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Abstract of the Dissertation

Flexible Debugging with Controllable Overhead
by

Sean Callanan

Doctor of Philosophy
in

Computer Science

Stony Brook University
2009

This thesis is concerned with the problem of discovering bugs in a program. This
crucial part of debugging is becoming ever more relevant as the complexity of
software systems increases. Symbolic debuggers retain their relevance for bug di-
agnosis once a bug has been isolated in a development environment; however,
instrumentation continues to grow in relevance because it allows the programmer
to specify execution points of interest in advance and let the program run normally.
Instrumentation’s has a strong appeal if the nature of the bug is uncertain: the pro-
grammer can add checks or logging for a variety of interesting events and let the
program run, automating what would otherwise be a painstaking manual process.
Instrumentation is widely-used in development environments; nearly every

large software project has benefited from verbose logging or some kind of exe-
cution profiling. In fact, recently DTrace has brought instrumentation to system
administrators as well, allowing them to diagnose performance problems and er-
rors on production servers. However, particularly with the proliferation of con-
sumer devices running full Unix software stacks, it is becoming more and more
useful to be able to apply the same techniques that were available in development
and system-administration environments remotely, in end-user environments with
minimal user impact.
In this thesis, we present a body of work that addresses this desire. We have

developed aGCC-based instrumentation system called adb that leverages the com-
piler’s intermediate representation, which includes type, control-flow, and domi-
nator information, to enable instrumentation at a variety of locations, called probes,
in a program. A developer can ship a program with deactivated probes, and later
develop small consumers that use the data at these probes and insert them into de-
ployed copies of the program dynamically, with no end-user intervention required.
We have also developed a novel overhead-management policy called SMCO that
ensures that instrumentation incurs fixed overhead.
In addition to presenting adb and evaluating its performance guarantees, we

also discuss a GCC plug-in system that we developed and that is being adopted
by the GCC community for inclusion in release 4.5. Finally, we also describe
overhead-control approaches we developed before SMCO, which put the design
decisions made for adb in context.
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Chapter 1

Introduction

Instrumentation is a powerful alternative to traditional interactive debugging tech-
niques, and offers several major advantages. First, it offers considerably better
throughput, allowing the programmer to process and filter hundreds of thousands
of events in the time it would take to inspect a single one in a traditional debug-
ger. Second, it is much more reliable: whereas manual fault diagnosis is fraught
with mistakes, instrumentation can perform the same task again and again. Third,
it can collect data that manual inspection cannot: the behavior of a live system
under load, not artificially held in stasis as the debugger is used like a forceps.
Instrumentation has been used to collect a wide variety of information, from ap-
plication memory usage [47] to network accesses [69].
Instrumentation is characterized by the modification of an existing program—

either by changing its code or interposing a new layer on one of its interfaces—to
provide additional information about the program’s execution. One of the most
pervasive forms of instrumentation is the Linux and Solaris proc file system, in
which the kernel merely makes available internal statistics about a process to other
processes through an interface based on simple character devices [63]. Other tools,
like DTrace and Atom, try to expose a more generic instrumentation interface to
their users [11, 58]. It is this last tradition that we form part of. Tools like this
typically modify the target binary, which abstracts their interface somewhat from
the code level. They can add instrumentation at specific assembly locations into
a binary, but it is much more challenging to find which assembly locations corre-
spond to which lines of a program’s source code, and which data locations in the
program correspond to which variables.
To solve this problem, we take advantage of the GNU Compiler Collection,

which is equipped with compilers for a variety of languages. Using the interme-
diate representations provided by GCC, our system is capable of inserting instru-
mentation in a wide variety of locations, and, most importantly, getting full access
to program data at these locations without worrying about the operation of the op-
timizer [68]. To achieve this, we use providers that select potentially interesting lo-
cations in advance and add probes at those locations. When a program thus instru-
mented runs normally, these probes do nothing, incurring a verymodest overhead;
if a so-called consumer requires the data provided by one or more probes, those
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probes are enabled, and incur whatever overhead the consumer incurs in addition
to the time they take to extract data. In exchange for this overhead, they provide
read-write access to program data in a way that DTrace other binary instrumenta-
tion tools cannot. (DTrace provides so-called static probes, user-annotated locations
that allow hooks. However, these rely on programmer annotation.) We introduce
the concept of compiler-based instrumentation, tools we have built to support it,
and applications in Section 2.1.
The overhead incurred by a large number of activated probes can potentially

be very high. Particularly when instrumentation is taking place in parallel with
critical computations, it is very useful to measure and control the overhead in-
curred by instrumentation. In the past, such overhead was controlled via sam-
pling, effectively rolling an n-sided die whenever it was possible for a particular
piece of instrumentation code to run, and allowing the probe to run if n < m for
some sampling rate m. This approach saw many variations: Liblit et al.’s Bernoulli
sampling [37] (which in turn inherits some concepts from counter overflow sam-
pling [75]), and Chilimbi andHauswirth’s bursty sampling [29]. These approaches,
however are related in a non-linear way to overhead, because they only indirectly
regulate overhead. In this work, we introduce two novel approaches to overhead
regulation: first, overhead regulation based on accrual of confidence in the correct-
ness of a particular part of the system (see Section 3.1), and then overhead reg-
ulation to compensate immediately for measured overhead. This system, which
we call Software Monitoring with Controlled Overhead (SMCO), performs well
experimentally, as seen in Section 3.2.

A
S C

D
A

D
C

D
L

ADB
I

Developer environment

User environment

C

Figure 1.1: A high-level view of how adb can be used.

In this thesis, we present a unified and generic instrumentation architecture
called adb that combines the benefits of both of these approaches, offering low-
overhead, compiler-inserted probes that provide highly verbose, typed informa-
tion through a convenient API when activated, and a robust overhead-control
mechanism based on SMCO that regulates the probes so that consumers staywithin
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user-set overhead constraints. Figure 1.1 shows the way in which adb is meant to
be used.
The adb system is meant for use in three stages.

