we restarted
DARC, giving it the previous call-path output as input. We geto the function that dequeues
the requests was the queue. This allowed us to analyze thetasyous portion of the root cause
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Figure 7.3: Reiserfs 3.6 file-system profiles sampled atdcbrd intervals.

path while retaining the PID and call-path filtering from tim@in path. DARC then produced the
following output:

__make_request —
__elv _add_request —
elv _insert —
cfq _insert _request —
blk _start _queueing —
scsi _request _fn

In this root cause path,_make_request removes the request from the queue. The
cfq _insert _request function is a function pointer that is specific to the 1/0 sihler that
the kernel is configured to use (CFQ in this case). Finallgj _request _fn is a SCSI-specific
function that delivers the request to the low-level drivEhe root cause path for the fourth peak
was identical to that of the third, indicating that disk reaate responsible for both peaks, as
reported by OSprof. Unfortunately, because requests froth peaks are satisfied by the disk,
the factor that differentiates the two peaks is hardward, taerefore software techniques cannot
directly find the cause. In this case, one must use manualsis&b infer the causes.

7.3 Analyzing Intermittent Behavior

On Reiserfs, thgrep workload resulted in the profiles shown in Figure 7.3. Thesdime-lapse
profiles. Because OSprof profiles are small, OSprof can s$&wemcy measurements in different
histograms over time to show how the distributions chand® Xaxis represents the bin number,
as before. The y-axis is the elapsed time of the benchmankdorgls, and the height of each bin
is represented using different patterns. The profile oneftad for thewrite _super operation,
which writes the file system’s superblock structure to digkis structure contains information
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pertaining to the entire file system, and is written to diskablguffer flushing daemon every five
seconds by default. The profile on the right is for tead operation.

The bins on the right side of theead profile correspond to the bins in thverite _super
profile. This indicates that there is some resource corupriietween the two operations, but the
OSprof analysis methods cannot confirm this, nor can theg giere information about the re-
source in question. The OSprof authors attributed this\aeh& a known lock contention. A user
that was not informed about this lock contention would sfedo analyze this behavior manually.
First, the user may be confused as to why the file system isngrihetadata during a read-only
workload. The user must know that reading a file changes the iti was last accessed, atime
Further, the atime updates are written by the buffer flusiidagmon, which wakes periodically.
This would lead the user to collect a time-lapse profile fas tase. In the end, only source code
investigation would provide an answer.

Using DARC, we analyzed both profiles shown in Figure 7.3. \i& fan DARC on the read
path. We sestart _ops to 5,000 so that enough delayed read operations would beiexkand
we setdecision _time to 5, because the read operations do not get delayed very dite root
cause path that DARC displayed was:

vfs read —
do_sync read —
generic _file _aio read —
do_generic _mapping read —
touch _atime —
_mark _inode dirty —
reiserfs  _dirty _inode —
lock _kernel

We can see from this that the read operatiofs (_read ) caused the atime to be updated
(touch _atime ). This caused thiock _kernel function to be called. This function takes the
global kernel lock, also known as the big kernel lock (BKL). dhderstand why this happens, we
can look at the siblings of thieck _kernel fnode (not shown above because they are not root
causes):;journal _begin , journal _end, andunlock _kernel . This tells us clearly that
Reiserfs takes the BKL when it writes the atime informatiomhte journal.

For thewrite _super operation, we turned off PID filtering because the supefbismot
written on behalf of a process. We set bathrt _ops anddecision _time to 5, because the
write _super operation does not get called frequently. DARC produceddhewing root cause
path:

reiserfs  _write _super —
reiserfs  _sync fs —
lock _kernel
Again, the siblings of théock _kernel fnode are journal-related functions. We now know
that the lock contention is due to Reiserfs taking the BKL wheiting atime and superblock
information to the journal.
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Chapter 8

Performance Evaluation

We first measured the performance of the pure instrumemtafibe results are described in Sec-
tion 8.1. For measuring the performance of DARC, we had twonmejuirements for choosing a
workload. First, it should run for a long enough time to obtsiable results—we ensured that all
tests ran for at least ten minutes [75]. Second, the work&bemild call one function repeatedly.
This function will be the one DARC analyzes, so the DARC imstentation will be executed as
often as possible. We measured DARC'’s performance usieg thorkloads. The first workload
measures the overhead of DARC on an artificial source code W varied the fanout and height
of the tree to see how these parameters affect DARC’s ovdshéfe call this theynthetiowvork-
load, and it is described in Section 8.2. The second, destiilb Section 8.3, repeatedly executes
thestat system call on a single file, which returns cached infornrma#ibout the file. This shows
DARC's overhead when investigating a relatively low-latgnmemory-bound operation. This is
a worst-case scenario, as DARC is operating on a singledastibn that is called at a very high
rate. The third workload reads a 1GB file in 1IMB chunks 50 timsig direct 1/0 (this causes
data to be read from disk, rather than the cache). This shiogvewterheads when investigating a
higher-latency, I/0-bound operation. This workload igler discussed in Section 8.4.

Recall the two parameters that affect DARC’s overhead thatdescribed in Chapter 7:
start _ops anddecision _time . Forthestat andread benchmarks, we chose these values
such that the analysis does not finish by the time the bend¢homrcludes, forcing DARC to
run for the entire duration of the benchmark. We present #iees of these parameters for each
benchmark, which are orders of magnitude higher than theegalised in the use cases presented
in Chapter 7.

We used the Autopilot v.2.0 [81] benchmarking suite to awdterihe benchmarking procedure.
We configured Autopilot to run all tests at least ten times, e@mputed the 95% confidence inter-
vals for the mean elapsed, system, and user times usingutergt distribution. In each case, the
half-width of the interval was less than 5% of the mean. Wergghe mean of each set of runs. To
minimize the influence of consecutive runs on each othetesats were run with cold caches. We
cleared the caches by re-mounting the file systems betwesn hu addition, the page, inode, and
dentry caches were cleaned between runs on all machinegthsiihinux kernel’'sdlrop _caches
mechanism. This clears the in-memory file data, per-filecttines, and per-directory structures,
respectively. We called thgync function first to write out dirty objects, as dirty objectsearot
free-able.
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8.1 Instrumentation Overheads

Instrumentation Method Overhead (uS)
2-kprobes (post-handlers 2.75
2-kprobes (pre-handlers) 1.89
rettramp 1.54
calltramp 0.76
suprobes 4.59

Table 8.1: Overheads for various instrumentation methods.

