Cpuidle from user space

Madhu Palmur, Zhichao Li, and Erez Zadok
FSL Technical Report FSL-13-05

Abstract

In this paper we present a user space cpuidle gover-
nor. In addition to providing a user space interface to
pick idle states for individual cores in a multicore sys-
tem, the governor also ensures that each core stays in
the specified idle state forever. In other words, the cores
do not wake up from a specified idle state unless speci-
fied by the user. This gives a user complete control over
a core’s idle states without worrying about any kind of
wake-ups.

A user space governor can be very useful in scenar-
ios where every workload is run with a customized cpui-
dle power saving algorithm. Coding different algorithms
and dynamically switching between them is fairly sim-
pler in user space when compared to kernel space. From
our evaluation results, we have concluded that this tech-
nique does not hurt power consumption savings or per-
formance benefits in any way.

1 Introduction

Cpuidle is a module in the Linux kernel which is respon-
sible for running some power saving routines on a core
when the core does not have any task in its run queue [3].
The power saving routines try to put the core into a low
power state or an idle state. Processors in the market
today offer various idle states with different power con-
sumption savings and wakeup latency overheads.

All machines with i386 and x86_64 architecture fol-
low an open standard for power management called
ACPI which stands for Advanced Configuration and
Power Interface. In ACPI terminology, the idle states
are called C-states. Linux code for platform spe-
cific ACPI functionalities can be found in the directory
drivers/acpi [4]. Among many other things, this driver is
mainly responsible for implementing hardware specific
instructions to make the actual transition of a core into
and out of a specified idle state.

The idle states come with a trade-off. Every idle state
has an enter and exit latency associated with it. These
latencies are the time required for a core to enter the
corresponding idle state and time required for a core to
exit from the corresponding idle state respectively. The
trade-off is, as and when the idle states get deeper, the
power consumption savings increase but the enter-exit
latencies increase as well. For example, An Intel Xeon
5,600 series processor which consumes 80W of power

when it is up, consumes 40W in CI state, 33W in C3
state and, only 12W in C6 state. Also, On an x86 ma-
chine, C1, C3, and C6’s exit latencies are 3, 20 and 200
microseconds, respectively [1]. High enter-exit latencies
can have negative effects on the performance of the sys-
tem. Hence, it is essential for the cpuidle module to pick
the most appropriate idle state at any given time.

2 Background

As mentioned before, the Linux kernel has the cpuidle
module which implements the entire infrastructure of
picking an appropriate idle state, transitioning cores into
those idle states and waking them up when required. The
cpuidle module has the following components:

e The sysfs interface
e The cpuidle governors
e The core cpuidle logic

e The platform specific driver functions

The sysfs interface exposes several read only and read
write interfaces. Some of the read-only interfaces in-
clude current_driver, current_governor_ro
for the governor algorithm and driver type that has been
selected. For every core read only information like
power consumed while in a particular idle state, la-
tency to exit out of a particular idle state is also ex-
posed. The sysfs has some writable interfaces like
current_driver and current_governor so that
current driver and governor selections can be changed
dynamically.

Cpuidle governors implement the main algorithm
which core has to enter which idle state at any given
time. Two of the traditional governors in the Linux ker-
nel are the menu and the ladder governors. The ladder
governor initially starts off with the lowest possible idle
state for a core and increments the idle state if the core
can afford the latency overheads of the new idle state.
The menu governor improvises on this algorithm by not
starting off with the lowest possible idle state but by
picking the best idle state a core can afford to transi-
tion into at any given point of time. The menu gover-
nor considers metrics like energy break even point, av-
erage load on the core into consideration, performance

requirements, latency requirements, etc. while picking
the best possible idle state for a core.

The core cpuidle logic is called from the idle thread
for every core. It is responsible for enabling the idle in-
frastructure for all online cores. Once enabled, it makes
a call to the selected governor algorithm to get the next
desired idle state and then makes a call to the selected
driver function to actually transition the core into the
specified idle state.

The platform specific idle functions are hooked into
the main cpuidle logic. They implement architecture de-
pendent functionalities like transitioning the cores into
a selected idle state, waking up the core when certain
conditions are met, etc.

3 Related work

The Ladder governor was the first governor algorithm
written for the cpuidle module. The algorithm always
starts off with the lowest possible idle state. When the
processor is idle again for the next time, it checks for
the QOS requirements of the system and jumps into the
next higher idle state. When an idle state no longer meet
the QOS requirements of the system, the ladder gover-
nor jumps to the immediate lower idle state. This has
proven to work well with tick-based kernels. However,
this step-wise approach does not work well with tickless
kernels because the kernel can be idle for a really long
time without the periodic tick and not get a chance to
step into a deeper idle state whenever it goes idle.