• The programmer compiles source code with the adb instrumenter, a plug-
in based on GCC. As described in Section 4.1, this typically only involves
adding a new flag to CFLAGSand the adb runtime library to LDFLAGS. adb

generates a PIF (Probe Information Format) file which contains information
about all the probes it has inserted. The application can then be distributed
along with the adb runtime library.

• At startup time or during its execution, the application searches for con-
sumers. Consumers can be special-purpose, using symbols and types from
the program being monitored, or they can use adb ’s generic type API (based
on the Sun Compact ANSI-C Type Format or CTF) to access data in a generic
way. Consumers request that specific categories of probes be activated.

• As consumers run, they perform monitoring or checking. They can collect,
anonymize, and return data, which programmers then aggregate and pro-
cess. For an excellent example of data aggregation from many clients, see
Liblit [36].

Although this system involves deploying the application to customers, the cus-
tomer need not be aware of adb at all (although it is common practice to request
permission to send data to a central server, even with anonymization). This re-
duces the barrier to entry for end users to assist in the debugging process. The fact
that the instrumentation is dynamic in nature (that is, probes can be activated and
deactivated as needed) means that different consumers can be used to test for dif-
ferent problems or examine different aspects of the program’s execution without
the need to distribute a new version of the program.
As our results shown in Section 4.4 demonstrate, adb adheres well to over-

heads, even under high, rapidly-changing loads. In addition, introducing probes
into a program incurs 13% overhead even for the most rigorous of real-world ap-
plications. adb is a significant step forward in the search for full debuggability at
every stage of the software life-cycle.
This thesis is structured as follows. In Chapter 2, we discuss instrumentation

and debugging, in particular compiler-aided instrumentation tools we have devel-
oped. Then, in Chapter 3, we discuss overhead control and the technologies we
have developed to regulate overhead from instrumentation. Finally, in Chapter 4,
we tie the material from the previous chapters together and present adb .
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Chapter 2

Instrumentation and Debugging

We discuss existing approaches to compilation in Section 2.1 and debugging on the
target machine in Section 2.2.

2.1 Compiler-based Instrumentation

All modern compilers have special support for debugging. The reason for this is
that the compiler is typically the first part of the development toolchain to analyze
an application, and maps programmer-generated artifacts to executable code. In
order to fix problems with the executable code, developers must determine the re-
lationship between the portion of the executable that failed and the artifacts that it
was generated from. Consequently, most compilers store a mapping from artifacts
to executable code; this mapping is typically known as debugging information.
Compilers typically insert debugging information into data packets that reside

alongside the code they describe [50], or into separate sections of a binary file [26].
This debugging information documents several aspects of the source-executable
mapping:

Line information: The compiler records which ranges of lines in the assembly
code correspond to particular lines of the original source code. The DWARF
format [26] also includes column information, to identify assembly instruc-
tions that correspond to individual portions of complex explanations, such
as the individual clauses in a for statement.

Variable information: The compiler saves information about the local variables
for a function, as well as the location of static and global variables. This
information includes whether the variables are allocated on the stack or in
registers, how they can be extracted, and what type they are. For variables
that move between the stack and registers, DWARF allows compilers to emit
location lists.

Function descriptions: To facilitate calling of functions and stack unwinding (see
Section 2.2, compilers can emit function signatures that specify how func-
tions should be called and where their code resides.

The usage model for debugging information is very specific: debuggers use
it to inspect and manipulate program’s state when it is paused. This inspection

4



and manipulation is either programmer-guided or very naı̈ve, as we shall see in
Section 2.2. For more sophisticated analyses, particularly those that occur without
pausing the software, the compiler not only needs to add auxiliary information but
must also modify the application so that it performs these analyses—or provides
the data required to perform them—at run time.
In order to understand how the compiler does this, we must first explain the in-

termediate representations that the compiler maintains for an application as it trans-
forms it into executable code. An intermediate representation is a data format
(typically memory-resident) that serves as the interface between two parts of the
compiler, or to permit a user-specifiable combination of similar components, such
as optimizers, to operate on a portion of the software sequentially.

S C

Parser Gimplifier
←
+
+

a
b
c d

A
S T

t
0
←c+d

t
1
←b+t

0

a←t
1

T-
A C

(set (reg:r2)

 (plus

  (reg:r0)

  (reg:r2)))

  …

R-
T L

Instruction
Selector

A

lwz r2,32(r30)

lwz r0,28(r30)

add r2,r2,r0

lwz r0,24(r30)

add r2,r2,r0

Expander
a=b+c+d;

Figure 2.1: The architecture of GCC, with the intermediate representations it uses.

Our compiler-based instrumentation work has focused on the GNU Compiler
Collection (GCC), whose components are illustrated in Figure 2.1. We now discuss
the individual intermediate representations, and describe their respective charac-
teristics and how each of them can be used for debugging.

Abstract Syntax Trees (ASTs): After parsing, GCC (like most compilers) repre-
sents a source file as a collection of trees that represent the syntactic struc-
ture of each function. These trees retain much of the original structure of
the source file, including block information, loop structure and nesting, and
compound statements. At the abstract syntax tree layer, transformations can
most easily detect common programming idioms—such as use of iterators
in a loop—without performing expensive and complicated analyses. Instru-
mentation, like source-level tracing, that reports information at the granular-
ity of programmer-written code lines is best implemented at this level. Other
tools, such as Cil [20], represent code in a similar way.

Three-Address Code: GCC converts the abstract-syntax trees into their seman-
tic equivalents, reducing them to assignments that take at most two values
per statement and combines them to produce a third. The assignments re-
tain all the type information that was discovered during parsing, and share
the building blocks of the abstract-syntax tree representation, but are much
simpler to manipulate. To represent intermediate values, GCC generates
temporary variables; additionally, it simplifies the control flow structure by
constructing a control-flow graph and replacing more sophisticated structures
with conditional goto s. For optimizations, GCC developers recommend this
layer, which was designed explicitly for ease of manipulation by the pro-
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grammer [48]. The reason for this is that most data-flow and control-flow
analyses use a control-flow graph representation and prefer as simple a syn-
tactic structure as possible because this reduces the number of side-effects
that must be considered.