DARC makes do with minimalistic instrumentation: the instrentation need only insert code
at a specific code address. We used several instrumentaétihrods in DARC’s implementation,
as discussed in Section 4.2.2.

To measure the overhead of each instrumentation methodreaéed a benchmark where the
parent function calls a child functiok x 10® times. We measured the time required to execute
the benchmark without any instrumentation. We then medstne time required to execute the
same program, but added instrumentation to the call of tiid @imction. We used the results to
compute the mean overhead for a single instrumented funatimcation. Table 8.1 summarizes
the results for the various instrumentation methdtigprobes , rettramp (one kprobe and a
return trampoline)calltramp  (a call trampoline and a return trampoline), aswgprobes (2
suprobes).

We use the first four techniques shown in the table only in #@dd. We implemented the
2-kprobes technique using kprobes’ post-handlers and pre-handlélsing pre-handlers is
faster, because kprobes that use post-handlers requirexeaptions and four context switches,
as described in Section 4.2.1. Depending on the replacédiation, kprobes that utilize only a
pre-handler are implemented using only one exception andcctwtext switches. This is because
there is no need to execute a post-handler, so after exgdinreplaced instruction the kernel
can resume executing from the instruction following thedlq@. For the remainder of this chapter,
2-kprobes refers to the pre-handler technique. Titeétramp  technique is faster still, but it
must use a post-handler in the kprobes that it inserts, atfiesoenefits of the optimization should
be compared to the post-handler versiorRedprobes . Finally, thecalltramp  optimization
is the fastest, as expected.

For user-space instrumentation, we see thastimobes technique is more expensive than
any kernel technique. This is because a suprobe requiresdmtext switches into the kernel: one
to execute the handler, and another to single-step theagglmstruction. This means that each
replaced instruction incurs four context switches. We expieat porting the kernel optimizations
to DARC's user-space instrumentation will yield significanprovements.

8.2 Synthetic Workload

DARC'’s overhead depends not only on the instrumentatiomatetised, but also on the structure
of the analyzed source tree. A larger fanout means that nadrsites need to be instrumented for
a particular level. A deeper tree means that there will beenbevels, and more analysis must be
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Figure 8.1: Results for the synthetic workload with the er#el trees for fanouts of 2, 4, and 8.
The analysis here is performed asynchronously.

performed. The synthetic workload presented here illtstrhow DARC’s overhead is affected by
the structure of the tree.

We ran this benchmark with three configurations. In the filst tree resides entirely in a kernel
module. The kernel code is executed by the benchmark usengatt  system call. In the second
configuration, the source tree resides entirely in a usaceprogram. In the third configuration,
the initial half of the tree resides in a user-space progeard,the second half resides in the kernel.
To execute the kernel portion, the user-space code exeausgstem call that we created: the
corresponding handler is the root of the kernel portion @ ttee. The depth of each tree is 8
levels, and we used trees that had a fanout of 2, 4, and 8. Owyumction in the leaf of each
tree has a latency that is higher than the others, providingigue root cause path to the bottom
of the tree. The benchmark invokes tfiefunction enough times so that the elapsed time for the
uninstrumented case is more than 10 minutes.

For this benchmark we had DARC descend into the code diffigréhan for thestat or
random-read benchmarks. Here, rather than have DARC deskeyugh the levels of the tree in
equally-spaced intervals throughout the benchmark, weetbhDARC to descend to the required
level at the start of the benchmark. DARC analyzed at thatlléw the entire duration of the
benchmark. This allowed us to measure the overheads formaade of DARC’s analysis sepa-
rately, based on the depth in the source tree. We also mebgwe®verhead for the phase where
only the OSprof instrumentation (see Figure 3.3) is ingeri&fe refer to this as depth 0. In depth
1, the overhead for the instrumentation shown in Figure 8rdeasured. Subsequent depths have
more functions instrumented, as shown in Figure 3.7.

Figure 8.1 presents the results for the kernel trees. Wedestly thecalltramp  implemen-
tation, as it clearly performs the best. For depth 0, the lveads were approximately the same for
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Depth
0[1]2]3|4]5[6]7]8
2112|15|15|15/15|15|15|15| 15
Fanout | 4 || 12| 15| 15| 15| 15| 15| 15| 15|15
8(13|/15|15|15|15|15|15|15|15

Table 8.2: The minimum OSprof bucket numbers whose elenmtsot shift on average due to
DARC's overheads in the kernel. The analysis here is peddrasynchronously.

Depth
0[1]2]3|4]5[6]7]8
212141414 |14 14|14 |14 | 14
Fanout | 4 || 12|14 |14 (14 |14| 14|14 |14 | 14
8(13|/15|15|15|15|15|15|15|15

Table 8.3: The minimum OSprof bucket numbers whose elendmtsot shift on average due to
DARC's overheads in the kernel. The analysis here is pedrsynchronously.

all the trees. This makes sense, as the fanout should nat #fie OSprof phase. When DARC
begins to measure latencies of callees in depth 1, fanou$ $teaffect the overhead, with the ad-
dition of f trampolines (wher¢ is the fanout). For each level between depths 1 and 8, we remov
f — 1 trampolines from the previous level (we uninstrument all sides except for the root cause
function), and add trampolines to the current level, so in total we add 1 tranmgdior each level.
Notice that there is a large increase in overhead betweethsi®and 1, and then the overhead
increases gradually when DARC descends to lower levelsdsrtwlepths 1 and 8. The large initial
increase happens because at this point DARC begins to gatbgrrocess the latencies. This tells
us that the latency analysis code affects overheads muoh timam the instrumentation.

Table 8.2 shows the minimum OSprof bucket numbers whoseeglestdo not shift due to
DARC'’s overheads while running in the kernel. We arrive asin numbers by calculating the
average latency for each OSprof bucket

106
2.8 x 10%¢ycles

gQicycles X (8.1)
Bucketi has a range fror’ to 2°+! cycles, so we take the midpoint of this range. We then convert
this value from cycles tas for a 2.8GHz CPU (the speed of the CPU used for the benchinarks
We see here that operations up to bucket 15 will be shifted byaat one bucket due to DARC's
overheads. As we can see from Figure 7.2, this means thatlatecorresponding to CPU oper-
ations will generally be shifted. Although we do experiesbdts in lower buckets, we showed
in Section 7.1 and 7.2 that we were able to use DARC to anazieGPU operations between
buckets 7 and 9. Still, lowering DARC'’s overheads would ioy@ the user’s experience.