The Menu governor was written as an improvement
over the ladder governor algorithm. The Menu gover-
nor takes into account three factors before deciding a
C-state: energy break even point, performance impact,
and latency tolerance. The Menu governor implements
a naive prediction mechanism to speculate how long a
core is going to be in a particular idle state so that C
state entry and exit energy cost breaks even with the en-
ergy that is saved when the core actually resides in a par-
ticular idle state. The Menu governor follows a heuristic
of picking a C-state that has the least impact if the sys-
tem is busy. However, the Menu governor is said to not
perform well with short lived tasks.

4 Motivation

The cpuidle governor algorithms currently run from
the kernel space. The present governor algorithms are
generic, they do not offer any kind of customizations de-
pending on the workload. Not just that, implementing
a new customized algorithm for every type of workload
in the kernel space is hard. Every time a new gover-
nor algorithm is written, a new patch has to be written
and applied to the kernel, the kernel config file has to
be changed to run the new governor algorithm, and the
kernel has to be recompiled and installed again. This

process is time consuming. Also, writing kernel code
is any day harder than writing programs in user space.
Building a tool which exports all the idle state decision
making infrastructure to user space can hence turn out to
be useful.

The main goals of this project are:

1. Build a kernel tool that exports the whole idle state
decision making infrastructure to the user space.

2. The tool should make sure that users can specify
core specific idle state value. It should also make
sure, that a core actually stays in the specified idle
state until the user changes it.

3. Run a workload and prove that even though the idle
state decisions are made in the user space, the per-
formance benefits and power consumption savings
are at least as compared to the existing kernel space
governor algorithms.

5 Design

The goal is to build a system which gives the user com-
plete control over the idle states of the cores. The tra-
ditional cpuidle governors have their own algorithm for
picking the next c-state a core should transition into. Ini-
tially, we wrote a custom governor which does nothing
but look at the value which indicates what c-state the
user is requesting for and set the next c-state value for
that core to this value. We called that custom governor
the “Noop” governor.

The current design of the cpuidle module is such that
even though the core gets transitioned into a c-state, it is
woken up as soon as there are tasks or IRQs that have
to be scheduled on the core. To give a clearer picture,
the current flow of the idle thread is something as fol-
lows: [2]

1. The idle thread gets scheduled when there are no
other tasks present in the run queue of the core.

2. The idle thread runs an infinite loop. It calls the
cpuidle module inside this loop.

3. The cpuidle module in turn calls its governor to se-
lect the next c-state the core should transition into.

4. The cpuidle module then transitions the core into
that c-state.

5. The idle thread yields itself when there are other
tasks present in the run queue of the core.

Given this, it is obvious that even though we move a
core into user requested c-state using our custom gover-
nor, it is woken up time and again to run tasks and IRQs
assigned to it. This means that there can be a situation

wherein even though the user requested a deeper c-state
for a particular core, it can move back to CO temporar-
ily to empty its run queue. This is well against our goal
of giving the user complete control over the idle states
of cores. Hence, just using the noop governor will not
meet our desired goals.

It is not so simple to halt a core completely without
waking it up for a long time. This is because the Linux
scheduler can pick any online core to run a particular
task or an IRQ. Also, each core has been destined to
service some specific set of IRQs. The core should also
keep emptying its run queue as and when the ready tasks
arrive. Not waking up the core can make the system
completely unresponsive.

We utilized the CPU hot-plugging infrastructure [5] to
achieve our goal of keeping a core in the user requested
c-state and never waking it up. The CPU hot-plug infras-
tructure can be used to make a core completely invisible
to the OS so that the scheduler can never try to sched-
ule any task on that core. The CPU hot-plugging in-
frastructure essentially migrates off all tasks, interrupts,
timers, and tasklets from the victim core to the other on-
line cores. The CPU hot-plugging code makes use of
the monitor, MWAIT instruction pair to halt the cores.
By picking the appropriate argument to be passed to the
MWAIT instruction, the core can be moved to any desire
idle state.

We invoke this infrastructure whenever a user requests
a c-state greater than CO for a core. We still keep a cus-
tom governor running for the rest of the cores which are
in CO state. These cores are in CO state either because
the user has selected CO state for them or user never re-
quested for a different c-state for these cores. The gov-
ernor just selects CO state for these cores for which the
user has selected no other state other than CO.