Register-Transfer Language: After giving optimizers the opportunity to trans-
form the three-address code, GCC converts it into a format that closely re-
sembles assembly code. It determines the kind of storage that each vari-
able requires, what low-level operations must be performed on the variables,
what classes of instructions provide them, and performs register allocation
and final instruction selection based on this information. Although GCC per-
forms some optimizations at this level, including instruction scheduling, the
implementation of RTL in GCC is so complicated and fragile that GCC pro-
grammers recommend against using it for any kind of instrumentation.

We developed a plug-in based transformation system based on the GCC’s GIM-
PLE intermediate representation [44], which it uses for three-address code. Despite
its simplicity, the GIMPLE intermediate representation presents its own challenges
during transformation development and testing for several reasons. First, the ma-
turity of the GCC project and the fact that many system distributions depend on
GCC to compile their system makes it difficult to get transformations integrated
into GCC until they are very mature. Second, it may not be desirable to include
and maintain transformations that do not have broad appeal as part of the core
GCC distribution. Finally, it is an unattractive proposition to have to distribute
experimental transformations as patches against a particular version of GCC and
recompile the entire compiler when changes are made.
To solve these problems, we developed a plug-in system similar to that used by

Eclipse [39]. Our system allows separate development and compilation of GIMPLE
transformations, solving the problems listed above and offering new features like
enhanced debuggability and better argument passing. We have already developed
a variety of plug-ins using our system, and have realized two main benefits. First,
we were able to take advantage of graphical debugging tools that we describe in
Section 2.1.2 as well as significantly reduced development time because we were
developing outside the GCC build system. Second, we were able to port our trans-
formations from one version of GCC to another without changing a single line of
code; once the plug-in support was ported to the new GCC release, the plug-ins
needed recompilation and nothing more.
In the remainder of this section, we demonstrate the simplicity and power of

GCC transformation plug-ins. In Section 2.1.1, we describe the modifications to
GCC that make plug-in–based development possible. In Section 2.1.2, we describe
some plug-ins that we have already built using this infrastructure, highlighting
plug-ins that are useful to transformation developers. In Section 2.1.3, we discuss
two parts of GCC that could be made into plug-ins. In Section 2.1.4, we describe
plug-ins that could be created in the future, and we conclude in Section 2.1.5.
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2.1.1 Modifications to GCC

Plug-ins are built based on anAutoconf-based template [14]. The template’s configure

script currently requires the headers from a built version of the GCC source code;
when the plug-in is built, the Makefiles produce a shared object file suitable for
loading using the host operating system’s dynamic loader interface.
Only minor changes need to be made to GCC to support plug-in loading. These

changes revolve around three tasks; we will discuss them below in turn. The first
change is an addition to the GCC build sequence, compiling the Libtool ltdl li-
brary [18] into GCC and linking GCC with -export-dynamic . This allows GCC
to load plug-ins, and allows plug-ins to access GCC interfaces. The second change
is the addition of an optimization pass before all other GIMPLE transformations,
and at the start and end of translation for each file. This allows plug-ins to main-
tain per-file state and perform code optimizations while referring to this state. The
third change is the addition of a compiler flag that allows the user to specify plug-
ins to load and provide arguments to those plug-ins either on the command line
or through files.
To add the ltdl library to GCC, we modified the top-level top-level Makefile

to add build rules for the ltdl library. Additionally, we modified the build rules
for the cc1 binary to make it compile with Libtool, export its symbols like a shared
library (using the -export-dynamic option to Libtool), and use the ltdl library
to load plug-ins. The ability to export symbols from an executable to plug-ins does
not exist on every platform: Linux, Solaris, and Mac OS X support this functional-
ity, for instance, but Cygwin does not. A build process in which the GCC back-end
code is linked as a shared library, and cc1 and all plug-ins are linked against it,
would have eliminated this requirement. However, large amounts of state that is
currently maintained as globals by the back-end would have to be converted to
on-stack state because otherwise cc1 and the plug-in would have differing copies
of the back-end’s global state.
To allow instrumentation plug-ins to run at the proper times, we added several

new passes to passes.c , allowing plug-ins to run at various points in the compi-
lation. We describe these in Table 2.1.
Finally, to allow the end user to specify which plug-ins should be loaded with

which arguments, we provided a new argument, -ftree-plugin , which has the
syntax shown in Table 2.2.
The first argument, plug-in-name, is a shared object file that contains functions

for one or more of the passes described in Table 2.1. The list of key-value pairs
specifies arguments to the plug-in, which are passed as arguments to the plug-in’s
individual functions. In addition, the special key CONFspecifies a file to be loaded
and parsed for additional arguments; in this case, each line in the file is a key-value
pair separated by an ‘=’ sign.

2.1.2 Existing plug-ins

We will now enumerate some plug-ins that we have already developed: a verbose
dump plug-in for GIMPLE meant for use by programmers in developing transfor-
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Pass Location Purpose

pre Before compilation Allows plug-ins to perform
data-structure initialization
before compilation of a source
file begins.

ctrees After C parsing Allows plug-ins to analyze
the abstract syntax trees for
a C program before it is con-
verted to GIMPLE.

cgraph Before IPA transformations Allows plug-ins to perform
inter-procedural analyses,
which have access to every
function’s code and the call
graph.

gimple After IPA, per function Allows plug-ins to manipu-
late the GIMPLE representa-
tion of each function, includ-
ing the control-flow graph.

rtl After conversion to RTL, per function Allows plug-ins to manipu-
late the RTL for each function.

post After compilation Allows plug-ins to perform
data-structure cleanup after
compilation of a source file
ends successfully.

Table 2.1: Plug-in transformation passes.

mations, and a call-trace plug-in for use by end users in tracing their code. We have
also developed malloc checking and bounds-checking plug-ins; however, these
will be superseded by a plug-in implementation of Mudflap (see Section 2.1.3).