We theorized that performing the analysis asynchronously actually hurting performance.
This is because each operation required allocating a daiztste, copying the latency information
into it, locking the request queue, and then placing the esgjon the queue. We modified the
code to perform the analysis synchronously. The resultstaogn in Figure 8.2. The increase in
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Figure 8.2: Results for the synthetic workload with the er#el trees for fanouts of 2, 4, and 8.
The analysis here is performed synchronously.

latencies between levels 0 and 1 has now been significartiycesl. As expected, the remainder
of the results improve by the same constant, as the amoumniabfsas stays constant regardless of
depth. The overall improvement was between 25.2% and 48ni#h,an average of 34.8%. We
can see in Table 8.3 that the bucket values were lowered byfarfouts of 2 and 4. We use only
the synchronous implementation for the remainder of thetstit tests.

We expect that using function replacement [52] for instratirey code will yield further perfor-
mance improvements. This technique makes a copy of a givenifun and places the instrumenta-
tion directly in this copy. The first instruction of the onl function is then replaced by a jump to
the new function. Function replacement can be used to rethevelatively expensive kprobe that
is currently needed to instrumeyy. It may also prove faster than ocalltramp  optimization
for other instrumented functions. Another optimizationuMbbe to use aljproberather than a
kprobe for instrumenting,. A djprobe replaces a given instruction with a jump instioctrather
than an interrupt. This significantly reduces the overhe#dbe probe [24], but djprobes have
several problems, and are still under development [55]. @reblems mostly arise from the fact
that jump instructions on the x86 architecture may be lortilgan other instructions because they
require a destination parameter (between two and five hyids)e interrupt instructions require
only one byte.

The results for DARC operating on the user-space sourceateeshown in Figure 8.3. Here
we see the same large increase between depths 0 and 1 as wighdidenkernel tree. However,
in this case, descending to lower levels is more expensae ih the kernel. The reason is the
high overhead of the suprobes framework, as discussed io8e®.1. These results indicate
that although we were able to analyze this short-runningtion, it would be worthwhile to port
DARC's kernel optimizations to user space to reduce ovetfiea
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Figure 8.3: Results for the synthetic workload with the tseaice trees for fanouts of 2, 4, and 8.
The analysis here is performed synchronously.

Overhead (us/invocation)

Depth

Figure 8.4: Results for the synthetic workload with treegamfout 2, 4, and 8 that cross the user-
kernel boundary. The analysis here is performed synchrslgou
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Figure 8.5: Results for thetat benchmark with various optimizations. Note that error kaes
always drawn, but may be too small to see.

Finally, we measured the overhead of DARC operating on thetmark that crosses the user-
kernel boundary. The results are presented in Figure 8.4il tiepth 4, the graph resembles that
of the user-space graph shown in Figure 8.3. This is logasathis is the user-space portion of the
tree. The code at depth 5 is located in the kernel, and hem@véérbead decreases. This is because
when DARC moves from depth 4 to depth 5, it removes all of th@aes from the previous level
except for those that correspond to the root cause functiés example, in the tree of fanout
4, it means that 6 suprobes are removed (3 call sites, eath2nsuprobes). In the next level,
which is in the kernel, 8 call/return trampolines are addad,these add very little overhead. In
addition, between depths 5 and 8, the variation in perfonadetween different fanout levels is
minimal. This is because the same number of suprobes areage ph all cases, because they
are only present along the root cause path, which is the sarak ¢ases. Now the performance
difference between fanouts is due to in-kernel call tranmgs, which impose significantly lower
overheads as compared to suprobes.

8.3 Stat Workload

We ran thestat workload with 300 million operations, resulting in an elagdime of approxi-
mately 689 seconds without DARC. We then used DARC to andhlystat call, and saw that
there was one peak, with a single root cause path that is fre¢sldeep (shown later). The number
of fnodes in each level of the ftree, from top to bottom, werd,3 1, 1, and 6. Because we wanted
DARC to reach the maximum depth without finishing its analysie setstart _ops to 1,000
operations andecision _time to 60,000,000 operations.

The results are summarized in Figure 8.5. At first we ran atiwfconfigurations with DARC'’s
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Figure 8.6: The overheads for running DARC with the stat bemark using different values for
thedecision _time variable. Results without running DARC are shown as a basehlote that
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analysis being performed asynchronously. The runtime Wigé®2-kprobes version of DARC
took approximately 5,294 seconds, or about 7.7 times lottygar running without DARC. The
rettramp  version reduced the overhead to 5.8 times, and finallycdddramp  version re-
duced it to 3.3 times. We refer to the portion of time that is cmunted as user or system time as
wait time(seen as the white portion of the bars). This is the time thefrocess was not using
the CPU. In this case, we hypothesized that the wait timeh@a&t was mostly due to the asyn-
chronous analysis, as the a spinlock was protecting theesgqueue. This was not affected by the
instrumentation optimizations. The system time overhbadever, did improve.

We then ran the version with thealltramp  optimization with synchronous analysis. We
call this configuratiorcalltramp-sync . We can see that the wait time overhead is no longer
present, and that the system time improved as well. The etbjise overhead dropped to 49.5%.
It is still somewhat high because that operation returns very quickly—the average latency of
astat operation is 2.3 microseconds, and the DABdlltramp-sync implementation adds
approximately 1.1 microseconds per operation.

Itis important to note that these figures depict a worst-saseario. Under realistic conditions,
such as in the use cases presented in Chaptéedision _time was on the order of tens of
operations, whereas here it was on the order of temsiltibns of operations. DARC is designed
to analyze longer-running applications, and the time spentorming the analysis is negligible
compared to the application’s total run time.

To show how thelecision _time variable affects overheads, we ran the benchmark with dif-
ferent values fodecision _time , and kepstart _ops at 1,000 operations. The results for the
calltramp-sync implementation are shown in Figure 8.6. The results for DAR@ values
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of up to 60,000 and the results when not running DARC at allevgtatistically indistinguishable.
In addition, we calculated that DARC analyzed latenciesofoe second or less for these values.
When we setlecision _time to6 x 10°, 6 x 10°, and6 x 107, the overheads were 0.8%, 5.7%,
and 49.5%, respectively (note that the last data point Isetieei same one depicted in Figure 8.5).
For these same values, DARC performed its analysis for appaiely 1.5%, 14.1%, and 100% of
the total runtime. This shows how the overheads increase&I3 analysis was prolonged.