6 Implementation

The implementation can be broken down to three parts.
The three parts are:

1. Change the sysfs code to accept core specific user
input

2. Hook the cpu hot-plug infrastructure to the sysfs
store operation

3. Write a custom kernel which ensures that the core
in CO state always stay in CO state until the user
requests a different one

We have added a new file under the sysfs di-
rectory to take the c-state value as input from the
user: /sys/devices/system/cpu/cpuX/cpuidle/
c_state. The new file c_state is present under the
cpuidle directory of every core. To remember the current

c_state for every core, we have added a new integer field
called c_state in the structure cpuidle_device.

We use the cpu hot-plug API cpu_down() to bring
a core down to any c-state. In the store function of
the sysfs c_state file described in the previous section,
we make a call to this cpu_down() function when the
c_state requested is anything greater than CO. Internally,
this cpu_down() API makes a call to an architecture-
specific function which calls monitor, MWAIT instruc-
tions pair to move the core into a particular idle state.
In this function, we add an extra piece of code which
checks c_state field of the cpuidle_device structure
and passes appropriate argument to the mwait () call.
This argument determines which idle state the core will
enter into. Also, we use the CPU hot-plug API, cpu_up()
to bring the core back up to CO state in case the user re-
quests a CO state for a core which was not already in CO
state. A point to note is that to move a core from one c-
state to another c-state, it should first be brought online
by using cpu_up() APIL. Figure 1 explains this.

The third part of the implementation is to keep a cus-
tom governor which will not interfere with any of the
core’s idle states. Note that the cores for which the idle
state selected is something other than CO will not even
reach this part of the code. This is because we halt
that core by running cpu_down() immediately after the
user requests for a c-state change. So, we do not give
a chance for the governor to even run on that core after
the c-state change. The cores for which either the user
has not requested for any particular c_state or the user
has specifically requested for CO state, we need to keep
them in CO state. The custom governor always selects
CO state for such cores.

7 Evaluation

We measure the following two major metrics. The user
space governor should not perform worse than the kernel
space governor w.r.t., the following metrics at any cost.

1. Performance

2. Power consumption savings

We have evaluated our tool with a completely CPU
bound workload. The workload forks some specified
number of processes which continuously perform ran-
dom mathematical floating point computations. We
wrote a simple bash script that writes the value of the
desired C-state into the c-state file of the sysfs interface.
The bash script runs the workload by specifying a spec-
ified number of processes to be forked and keeps those
many number of cores active. It puts the rest of the cores
to the deepest possible C-state. We optimistically picked
the deepest possible C-state to save more energy with the

/epu/cpuX/cpuidl

/c_state

Previous
c_state
value

cpu_up()

cpu_down()
with the appropriate argument to the mwait call

Previous
c_state
value

cpu_up()

|

Follow the regular path of the idle thread.
The cpuidle module uses a custom governor
to kéep the c_state value to be C0 always.

Figure 1: Implementation

200

T T
menu governor
noop governor

100 - B

Power consumption (Watts)

50 - B

0 Lt I I I I I I
1 2 3 4 5 6 7

No. of cores in C2 state

Figure 2: Comparing Power Consumption savings of Noop
governor with Menu governor for CPU bound workload

intention of lowering the C-state if performance took a
hit.

All experiments are carried out on a server containing
Intel Xeon 5,650 processor. There are 6 cores in the sys-
tem in total (with hyper threading disabled). This system
supports three C states: CO, C1 and C2. In all our exper-
iments we have used the C2 state whenever we want to
move a core into an idle state.

Figure 2 shows the power consumption savings of our
user space governor when compared with the menu gov-
ernor. We called our user space governor the noop gover-
nor because the governor does not implement any power
saving algorithm on its own but relies on the user to do
it. As it can be seen, the power consumption savings
of the noop governor are almost similar to menu gover-
nor. The result is pretty intuitive because the workload is
completely CPU bound and keeps the CPU almost 100%
busy all the time. Since the cores that are not put in any
idle state in our case all remain active even when the
menu governor is run and the cores put in idle state re-
main in the idle state in both the cases, menu governor
does not save any extra energy.