Verbose Dump Plug-in. Transformation developers frequently require a view
of the GIMPLE code that is as verbose as possible. They use this view for several
purposes: to identify patterns that need to be transformed, to determine the proper
form of GIMPLE structures that transformations should generate, and to verify
that transformations are working correctly. We designed a verbose dump plug-
in to facilitate this. We designed the verbose dump plug-in with extensibility in
mind: as GIMPLE evolves and grows, the verbose dump plug-in will handle new
GIMPLE objects, such as new tree codes or parameters, with little or no changes
needing to be made. We achieved this by creating a new file, parameter.def , that
resembles tree.def but formally specifies all the accessor macros that exist for
tree attributes. The file contains lines of the form shown in Table 2.3.
The name field specifies the name of the macro; the type field specifies what

type of data it returns (e.g., SIZE T or TREE); the macro field specifies the macro
used to extract the field; and the code fields constitute a list of TREECODEs for trees
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-ftree-plugin= plug-in-name
: key=value
: . . .

Table 2.2: Syntax for specifying a plug-in.

DEFTREEPARAMETER(

name,
type,
macro,
code, . . .

)

Table 2.3: Syntax of parameter.def

that have this parameter. For example, the parameter named type precision has
type SIZE T, macro TYPEPRECISION, and codes INTEGERTYPE, REALTYPE, and
VECTORTYPE.

Graphical Inspection of GIMPLE Code. As shown in Table 2.4, the output from
the verbose-dump plug-in is so verbose as to be overwhelming in large quantities.
Rather than adopt a simplified representation, we instead developed a Java-based
tool called GIMPLE Viz to represent the output graphically. We chose Java as the
development language due to its cross-platform compatibility, which allowed us
to concentrate on the development of the actual tool itself as opposed to platform
support and library dependencies. Figure 2.2 is a screen-shot of GIMPLE Viz dis-
playing a file. The visualizer has three main areas: the Control Flow Graph area,
the GIMPLE Tree View area, and the Source / Search area, which we describe be-
low.
The control flow graph for each function is rendered as rectangles connected by

arrows. Each colored rectangle represents a basic block. When the user clicks on
a block, GIMPLE Viz highlights the selected block along with its predecessors and
successors. The successor edges are highlighted as well. Additionally, it displays a
tree representation of the corresponding GIMPLE nodes in the GIMPLE tree view
area, and highlights corresponding code or dump lines in the source/search area.
The GIMPLE tree view area is a visual representation of the GIMPLE code for a

particular basic block. The root node of each tree is a statement from the currently
selected basic block, labeled with the result of applying print generic stmt . The
other nodes are operands or parameters of their parents. The user interacts with
the tree view in two ways: clicking and searching. Manually clicking a node will
expand that node showing its children. This process can be repeated until the
desired node is reached. Searching for a particular TREECODEwill expand the
tree to reveal the desired node, allowing the user to quickly locate specific nodes.
The source/search area can show search results, source code, and verbose-

dump output. The results of searches—function searches, basic-block searches,

9



MODIFYEXPR 1,2

TREETYPE:

INTEGERTYPE 2,0

TYPEPRECISION=32

TYPEUNSIGNED=true

VARDECL 2,0

TREETYPE:

INTEGERTYPE 2,0

TYPEPRECISION=32

TYPEUNSIGNED=true

DECLARTIFICIAL=true

MULTEXPR 1,2

TREETYPE:

INTEGERTYPE 2,0

TYPEPRECISION=32

TYPEUNSIGNED=true

Table 2.4: A portion of the verbose dump output for one statement, leaving many node attributes
out.

❶ ❷

❸

Figure 2.2: GIMPLE Viz displaying a file. 1 marks the CFG area, 2 marks the tree view, and 3
marks the source/search area.
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*** CALL TO main [0]

Struct : ** test ** found in function

** main **
test->value = (int32 t)5

test->name = (char * )"contents"

** CALL TO foo [1]

* [1] testPtr = 0x0x7fffcef31770

*** CALL TO foo2 [2]

* [2] value = 0x0x7fffcef31748

Conditional found value = FALSE,

right branch taken...

*** [2] RETURNED null

Table 2.5: Call trace output

and type searches—are interactive: clicking on a function search result shows
the control-flow graph for that function; clicking on a basic-block search result
shows the containing function’s CFG and highlights the block; and clicking on a
TREECODEsearch highlights the containing basic block and expands the contain-
ing tree in the GIMPLE tree view to make the tree with that code visible.
GIMPLE Viz can also display the original source file that was compiled by GCC

in the source/search window. For quick reference, line numbers are displayed
for the user. Although the user cannot directly interact with this area, clicking a
basic block or a search result will highlight the lines corresponding to that block,
its predecessors and its successors. Finally, the source/search window can also
display the raw verbose dump output.

Call Trace Plug-in. Wehave developed a plug-in called call-trace to allow full ver-
bose tracing statements to be added to a program at compile time without requir-
ing the programmer to add any code. This feature significantly reduces debugging
time for many code problems by eliminating the need to add printf statements
and other debugging statements to code, and by providing verbose tracing infor-
mation in caseswhere the programmer would normally have needed to single-step
the program in gdb .
This plug-in identifies control points in the GIMPLE code corresponding to con-

ditional statements and function calls, as well as accesses to variables. Arguments
control exactly which statements are logged, andwhich portions of the source code
are to have logging added. The way events are reported is also configurable: log-
ging statements can be printed using fprintf or sent to a custom logging function.
Table 2.5 shows sample output from the call tracer.
We are currently developing an extension to GIMPLE Viz to display the output

from the call-trace plug-in in a visual manner, giving the developer the ability to
watch the internal execution of a program at run-time. We are also expanding the
call-trace plug-in to detect not only conditionals but loops as well by tying into the
C abstract-syntax tree intermediate representation.
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2.1.3 Making Plug-ins from Existing Functionality

In this section, we describe portions of GCC’s functionality that could be extracted
into separate modules for use only when needed. This would have three benefits:
first, it would enforce modularity for these components, ensuring that they can be
maintained separately from the main code base and contributing to their stability
as GCC internals change. Second, it would reduce the turnaround time for fixes
to components that are plug-ins because they would not need to be subject to the
scrutiny that core GCC patches are subjected to, and can be shipped on a faster
release schedule. Third, it would reduce the size of the core GCC code base, re-
sulting in less code for GCC’s core developers to maintain and support, and less
download and compilation time for end-users.