The percentage of time that DARC was running may be appraeidas:

dapsed_time_jull 4,141 darc_operations

total _operations
x 100 8.2
elapsed_time_part (8.2)

whereelapsed_time_full is the elapsed time when DARC'’s analysis is running for theedura-
tion of the benchmarklapsed_time_part is the elapsed time whetecision _time is lowered,
andtotal _darc_operations is calculated as:

(decision_time X ftree_depth) + start_ops (8.3)

DARC reported the same root cause path for all cases:

vfs _stat fd —
__user walk fd —
do_path _lookup —
path .walk —
link _path _walk

This shows that DARC has negligible overheads for real-avodnfigurations, and that the analysis
can complete in less than one second while remaining sound.

8.4 Random-Read Workload

For the random-read benchmark, we set the start functiohdadp-level read function in the
kernel. There was only a single peak in the profile, and DARIGrimed us that there was one
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root cause path consisting of eight functions. Becauseé¢hehmark executes 51,200 operations,
we setstart _ops to 1,000 operations, arakcision _time to 6,500. This allowed DARC to
reach the final root cause function without completing thalysis. The root cause path for this
benchmark was:

vfs _read —
do_sync read —
generic _file _aio read —
generic _file _direct _10 —
ext2 _direct _IO —
__blockdev _direct _10 —
i0 _schedule

The ftree for this benchmark was rather large, with the lewélthe ftree having 1, 7, 3, 4, 5,
1, 39, 3, and 28 fnodes, from top to bottom. The results arevsho Figure 8.7. Running the
benchmark with and without DARC produced statisticallyigtihiguishable runtimes, regardless
of the instrumentation method used, with the elapsed timeslf configurations averaging ap-
proximately 726 seconds. Therefore, we only present thdteefor the worst-cas@-kprobes
implementation. There is no distinguishable elapsed tivegteead because the overheads are small
compared to the time required to read data from the disk. Vheage read operation latency was
approximately 14 milliseconds, and we saw fromstet benchmark that DARC adds only a few
microseconds to each operation.
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Chapter 9
OSprof Profile Comparison Methods

It is often useful to compare two OSprof profiles. DARC penmfisrthis comparison when it is
restarted to ensure that the runtime environment had notggdth(see Section 3.10). Comparing
profiles is also essential to the OSprof methodology. A usay wollect profiles for dozens of
operations at once. Itis often useful to compare this setaiflps to another set that were collected
under different conditions to analyze some behavior of {fstesn. For example, a profile of one
version of a file system or one type of workload may be compwiéaa profile of a different file
system or the same file system under a different workloads Tdthnique is calledifferential
analysis Generally only a few profiles will differ between the twosetnd automatically filtering
out the ones that are similar allows the user to focus on itapbchanges.

There are several methods of comparing histograms wheyelbamé with the same index are
matched. Some examples are the chi-squared test, the Makkdovm distance [71], histogram
intersection, and the Kullback-Leibler/Jeffrey diverger37]. The drawback of these algorithms
is that their results do not take factors such as distanceaictount because they report the differ-
ences between individual bins rather than looking at theadlvpicture. For example, consider a
histogram with items only in bucket 1. In a latency profileiftang the contents of that bucket to
the right by ten buckets would be much different than shifty one (especially since the scale is
logarithmic). These algorithms, however, would view bo#is&s as simply removing some items
from bucket 1, and adding some items to another bucket, sotbald report the same difference
for both. We implemented the chi-square test as a reprasentd this class of algorithms because
it is “the accepted test for differences between binnedidigions” [61].

Cross-bin comparison methods compare each bin in one hégtotp every bin in the other
histogram. These methods include the quadratic-form, imaaad Kolmogorov-Smirnov dis-
tances [14]. Ideally, the algorithm we choose would compans of one histogram with only
the relevant bins in the other. These algorithms do not maké s distinction, and the extra
comparisons result in high numbers of false positives. Vdendit test the Kolmogorov-Smirnov
distance because it applies only to continuous distrilngtio

The Earth Mover’s Distance (EMD) algorithm is a goodnes$itdest commonly used in data
visualization [63]. The idea is to view one histogram as asydsarth, and the other as holes in
the ground; the histograms are normalized so that we hawlgxanough earth to fill the holes.
The EMD value is the least amount of work needed to fill the $iwligh earth, where a unit of work
is moving one unit by one bin. This algorithm does not suffenf the problems associated with
the bin-by-bin and the cross-bin comparison methods, asésifically designed for visualization.
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The EMD algorithm can also compare time-lapse profiles, as# originally intended for inputs
that have those dimensions. As we show in Section 9.2, EMEaddutperformed the other
algorithms.

9.1 Implementation

We have implemented several scripts that allow us to compairs of individual profiles. Auto-
matic profile-independence tests are useful to select d sotaet of operations for manual analysis
from a large set of all operations. Also, such tests are lisefeerify similarity of two profiles, as
DARC does when it resumes analysis from a previous stateud.eall the number of operations

in the b'* bucket of one profiley,, and the number of operations in the same bucket of the same
operation in another profile:,. Our goodness-of-fit tests return percent differehtbetween two
profiles:

TOTOPS The degree of difference between the profiles is equal to tnealized difference of
the total number of operations:

X=X my
B 21N

D x 100

TOTLAT The degree of difference between the profiles is equal to tnenalized difference of
the total latency of a given operation:

D

| = §om — 3 Som |y -y

SESD x 100 S x 100

CHISQUARE We have implemented the chi-square test as a represenpétive class of algo-
rithms that performs bin-by-bin comparisons. It is definedtivo histograms as follows:

2

=3 (nz"— mz‘?

The y value can be mapped to the probability valBebetween 0 and 1, where a small
value indicates a significant difference between the tistions. To match the semantics
and scale of the previous two tests, we predent (1 — P) x 100. We utilized the standard
Statistics::Distributions Perl library [36] in the implementation.

EARTHMOVER We implemented the calculation of the EMD value as a greeglyrsgthm. After
normalizing the two histograms, one is arbitrarily chosemepresent the mounds of earth,
sayn, and the other represents the holes in the groundpsayhe algorithm moves from
left to right, and keeps track of how much earth is being edrrivhich is calculated as the
amount currently being carried, plus — m;. Note that this value can be negative, which
handles the case where the holes appear before the mounaddhof €he absolute value of
the carrying value is then added to the EMD value.
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We also created several profile comparison methods thatio@sbnple techniques that we use
when manually comparing profiles. We distinguish the peakihie profiles using derivatives. This
is the same technique that DARC uses to display the peake tastr, as described in Chapter 3.
If the number of peaks differs between the profiles, or thetations are not similar, the profiles
are considered to be different (score of 100). As we will seBaction 9.2, these preparation steps
alone significantly decrease the number of incorrectlysifeexl profiles. If, after these preparation
steps, the profile analysis is still not over, then we canguanffurther comparisons based on the
previously described algorithm3FQTOPSTOTLAT, CHISQUAREandEARTHMOVBRWNe have
implemented the following two methods that first examinedifierences between peaks, and then
compare the profiles using another method if the peaks ar&asim

GROUPOPSIf the peaks in the profiles are similar, the score is the ntimed difference of
operations for individual peaks.