100

T T
menu governor
noop governor

80 | —
//

60 - B

Latency (seconds)

0 Lt I I I I I I
1 2 3 4 5 6 7

No. of cores in C2 state

Figure 3: Performance comparison of Noop governor with
Menu governor for CPU bound workload

Figure 3 shows the latencies of our user space gover-
nor when compared to menu governor. The term latency
here refers to the total time taken by the system while
it waits for the specified number of forked processes to
complete their mathematical computations and exit. As
it can be seen from the figure, the latency results of the
noop governor is comparable with that of menu gover-
nor’s. Since the number of online cores is always equal
to the number of processes forked, the result is pretty
straight forward.

We also ran our user space governor with a workload
which has intermittent I/Os. The workload just does
Linux kernel compilation by spawning a specified num-
ber of threads. The command make —3jX spawns X
number of threads to finish the kernel compilation. We
used the same bash script which starts the workload with
a specified number of threads and keeps exactly those
many number of cores active and the rest are put into the
deepest possible idle state. What we observed was the
latency graph of menu and noop governor were almost
similar but the power consumption graph was drastically
different.

T
menu governor
noop governor
200 - B

150 7””7 |
100 |

50 b

Power consumption (Watts)

Il Il Il Il Il Il
make -j1 make -j2 make -j3 make -j4 make -j5 make -j6

No. of cores in C2 state

Figure 4: Comparing Power Consumption savings of Noop
governor with Menu governor for a workload running “make
X"

Figure 4 shows the power consumption savings of our
user space governor when compared with the menu gov-
ernor. As it can be seen from the graph, we perform
worse than the menu governor in all cases. The reason
for this is, the workload has intermittent I/Os. Consider
an example where we have spawned just one thread and
we have kept just one core active to run this thread and
put the rest of them into idle states. In this cases, when
the thread performs its intermittent I/Os, the core has
no work to do and runs its idle thread. This is again a
great window of opportunity to save power. We unfortu-
nately keep our core active all the time without putting
it into any idle state when compared to the menu gov-
ernor. Also, the change in the power consumption sav-
ings is quite a lot when compared to menu governor be-
cause of the following reason. When the one core that
is active goes to an idle state due to an I/O, effectively
all cores are in an idle state. We observed that maxi-
mum power consumption savings are incurred in a sys-
tem when all the shared resources like L3 cache of the
cores are switched off too. Shared resources can only be
switched off when all the cores are in idle states. This
limitation can be overcome by writing a more intelligent
user space program that learns from the workload. The
program should be able to study the workload initially,
and start predicting as to when I/Os happen and take ap-
propriate action on the cores.

8 Future Work

As mentioned in the previous section, even though we
have the tool ready to run governor algorithms from user
space and we did show that the user space governor can
perform at least as good as the kernel space governor,
we still do not have an algorithm ready for every type of
I/0 bound workloads. A simple HMM (Hidden Markov
Model) type of model can be used to first learn about
the I/O patterns from the given workload and then start

predicting as to when I/O actually happen so that the
window can be used to save power. When run from user
space, we believe this should perform at least as good as
the menu governor or even better because the menu gov-
ernor presently does not use such a sophisticated predic-
tion mechanism.

9 Conclusion

In conclusion we have built a very useful tool that ex-
ports the whole idle state decision making infrastructure
to the user space. This should give a lot of flexibility
to the users to use customized algorithms from the user
space for every kind of workload as opposed to using a
generalized algorithm from the kernel space. Needless
to say, writing simple programs from the user space is
much easier when compared to writing governor algo-
rithms inside the kernel. Dynamic switching between
algorithms and addition of new algorithms can be very
easily done from the user space as compared to the ker-
nel space. We have proved by running a completely CPU
bound workload that running governor algorithms from
user space can be at least as good as running it from the
kernel space. We also point out the future work of writ-
ing sophisticated algorithms for I/O bound workloads
by using a very good prediction mechanism to predict
I/0O patterns which has the potential of performing better
than the existing kernel space algorithms.

References

[1] Intel Inc. Intel xeon processor 5600 series.
http://www.intel.com/content/www/us/
en/processors/xeon/xeon-5600-vol-2—-
datasheet.html, 2011.

[2] Linux 3.2.9. http://www.kernel.org.

[3] S. Li and A. Belay. cpuidle — Do nothing, effi-
ciently... In Proceedings of the Linux Symposium,
volume 2, 2007.

[4] Acpiin linux. http://acpi.sourceforge.net.

[5] Zwane Mwaikambo, Ashok Raj, Rusty Russell, and
Joel Schopp. Linux Kernel Hotplug CPU Support.
Proceedings of the Linux Symposium, 2, July 2004.