Mudflap. This utility provides pointer-debugging functionality including buffer
overflow detection, matching-based leak detection, and reads to uninitialized ob-
jects. It is implemented as two GIMPLE optimization passes: one that executes
before lowering, or conversion, to SSA (Static Single Assignment) so that all scopes
are intact, and one that executes after lowering and optimization to get an accurate
view of just those memory accesses that have actually been performed. Mudflap
can be converted to a plug-in provided that plug-in hooks are provided at multi-
ple stages in the optimization process. Our plug-in infrastructure supports trans-
formation hooks at all locations where built-in GIMPLE transformations can take
place, making this process straightforward.

gcov and gprof. These utilities consume call-graph information that is generated
by GCC and by the running program, creating runtime profiles of the execution
patterns for code that has been compiled with the -p or -fprofile-arcs flags.
When profiling, GCC modifies the program to include coverage counters embed-
ded in the program that provide runtime coverage information. It also generates a
call-graph for the program. The transformation that performs these tasks runs as a
transformation in a way analogous to Mudflap, but labels basic block edges with
additional information that uses the aux field in the basic block structure, which is
meant to hold miscellaneous transformation-specific data and can be overwritten
by each transformation. This does not present a problem for these transformations,
since they take place in one pass and do not needmodifications of aux to be persis-
tent. However, for other plug-ins that may need to do analyses at multiple times in
compilation it may become desirable to expand aux to support addition of custom
fields, perhaps keyed on a string, at runtime.

2.1.4 Future Work

Once the groundwork is in place that allows GCC transformations to be devel-
oped as plug-ins, we anticipate that many new transformations will be developed.
In this section, we outline future applications of plug-ins, some of which we are
currently developing for our own research.

Transformations in Python. Some developers only want to perform straightfor-
ward analyses or transformations that use the GIMPLE API. To reduce develop-
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ment time for these developers, we are developing a plug-in that will expose the
GIMPLE API to Python scripts. This plug-in links against the Python library and
executes a user-specified Python script for each function being translated. It cur-
rently allows read-only access to basic blocks and trees; we are adding support for
viewing and editing the control-flow graph, adding and removing statements, and
modifying trees. In addition to reducing development time, this plug-in will allow
developers to use Python data structures, reducing implementation time for opti-
mizations that use sophisticated algorithms to perform static analyses on GIMPLE
code.

Library call error detection. When developing systems software, programmers
frequently add large amounts of error checking for library function calls to de-
tect problems that are ironed out in the early stages of development. This error-
checking adds to code size, reduces code readability, and takes time. In addition,
retroactively adding error-checking onto existing code if it fails can be a significant
time investment. A GIMPLE transformation plug-in could be used to add error-
checking to code at compile time, optionally warning when the code is not written
to check the result of calls that commonly fail.

Interface profiling. Threaded applications typically have points at which threads
wait for responses from other threads. These can take several forms: functions that
are called to perform synchronous requests, or locks that the programs block on
until data is ready. Additionally, even single-process applications can spend time
waiting for library functions or system calls to complete. A GIMPLE transforma-
tion plug-in could accept a list of locks and interface functions to profile, and add
entry-exit profiling to these locks and functions. This would be coupled to a run-
time library that determines the amount of time spent waiting for these interfaces,
credited to the functions that waited for them.

2.1.5 Conclusion

We have described a framework that we developed that allows GCC to load and
execute plug-ins that implement custom GIMPLE transformations. This frame-
work offers three compelling benefits:

• it reduces development time for new GCC transformations;
• it allows transformations to be developed and distributed that would other-
wise be difficult to use or not available at all; and

• it reduces the workload for the GCC core developers by reducing GCC’s code
size and allowing many transformations to be maintained separately.

We have shown a verbose-dump plug-in and a compatible Java-based visual-
izer that help GCC developers develop and debug their transformations. We have
also shown a call-trace plug-in that tracks function calls, variable accesses, and
conditionals, providing a detailed view of the execution of a program. In addition
to these existing plug-ins, we have shown examples of existing functionality in
GCC that could be converted to plug-ins, and examples of new functionality that
do not exist yet but would be well-suited to implementation as plug-ins.
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2.2 Debugging

Traditionally, debuggers have been defined as command-line tools that have a rel-
atively standard set of functions, controlled by a command-line interpreter. This
kind of debugger is also called an source-level debugger. The interpreter evaluates
expressions written in a language very similar to the original source code, using
type information embedded by the compiler and data from a paused process or
process image. Examples of source-level debuggers include GDB [19] and dbx [62].
The core mechanisms used by these tools are:

Process control: Modern Unix kernels provide debuggers with interfaces to stop,
start, and single-step processes. Most other operations a debugger performs
require a process to be paused first. Operating-system support for process
control varies widely. Linux provides a system call, ptrace , which imple-
ments process stopping, starting, and single-stepping as kernel facilities [27].
Solaris exposes this functionality to user-space through the /proc/ pid/ctl

file, which is replicated for every process and every thread [42]. Mac OS X ex-
ports this functionality through the Mach task and thread port interfaces [2].

Watchpoints and signal handling: Users frequently want to stop a process when
a particular event occurs, including when a signal arrives and when the pro-
cess touches a particular area of memory. Debuggers can trace signals in var-
ious ways: Linux and Mac OS X provide the ability to trace signals through
the ptrace interface. (Mac OS X does not provide Mach interfaces to do so
because Mach does not use signals.) Solaris provides signal tracing via the
/proc/ pid/ctl interface. Watchpoints are typically implemented using ded-
icated CPU support, typically implemented as watch registers [72].

Memory inspection: Reading and writing a process’s memory violates isolation,
so this too requires special kernel support. It is nonetheless necessary for
inspection of a program’s variables, as well as the debugging information
necessary to interpret the program’s execution state. Linux and Solaris pro-
vide a special file that allows a debugger to read from a process’s memory
( /proc/ pid/mem on Linux, and /proc/ pid/as on Solaris), although Linux’s
version does not allow writing due to a security hole. Mac OS X provides
a Mach call, mach vm remap , to map another task’s memory into the current
task’s address space [56].