GROUPLAT This method is same &SROUPOR®xcept that we calculate latency differences
for individual peaks.

9.2 Evaluation

To evaluate our profile-analysis automation methods we emetpthe results of the automatic
profile comparison with manual profile comparison. In paite, we analyzed 150 profiles of
individual operations. We manually classified these prefii¢o “different” and “same” categories.
A false positive (or a type | error) is an error when two prcfibre reported different whereas they
are same according to the manual analysis. A false negatieetype Il error) is an error when two
profiles are reported same whereas they are different aicgptd the manual analysis. Our tests
return the profile’s difference value. A difference threshis the value that delimits decisions of
our binary classification based on the test’s return values.

Figures 9.1-9.6 show the dependencies of the number of falsitives and false negatives
on the normalized difference of the two profiles calculatgdhe six of the profile comparison
methods that we have implemented. As we can see, the EMDithlgohas a threshold region
with the smallest error rates of both types, though all athors have a point where both error
rates were below 5%. However, both our custom-made metBREBUPOP&dGROUPLATave
a wide range of difference thresholds where both errors atewb5%. This means that these
methods can produce reliable and stable results for a witgeraf profiles.
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Figure 9.1:TOTOPSest results compared with manual profile analysis.
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Figure 9.2:TOTLATtest results compared with manual profile analysis.
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Figure 9.3:CHISQUAREHest results compared with manual profile analysis.
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Figure 9.4:EARTHMOVEfRSt results compared with manual profile analysis.
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Figure 9.5:GROUPOPt@st results compared with manual profile analysis.
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Chapter 10

OSprof and DARC in Virtual Machine
Environments

Virtual machine technology is becoming more pervasive niydieing used for server consolida-
tion, and so exploring how OSprof and DARC behave when usedtimal machine environments
is important. The suitability of OSprof for use within vidbmachines depends mainly on the ac-
curacy of the clock cycle register in virtual machines. DARSUitability additionally depends on
acceptable overheads.

Conceptually, operating system profiling inside of virto@chines is not different from ordi-
nary profiling. However, it is important to understand tHa host (underlying) operating system
and the virtual machine itself affect the guest operatingteay’s behavior [45]. Therefore, the
benchmarking and profiling results collected in virtual imaes do not necessarily represent the
behavior of the guest operating system running on bare ramvDther virtual machines running
on the same system exacerbate the problem even more.

Nevertheless, there are two situations when profiling ituairmachines is necessary:

1. Itis not always possible or safe to benchmark or profile cgahmachine directly.

2. Developers of virtual machines developers or systenesided to run in virtual environments
naturally benchmark and profile systems running in virtusii®nments.

These situations have contradicting requirements. In tisé dase, it is necessary to minimize
the influence of virtualization on the guest operating systén the second case, it is necessary
to profile the interactions between the virtual machines el &s their interactions with the host
operating system. We will focus on the first case, and desesitnations in which the behavior seen
in virtual machine environments differs from those seen nvhenning directly on the operating
system.

An interesting research direction would be to use VMwareRrabes [79] to extend DARC.
These probes can instrument a running virtual machine teaolatency information, allowing
DARC to cross the guest-host barrier.

We next describe the setup for the experiments that we ranWitware Workstation and Xen
in Section 10.1. In Section 10.2, we introduce several alrtnachine technologies. Then, in
Section 10.3, we measure the accuracy of the clock cyclstergand in Section 10.4 we measure
the overheads of running DARC in a virtual machine.

54



10.1 Experimental Setup

The experimental setup for this chapter differs from the osed in Chapters 7 and 8 because we
needed more machines to run the benchmarks. We used twacaldast machines, one configured
with VMware Workstation 6.0.1 [32] (hereafter referred ®\WS601) and one with Xen 3.1.0 [5].
The test machines were Dell PowerEdge 1800s with 2.8GHEXeien processors, 2MB L2 cache,
and 1GB of RAM, and a 800MHz front side bus. The machines waugpped with six 250GB,
7,200 RPM Maxtor 7L250S0 SCSI disks. We used one disk as #stersydisk, one disk for the
virtual machine to run on, and the additional disk for the tiga.

The operating system was Fedora Core 6, with patches as ob&dd8, 2007. The system was
running a vanilla 2.6.18 kernel and the file system used wtx &¥e chose 2.6.18 because that is
the default Xen kernel, and we were wary of using the 2.6.28dghat we used in the rest of the
dissertation because Xen modifies its guest operatingragsté/e made the kernel configurations
for the VMware Workstation and Xen machines as similar asis, but the two virtual machine
technologies require some different configuration optiortse differences were mainly in drivers
and processor features that do not impact performance.

To aid in reproducing these experiments, the list of insthlackage versions, workload source
code, and kernel configurations are available at
http://lwww.fsl.cs.sunysb.edu/docs/darc/

10.2 Virtual Machine Technologies

Several types of virtual machine technology exist for x86tegns today. What they all have in
common is a virtualization layer called a hypervisor thatides somewhere between the guest
operating system and the host’s hardware. The hypervistwalizes components such as CPUs,
memory, and I/O devices. We focus on CPU virtualization hasehis has the largest effect on our
results.

One distinction between hypervisors is the location of thgenvisor in the hardware-software
stack. With ahostedhypervisor, the virtualization layer is run as an applioatinside the host’s
operating system. A hosted hypervisor is employed by VMvirautheir Workstation, Player, and
ACE products [78], as well as by Microsoft Virtual Server [4Barallels Desktop, and Parallels
Workstation [58]. On the other hand, a native, or “bare-idtgpervisor is located directly on
the hardware, with no host operating system in between. plesmof these include Xen [82] and
VMware’'s ESX Server. Guest operating systems running oe-bagtal hypervisors are gener-
ally faster than those running on hosted hypervisors, sx#uwere are fewer layers between the
hardware and the guest operating system.

A second feature that distinguishes hypervisors is how Hadle privileged instructions that
are generated by a guest operating system. VMware prodisttsibally employed binary transla-
tion to translate any privileged code into unprivileged e@dl code that jumps into the hypervisor
to emulate the instruction. This allows guest operatindgesys to run unmodified. Xen, on the
other hand, historically useglaravirtualization With paravirtualization, guest operating systems
are modified to use calls to the hypervisor (hypercalls) acplof privileged instructions. Recently,
CPU manufacturers have extended their instruction set&lteiualization [1, 26]. Xen can now
utilize these instructions to run unmodified guest opegasiystems. VMware’s ESX server uses
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these new instructions in some cases as well.

Linux kernels after version 2.6.20 includt®m, the Kernel-based Virtual Machine, which uti-
lizes the virtualization provided by these CPUs [35]. Hoarewe did not benchmatwm because
we had to use kernel version 2.6.18 because of Xen. In addkion was still marked as “experi-
mental” even in the newer 2.6.23 kernel that we used in theimeder of the dissertation.

We cannot make any fair comparisons between VMware Woikstand Xen when presenting
our results because they employ different virtualizatemhinologies (hosted hypervisor with binary
translation vs. bare-metal hypervisor with a modified gug&rating system). Instead, our goal is
to analyze how OSprof and DARC perform on each one.

10.3 Clock Counter Accuracy

OSprof and DARC both rely on the CPU’s clock counter readrutgion (RDTSC on x86), so we
conducted an experiment to determine how accurate thisizigin is on the virtual machines. With
Xen, we always used the standard instruction. With WS60Weler, we tried two alternatives.
First, we used the guest operating system’s (apparent) timieh is the same CPU clock counter
read instruction that we normally use. This would allow tigninformation to reflect the amount of
time the virtual machine actually received because theaiTf SC register should increment only
when the guest is allowed to run. Unfortunately, this dodgpnavide 1/O isolation and depends on
the quality of the clock counter virtualization. Second, wged the host operating system'’s (wall
clock) time, by specifying

monitor control.virtualrdtsc = false
in WS601'’s configuration file [76, 77]. This allows us to indtuthe CPU time spent not executing
the guest.

Figure 10.1 shows user-mode profiles of an idle-loop worlganerated by one process and
captured with four different configurations. This workloadnsists of a loop that gets executed
100,000,000 times. The loop only reads the clock cycle ayumtice and plots the difference in
an OSprof profile. We would expect most of the profile to be anry left, because no work
is being done between the clock counter readings. The togi-profile of Figure 10.1, labeled
“Host” shows this workload as it runs on the host. Most of thergs fell into the first few buckets,
as expected. We also have some events in buckets 9—-19, whidhe&to clock and disk interrupts,
as described in Section 7.1.

The second profile shown in Figure 10.1, labeled “Xen” is #w@e workload running on Xen.
This profile is very similar to that of running on the host, aintells us that using the clock counter
is not a problem for Xen. The third profile, labeled “WS6Bpparent” is for the workload run-
ning on WS601 using the apparent, or virtualized, clock ¢eun\e can see that there is a large
difference here due to WS601’s virtualization. This diffiece is not present in the fourth profile,
labeled “WS601Real,” which shows WS601 using the host operating systelm&kacounter. We
therefore recommend turning off thvrtual  _rdtsc  option when using OSprof and DARC in
VMware Workstation. In the remainder of this chapter, wentoff clock counter virtualization.
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Figure 10.1: Idle-loop profiles captured on the host, on XanyMware Workstation 6.0.1 cap-
tured using the guest operating system’ (apparent) time,canVMware Workstation 6.0.1 cap-
tured using host operating system’s real time.

10.4 DARC Overheads

To determine how DARC behaves in virtual environments, wadbl to run the synthetic work-
load described in Section 8.2 on both WS601 and Xen. We cliséénchmark because it pro-
vides us with data describing how the fanout and depth ofrteedffect performance. Additionally,
we used the tree that crosses the user-kernel boundarydeettas shows us how DARC behaves
both in user-space and in the kernel. For all tests, we usedalftramp  implementation of
DARC that performs synchronous analysis. Our main concesre the overheads imposed by
virtualization and the interrupt-handling capabilitiesVdS601 and Xen (each call site that is in-
strumented with a suprobe requires four interrupts). Tavafor fair comparisons between running
on virtual machines and directly on hardware, we presentehalts for this benchmark with no
virtualization on the same machines used in this chapteigarg 10.2.

Figure 10.3 shows the results for the workload running on BadS6Note that the shape of the
graph is very similar to the one depicting this workload rimgrwithout virtualization (Figure 8.4):

Levels 0—-1: There is a large initial increase due to the suprobes and DaRDysis code.

Levels 1-4: There is a more gradual slope that reflects one additionauimented call site per
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user-kernel boundary with no virtualization.

600
S 500
IS
o
S 400
I=
3
2 300
o
()]
£ 200
(O]
3
100 o
4
8 ——
0 1 1 1 | | | ) ]

Depth

Figure 10.3: Results for the synthetic workload with treé$amouts 2, 4, and 8 that cross the
user-kernel boundary in VMware Workstation 6.0.1.
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Depth
0[1]2]3|4]5[6]7]8
2116|18| 18|18 18| 18| 18| 18| 18
Fanout | 4 || 16| 18| 18| 18| 18| 18| 18| 18| 18
8(16|18|18|18|18|18| 18| 18| 18

Table 10.1: The minimum OSprof bucket numbers whose elesraamnot shift on average due to
DARC's overheads when running the synthetic workload tihasses the user-kernel boundary in
VMware Workstation 6.0.1. The analysis here is performatthyonously.

Depth
0[1]2]3|4]5[6]7]8
2|1 15|16| 16|17 17|17 |17 | 17| 17
Fanout | 4 || 15|17 | 17| 17| 17| 17| 17| 17| 17
8 15|17 | 17|18 |18 |17 | 17| 17|17

Table 10.2: The minimum OSprof bucket numbers whose elesramnot shift on average due to
DARC's overheads when running the synthetic workload tihasses the user-kernel boundary in
Xen. The analysis here is performed synchronously.

level.

Levels 5-8: The graph is fairly flat during this interval, and the reswltse not affected much by
the fanout. This is because the only suprobes in place apthid are along the root cause
path in user-space, and so we have the same number of supegbedless of fanout. In the
kernel portion, DARC uses call trampolines, which are digantly faster than suprobes, and
so the incline of the graph is hard to see.