Source-level debuggers are a well-understood area; however, there are three
areas in which they fall short of the requirements of programmers today. First,
the source-level debugger interface is locked into a particular interaction model.
Modern development environments such as Xcode [31] and Eclipse [21] must con-
sequently rely on slow, text-only interfaces to the debugger. Second, source-level
debugging is slow; the fact that the debugger is external to the process and typi-
cally interprets its command languagemakes it unsuitable for operations that need
to be performed often, like verifying that a particular lock is held each time a vari-
able is accessed [57]. Third, source-level debugging does not permit maintenance
of auxiliary data structures to keep track of information, preventing checks like
stale memory detection.
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In this section, we will discuss existing alternatives to source-level debugging
that others have developed, as well as interposition methods we have developed.

2.2.1 Operating system and hardware-assisted debugging

As we saw in our discussion of source-level debuggers, operating systems and
hardware provide considerable support for debugging, which is exploited by a
variety of tools; we will discuss some of these below.

The Solaris modular debugger. Solaris provides extensive user-level support for
debugging [43]. The Solaris modular debugger, mdb, provides an API that allows
programmers to write custom debugging tools that exploit these APIs [55]. Pro-
grammers implement these tools as modules, which they can compile as object files
using a C compiler and load into mdb, allowing maintenance of auxiliary data
structures using the standard C heap allocation APIs. The debugger provides a
uniform command-line interface that allows users to compose the functionality
provided by these modules, allowing quick inspection of large data structures and
maintenance of auxiliary data structures. mdb can debug both user-space targets
and the Solaris kernel, and Solaris developers have provided an extensive module
infrastructure for debugging memory, inter-process communications, and other
subsystems.

DTrace. Although its compiled module support makes mdbmuch more versatile
than conventional source-level debuggers, mdbstill pauses the process to perform
its inspection. This makesmdb’s approach unsuitable for production environments
and for diagnosing timing-sensitive bugs like performance bottlenecks and races.
DTrace is an event-processing system that is intended to operate autonomously on
a running system [11]. It runs inside the operating system’s kernel, and can moni-
tor events both in the kernel and in user processes. Users interact with DTrace by
writing scripts and compiling them into a restricted byte-code, which runs in a vir-
tual machine inside the kernel, reducing context-switch latencies and performing
data collection and aggregation without requiring interaction with the user.

Hardware counter overflowprofiling. Manymicroprocessors include performance
counters that record instruction counts, cache misses, cache invalidations, pipeline
stalls, branch mispredictions, and other statistics [35]. These counters increment
each time a particular event occurs, and often generate CPU interrupts when they
overflow. The operating system can read from and write to these registers. Many
tools use these counters to measure overall execution characteristics [12], allowing
the developer to get a general view of an application’s execution characteristics.
In cases where a counter overflow generates an interrupt, many tools also provide
the ability to sample these events to determine their causes, by loading the counter
with a value very close to an overflow and inspecting the code that caused the
interrupt when an overflow occurs [75].

Hardware-assisted memory profiling. All modern microprocessors intended for
server or desktop use have memory-management units. Operating systems take
advantage of this hardware not only to provide isolation, but to measure appli-
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cations’ usage of memory. The canonical two-handed clock algorithm takes ad-
vantage of MMU page usage bits, swapping out unused pages [66]. Although the
granularity of this approach is limited to the system’s page size, SafeMem demon-
strates that similar protections are possible using ECC memory, providing cache-
line granularity [51]. To determine whether a particular cache-line is used, Safe-
Mem disables ECC on it, scrambles it in a reversible manner, and then re-enables
ECC. The ECC check is performed on the cache line when it is used; cache lines for
which no ECC errors come in are consequently not being used. SafeMem uses this
approach for bounds-checking as well, putting bad data into ECC lines to either
side of a valid allocation. ElectricFence applies a similar approach using only the
MMU [49].

2.2.2 Binary modification

When specific hardware support is unavailable, or to avoid the kernel-user context
switches associated with hardware interaction, debuggers can rewrite the binary
representation of the program being debugged. This can be accomplished in one
of two ways. First, a tool can modify a binary before use; second, a tool can instru-
ment a running binary. We will discuss examples of both.

ATOM. ATOM is a library that programmers can use to implement instrumen-
tation tools [60]. Tools built with ATOM accept a program binary and add in-
strumentation code to it statically—that is, without running the program. ATOM-
based instrumentation tools work by inserting the instrumentation code into free
space between segments, and inserting calls to that instrumentation at relevant
points in the executable. This is done to avoid having to modify offsets in the
executable, which has already been linked and would be difficult to relocate again.

Kerninst. What ATOMdoes for user binaries, Kerninst does for a running Solaris
kernel [65]. The tool takes object files containing instrumentation code and inserts
them into the Solaris kernel, including any and all installed loadable modules,
at runtime. This is done via a springboard mechanism: the assembly instruction
before which instrumentation is to be inserted is placed at the beginning of a new
piece of assembly code, which also includes the instrumentation function. A ba,a
instruction, an unconditional branch that annuls the instruction in its delay slot, is
inserted in its place; however, on the SPARC architecture, branches can only target
code locations within 8 megabytes of the branch instruction. In most cases, there is
not sufficient room to place the entire instrumentation function this close, but there
is enough room to place a small springboard, which contains a call instruction
that jumps to the actual instrumentation function, and a nop for its delay slot.