The fact that the shape of the graph is not affected by vigatbn indicates to us that DARC’s
behavior is not affected significantly when running in WS6Bbwever, we note that the overheads
are rather high—we can see that the benchmark runs severs slower on WS601. Table 10.1
shows the minimum OSprof bucket numbers whose elementstdifibdue to DARC'’s overheads
when running in WS601. We can see that the bucket numbersargrihe range of I/O operations,
meaning that analyzing faster CPU-bound operations canftieudt. In fact, we had to increase
the latency of the operation being executed in the benchsatkat DARC could reliably locate
the peak. However, most of this overhead is due to suprobess@we expect that implementing
some of the optimizations discussed in Section 8.2 will réyrthis problem.

We present a similar evaluation for DARC running on Xen inuf&g10.4 and Table 10.2. Once
again, we see a similar shape for the graph, but the overlaadsow close to what we saw for
DARC running without virtualization. This is because Xehigervisor is close to the hardware,
while WS601'’s hypervisor is a process running on the hostaipey system.

We can conclude that DARC'’s general operation is not inbibiby virtualization. In cases
where user-space code is being analyzed, the higher ovkdisaprobes combined with the over-
heads of VMware Workstation 6.0.1 make it difficult to an&ywome low-latency behaviors. Port-
ing DARC'’s kernel optimizations to user space will mitigétese problems.

59



90

Overhead (us/invocation)

Depth

Figure 10.4: Results for the synthetic workload with treé$amouts 2, 4, and 8 that cross the
user-kernel boundary in Xen.
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Chapter 11
Related Work

Previous work in this area has focused on dynamic binaryuingntation (DBI) frameworks, using
call-paths as a unit for metric collection, and using DBIrtedastigate bottlenecks. We discuss each
of these topics in turn.

11.1 Dynamic Binary Instrumentation

One method for performing binary instrumentation is stafitary instrumentation, where the bi-
nary is instrumented before it is executed [18, 21, 39, 6P, T@ols also exist that modify binaries
to optimize performance [3, 7, 15]. However, we focus on dyitebinary instrumentation, as that
is the method that our DARC implementation uses.

Many dynamic binary instrumentation frameworks exist fotteat modify user-space applica-
tions. We discuss them in an approximate chronologicalroi8leade [16], is an important earlier
work that influenced other DBI frameworks, but is now obsaleOn Windows, the Detours li-
brary can be used to insert new instrumentation into amyitvin32 functions during program
execution [25]. It implements this by rewriting the targebh€tion images. Vulcan [69] is another
DBI framework for Windows, but is only used internally at Misoft. Strata [64, 65], DELI [20],
DynamoRIO [8], and DIOTA [41, 42] can perform both dynamiadny instrumentation and opti-
mization. The Valgrind framework [52-54, 66], available Eonux on x86 architectures, is widely-
used, and has been utilized to create several checkers afildnst We did not consider using these
frameworks for DARC because they do not have counter-pattsa kernel, which would necessi-
tate separate user-space and kernel implementations oCDAR

Theptrace interface allows for limited user-space application madifion. Although it does
not actually modify the binary, the process-tracing fagiéllows amonitorto intercept and mod-
ify system calls and signals [23]. However, the overheadsistngptrace are rather restrictive
because of an increased number of context switches forrayst#ls. This was addressed by ex-
panding the interface [68, 80].

Our user-space instrumentation framework, suprobes, isdified version of uprobes [56, 57].
We describe both in Section 4.2.3.

For kernel instrumentation, users may use kprobes on Lidagdribed in Chapter 4). System-
tap [60] allows users to write instrumentation scripts thet translated into kernel modules that
use kprobes (and soon, uprobes as well). This makes kproldespaobes easier to use, although
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it also restricts what can be done with them.

Some frameworks exist that allow users to instrument bogi-apace and kernel-space binaries.
For example, Sun’s Dtrace [13,47] allows users to inserrumsentation at pre-defined hooks
or user-specified locations in both user programs and in thariS kernel. Dyninst [9] allows
users to instrument user applications on a variety of agchites, and Kerninst [72, 73], which
was developed by the same laboratory, allows users to mstntia running kernel. These two
frameworks can be used together to instrument an entiramgraystem [49]. Finally, another pair
of frameworks also allow for whole-system instrumentatiétin [40] can be used to instrument
user programs, and PinOS [10] can instrument kernels. Titex lorks by having the kernel run
in a virtual machine.

11.2 Call-Path Profiling

Others have explored using call-paths as a main abstrafidioperformance profiling. These
projects have also utilized dynamic binary instrumentatar their profiling. PP [4] implements an
algorithm for path profiling, which counts the executionguencies of all intra-procedural acyclic
paths by encoding the paths as integers. This work was exteteduse hardware metrics rather
than relying on execution frequencies and to usaling context treCCT) to store metrics [2].
The CCT is similar to our ftree, but has a bounded size bedadses not contain multiple entries
for loops, and it does not differentiate between a functialtirgy another function multiple times.
Our ftree can afford to be contain these extra nodes bectgsetains few paths, rather than an
entire call-tree, and is also bounded by the user-specifiedmum depth. PP was also extended
to handle inter-procedural paths [38, 44].

The TAU parallel performance system [67] has various prdfilitracing, and visualization
functionality to analyze the behavior of parallel progranm@me mode of operation which is sim-
ilar to DARC is call-path profiling. Here, TAU generates itwrocall stack by instrumenting all
function calls and returns. This method handles both ictlised recursive calls. This stack is
used to provide profiling data that is specific to the curretitgath. An extension to TAU, called
KTAU [50], was created to supplement TAU with latency infation from the kernel. However,
KTAU only collects simple latency measurements from préngel locations in the kernel and uses
source instrumentation, so a meaningful quantitative @mepn could not be made here either.

CATCH associates hardware metrics with call-path inforarator MP1 and OpenMP applica-
tions [19]. It builds a static call-graph for the target apation before it is executed. CATCH uses
a method similar to that of DARC to keep track of the currerdenthat is executing, but uses loops
in its tree for recursive programs. It is also possible fagrsgo select subtrees of the call-graph to
profile rather than tracking the entire execution of the paoy CATCH cannot cope with applica-
tions that use a function name for more than one function,camdot profile applications that use
indirect calls.

A major difference between these projects and DARC is thaRDBAerforms call-pathiltering,
rather than call-patprofiling. This means that DARC instruments only the portion of theecibht
is currently being investigated, rather than the entireecbdse. Additionally, it generally runs for
a shorter period of time. However, DARC also collects legésrmation than profiling tools.

Another project, iPath, provides call-path profiling bytimsnenting only the functions that are
of interest to the user [6]. Whereas DARC searches for theesaf behavior seen in higher-level
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functions, iPath analyzes lower-level functions and dgatishes latencies based on the call-paths
used to reach them. It does so by walking the stack to deterthacurrent call-path, sampling the
desired performance metric, and then updating the profiléhfat call-path with the performance
data. This provides two main benefits. First, overheadsegied only for functions that the user
is profiling. Second, iPath walks the stack, so it does notlreeg/ special handling for indirect
or recursive calls. The main problem with performing stackiks is that they are architecture
and compiler-dependent. There are some compiler optimizathat iPath cannot cope with, and
it would be difficult to port iPath to use other compilers arimizations. In contrast, DARC’s
method relies more on simple and portable dynamic binatyungentation techniques.

Combining call-path profiling with samplingssprof samples the running program’s stack
periodically, and attributes a metric to the call-path [22]lso introduces a technique to limit the
depth of the stack walk when part of that stack has been sdereb&lowever, although the stack
walk is more efficient than that of iPatbsprof is also tied to the code of a specific compiler and
its optimizations.

11.3 Dynamic Bottleneck Investigation

Kperfmon [73] is a tool that uses the Kerninst [72] dynamsgtinmentation framework. For a given
function or basic block, Kperfmon can collect a metric, sashelapsed time, processor time, or
instruction cache misses. A user may search for a root causgamining the results and running
Kperfmon again to measure a new section of code.

CrossWalk [49] combines user-level [9] and kernel-leve][@ynamic instrumentation to find
CPU bottlenecks. Starting at a programigsinfunction, CrossWalk performs a breadth-first search
on the call-graph for functions whose latency is greatentagre-defined value. If the search
enters the kernel via a system call, the search will contintiee kernel. Itis not clear if CrossWalk
can handle multiple paths in the call-graph. CrossWalk samd¢dandle multi-threaded programs,
asynchronous kernel activities, or recursion. It does eofgsm call-path or PID filtering.

Paradyn [48] uses the Dyninst dynamic instrumentation éwaork [9] to find bottlenecks in
parallel programs. It does this using a pre-defined decis®a of bottlenecks that may exist in
programs. Paradyn inserts code to run experiments at rarthrdetermine the type of bottleneck
and where it is (synchronization object, CPU, code, etai$tdnces when continuously measured
values exceed a fixed threshold are defined as bottleneckadyPacan narrow down bottlenecks
to user-defined phases in the program’s execution. Paradyiginal code-search strategy was
replaced by an approach based on call-graphs [11].

One difference between the two code search strategies adyRarns that the original used
exclusivdatencies and the new strategy ussdusivelatencies, because they are faster and simpler
to calculate. To calculate the exclusive latency of a fungtParadyn stopped and started the timer
so that the latencies of the function’s callees would notrimduded. DARC can use exclusive
latencies because the latencies of the callees are alreaaly talculated, so it does not add much
overhead. Paradyn’s search strategy was also changedn&iggParadyn first attempted to isolate
a bottleneck to particular modules, and then to particwlactions in those modules. They did this
by choosing random modules and functions to instrument [Lhis was replaced by a method that
began at the start of the executable, and continued to sdegger in the call-graph as long as the
bottleneck was still apparent.
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DARC is both more flexible and more accurate than these solsitiit has the ability to search
for the causes of any peak in an OSprof profile, rather thackihg only for pre-defined bottle-
necks. Additionally, these methods would not be suitabtefifaing the causes of intermittent
behavior. DARC also introduces several new features, saatab-path filtering, distinguishing
recursive calls, resuming searches, and investigatingcsgnous events.

64



Chapter 12

Conclusions

We designed DARC, a new performance-analysis method tlostsah user to easily find the causes
of a given high-level behavior that is seen in an OSprof pFofdARC allows the user to analyze
a large class of programs, including those containing seerand indirect calls. Short-lived pro-
grams and programs with distinct phases can be analyzdyg eaisig DARC’s resume feature. Ac-
cess to more source code information allows the user to uge@id analyze preemptive behavior
and asynchronous paths. DARC minimizes false positivesutiir the use of PID and call-path
filtering.

Our DARC implementation can be used to analyze source treggeside in the kernel, in
user-space, and those that originate in user-space ansl ttisiser-kernel boundary. The over-
heads when analyzing high-latency operations, such agelgls, were statistically insignificant.
For faster operations, such as retrieving in-memory filenmfation, the runtime with DARC can
increase by up to 50%. However, these overheads are impaggdoo the time that DARC is
analyzing the code. DARC is designed for analyzing longamg applications, and the period of
time that this overhead is incurred is negligible compaceithé overall run time. In the benchmark
exercising a fast operation, described in Section 8.3, wevel that DARC required less than one
second to perform its analysis. This was also seen in all ®fute cases that we presented. In
addition, DARC'’s overheads did not affect the analysis iy ease.

We have shown how DARC can be used to analyze behaviors thapneriously more difficult
to explain. These cases include preemptive behavior, asynous paths, and intermittent behav-
ior. Whereas OSprof was generally helpful for users to gabssit the causes of these behaviors,
DARC provided more direct evidence, while requiring lessdj expertise, and intuition.

12.1 Future Work

In this section we describe four possible future researcactons for our root cause analysis
method.

1. Our DARC implementation currently does not include bdsack instrumentation. The
ability to identify basic blocks would allow DARC to narrowo@n root causes to basic
blocks and minimize any perturbations caused by the ingniaiion. Adding this ability
would add to DARC’s usefulness, but the biggest challengaldvbe implementing this
functionality in DARC'’s disassembler.
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2. Overheads can be reduced by further optimizing the instntation. For example, as de-
scribed in Section 8.2, the kprobe at the startfgttan be removed by making a copy of
the function that includes the instrumentation, and jurggim this new function from the
original. Additionally, the kernel instrumentation opiaations can be made to work for the
user-space instrumentation as well.

3. Our current DARC implementation can cross the user-kérmendary. Future DARC imple-
mentations may benefit from the ability to cross the guest-houndary in virtual machine
environments (described in Chapter 10) and the ability és€the client-server boundary in
client-server environments.

4. Users may not always be aware of abnormal performancevimehia running systems, and,
by the time they notice it, it may be too late to analyze. Toedynthis situation, DARC can
be made to run automatically. OSprof profiles can be colteated automatically analyzed
over time for abnormal behavior using an algorithm such asgtrth Mover’s Distance (see
Chapter 9). If some abnormal behavior is detected, DARC eam#&de to run automatically
to provide an administrator with information about the déte behavior.
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