2.2.3 Compiler-assisted debugging

Binary modification has two problems. First, inserting instrumentation code into
a program is difficult to do without performing a full relocation afterward. This is
because code is tightly packed and there is no room to insert code in-line, meaning
that instrumentation code must be located outside the instruction stream, reducing
performance and increasing implementation complexity. Second, instrumentation
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does not have access to all the rich type information and high-level structural infor-
mation that the source code contains. Inserting instrumentation using the compiler
solves both of these problems: it takes place before linking, and instrumentation
tools have full access to the compiler’s intermediate representations.

gprof. The gprof utility [24] post-processes data generated by specially com-
piled programs. The GNU C compiler can be instructed, via the -pg parameter,
to instrument each time a function returns control to its caller, in such a way that
they will increment a counter corresponding to the caller-callee pair. This pro-
duces a raw profile which is stored in an external file, gmon.out . The gprof
tool uses this file to generate a call graph, identifying common calling sequences
and cycles. This information is combined with information derived from program-
counter sampling to produce a profile of the execution of the program.

2.2.4 Fixed tracepoints

Binary instrumentation and compiler-based instrumentation introduce significant
implementation complexity. For some tasks, it is sufficient to simply modify the
source code being instrumented by hand. This is particularly useful when instru-
menting high-level events that cannot be inferred by compilers.

Lockmeter. The Lockmeter utility is a profiler for spin-lock access in the Linux
kernel [7]. It consists of a patch that makes wrappers for the spin-lock access
macros in the Linux kernel. Each time the wrappers are invoked, the current pro-
gram counter is recorded. Lockmeter maintains a hash table of program counters
for locations where locks are taken and released, to which each location is added
each time it is first seen. The addresses of the locks taken, and how long they were
held, are stored in a separate array, and can be used to generate a profile of lock
accesses. This profile can be used to find bottlenecks that limit SMP scalability. To
speed up access to the lock array, which is a read-write data structure, independent
versions are kept for each processor and data is only aggregated when necessary.

Linux Trace Toolkit. This system instruments a variety of events in the Linux ker-
nel, and allows filtering and formatting of these events and their contexts before
logging to a disk file [74]. It instruments a cross-section of kernel events: system
call entry and exit, interrupts, events related to processes and the file system, VM
and cache events, and networking and IPC events, among others. Like Lockmeter,
the instrumentation consists of a patch to the Linux kernel source code. When in-
strumentation functions are invoked, a trace module is invoked. This trace module
filters events based on event type, process, user, or group ID, and augments them
with information such as CPU ID or the instruction pointer of the calling process
(in the case of a system call). This information is stored in a buffer, which is peri-
odically swapped with another buffer that is exposed to user logging processes via
the /proc interface. The authors developed a graphical tool to visualize events,
as well as showing all context switches between user-space and the kernel, as well
as different user-space applications.
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Chapter 3

Controlling Overhead

A central component of our proposed system is the mechanism that we use to en-
sure that overhead is predictable and controllable. As we will see in Section 3.3,
overhead-control mechanisms typically fall into one of two categories. Mecha-
nisms in the first category have a rate control that they autonomously reduce when
particular targets are met. This rate control is not an overhead control; rather, it
represents a best-effort method for reducing overhead. The second category at-
tempts to minimize overhead using some non-quantitative approach.
In Section 3.1, we discuss our first approach, Monte Carlo Monitoring (MCM)

which falls into the first category, and demonstrate Aristotle, a system based on
it for detecting reference-counting bugs in the Linux kernel. In MCM, the goal is to
observe some target number of events and then reduce the sampling rate. Then, in
Section 3.2, we show our second approach, Software Monitoring with Controlled
Overhead (SMCO), which adjusts monitoring to achieve a set overhead target.
Our proposal is based on SMCO. Finally, in Section 3.3, we discuss other work in
the area of overhead reduction.

3.1 Reducing Overhead as Confidence Increases

In this section, we present a new approach to runtime verification that utilizes clas-
sical statistical techniques such as Monte Carlo simulation, hypothesis testing, and
confidence interval estimation. Our algorithm, MCM, uses sampling-policy automata
to vary its sampling rate dynamically as a function of the current confidence it
has in the correctness of the deployed system. We implemented MCMusing the in-
strumentation architecture discussed in Section 2.1. For a case study involving the
dynamic allocation and deallocation of objects in the Linux kernel, our experimen-
tal results show that Aristotle reduces the runtime overhead due to monitoring,
which is initially high when confidence is low, to levels low enough to be accept-
able in the long term as confidence in the monitored system grows.
In previous work [25], Grosu and Smolka presented theMC2 algorithm forMonte

Carlo Model Checking. Given a (finite-state) reactive program P , a temporal prop-
erty ϕ, and parameters ǫ and δ, MC2 samples up to M random executions of P ,
where M is a function of ǫ and δ. Should a sample execution reveal a counter-
example, MC2 answers false to the model-checking problem P |= ϕ. Otherwise, it
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decides with confidence 1 − δ and error margin ǫ, that P indeed satisfies ϕ. Typi-
cally the numberM of executions thatMC2 samples is much smaller than the actual
number of executions of P . Moreover, each execution sampled starts in an initial
state of P , and terminates after a finite number of execution steps, when a cycle
in the state space of P is reached. In this paper, we show how the technique of
Monte Carlo model checking can be extended to the problem ofMonte Carlo mon-
itoring and runtime verification. Our resulting algorithm, MCM, can be seen as a run-
time adaptation of MC2, one whose dynamic behavior is defined by sampling-policy
automata (SPA). Such automata encode strategies for dynamically varying MCM’s
sampling rate as a function of the current confidence in the monitored system’s
correctness. A sampling-policy automaton may specify that when a counterexam-
ple is detected at runtime, the sampling rate should be increased since MCM’s confi-
dence in the monitored system is lower. Conversely, if afterM samples the system
is counterexample-free, the sampling rate may be reduced since MCM’s confidence
in the monitored system is greater.
The two key benefits derived from an SPA-based approach to runtime monitor-

ing are the following:

• As confidence in the deployed system grows, the sampling rate decreases,
thereby mitigating the overhead typically associated with long-term runtime
monitoring.

• Because the sampling rate is automatically increased when the monitored
system begins to exhibit erroneous behavior (due either to internal malfunc-
tion or external malevolence), Monte Carlo monitoring dynamically adapts
to internal mode switches and to changes in the deployed system’s operating
environment.

A key issue addressed in our extension of Monte Carlo model checking to the
runtime setting is: What constitutes an adequate notion of a sample? In the case of
Monte Carlo runtime verification, the monitored program is already deployed, and
restarting it after each sample to return the system to an initial state is not a practi-
cal option. Given that every reactive system is essentially a sense-process-actuate
loop, in this paper we propose weaker notions of initial state that are sufficient for
the purpose of dynamic sampling. One such notion pertains to the manipulation
of instances of dynamic types: Java classes, dynamic data structures in C, etc. In
this setting, a sample commences in the program state immediately preceding the
allocation of an object o and terminates in the program state immediately follow-
ing the deallocation of o, with these two states being considered equivalent with
respect to o.
To illustrate this notion of runtime sampling, we consider the problem of veri-

fying the safe use of reference counts (RCs) in the Linux virtual file system (VFS). The
VFS is an abstraction layer that permits a variety of separately-developed file sys-
tems to share caches and present a uniform interface to other kernel subsystems
and the user. Shared objects in the VFS have RCs so that the degree of sharing of
a particular object can be measured. Objects are placed in the reusable pool when
their RCs go to zero, objects with low RCs can be swapped out, but objects with
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high RCs should remain in main memory. Proper use of RCs is essential to avoid
serious correctness and performance problems for all file systems.
To apply Monte Carlo runtime monitoring to this problem, we have defined

Real Time Linear Temporal Logic formulas that collectively specify what it means
for RCs to be correctly manipulated by the VFS. We further implemented the MCM

algorithm within the Aristotle environment for Monte Carlo monitoring. Aristotle
provide a highly extensible, GCC-based architecture for instrumenting C programs
for the purposes of runtime monitoring. Aristotle realizes this architecture via
a simple modification of the GNU C compiler (GCC) that allows one to load an
arbitrary number of plug-ins dynamically and invoke code from those plug-ins at
the tree-optimization phase of compilation.
Using a very simple sampling policy, our results show that Aristotle brings run-

time overhead, which is initially very high when confidence is low, down to long-
term acceptable levels. For example, a benchmark designed to highlight overheads
under worst-case conditions exhibited a 10x initial slowdown; 11 minutes into the
run, however, we achieved 99.999% confidence that the error rate for both classes
of reference counts was below one in 105. At this point, monitoring for that class
was reduced, leaving an overhead of only 33% from other monitoring.
In addition to reference counts, Aristotle currently provides Monte Carlo moni-

toring support for the correct manipulation of pointer variables (bounds checking),
lock-based synchronization primitives, and memory allocation library calls. Due
to its extensible architecture based on plug-ins, support for other system features
can be easily added.
The rest of the section is organized as follows. Section 3.1.1 describes our sys-

tem design. Section 3.1.2 presents our Monte Carlo runtime monitoring algorithm.
Section 3.1.3 details the Aristotle design and implementation. Section 3.1.4 gives
an example application of Aristotle, and Section 3.1.5 contains our concluding re-
marks and directions for future work.

3.1.1 Aristotle Design Overview

Figure 3.1 depicts the various stages of operation for Aristotle as it processes a
system’s source code. Amodified version of the GNUC compiler (GCC) parses the
source code, invoking an instrumenting plug-in to process the control flow graph for
each function. The instrumenting plug-in inserts calls to verification code at each
point where an event occurs that could affect the property being checked. The
verification code is part of a runtime monitor, which maintains auxiliary runtime
data used for property verification and is bound into the software at link time.
The runtime monitor interacts with the confidence engine, which implements

a sampling policy based on our Monte Carlo runtime monitoring algorithm (de-
scribed in Section 3.1.2). The confidence engine maintains a confidence level for
the properties being checked and may implement a sampling policy automaton
to regulate the instrumentation or perform other actions. This regulation can be
based on changes in the confidence level and could respond to other events in the
system, such as the execution of rarely-used code paths.
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Figure 3.1: Architectural overview of the Aristotle system.

3.1.2 Monte Carlo Monitoring

In this section, we present our MCMalgorithm for Monte Carlo monitoring and
runtime verification. We first present MCMin the context of monitoring the correct
manipulation of reference counts (RCs) in the Linux virtual file system (VFS). RCs
are used throughout the Linux kernel, not only to prevent premature deallocation
of objects, but also to allow different subsystems to indicate interest in an object
without knowing about each other’s internals. Safe use of reference counts is an
important obligation of all kernel subsystems. We then consider generalizations of
the algorithm to arbitrary dynamic types.
In the case of the Linux VFS, the objects of interest are dentries and inodes, which

the VFS uses to maintain information about file names and data blocks, respec-
tively. The VFS maintains a static pool of these objects and uses RCs for allocation
and deallocation purposes: a free object has an RC of zero and may be allocated
to a process; an object with a positive RC is considered in-use and may only be
returned to the free pool when the state of the RC returns to zero. Additionally, an
object with a high reference count is less likely to be swapped out to disk.
To apply Monte Carlo runtime monitoring to this problem, we first define the

properties of interest. These are formally defined in Table 3.1.
Each of these properties is formalized using Real-Time Linear Temporal Logic [6],

where G, F and X are unary temporal operators. G requires the sub-formula over
which it operates to be true Globally (in all states of an execution), F requires it to
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(stI) ∀o : C. G o.rc ≥ 0 RC values are always non-negative.
(trI) ∀o : C. G |o′.rc−o.rc | ≤ 1 RC values are never incremented or

decremented by more than 1.
(lkI) ∀o : C. G o′.rc 6= o.rc ⇒

XF≤T o′.rc ≤ o.rc
A change in the value of an RC is always
followed within time T by a decrement.

Table 3.1: Reference-count correctness properties.

hold Finally (in some eventual state of an execution), and X requires it to hold neXt
(in the next state of an execution). Also, an unprimed variable refers to its value in
the current state and the primed version refers to its value in the next state. Each
property uses universal quantification over all instances o of a dynamic type C.
The first property is a state invariant (stI) while the second property is a transition

invariant (trI). The third property is a leak invariant (lkI) that is intended to capture
the requirement that the RC of an actively used object eventually returns to zero.
It is expressed as a time-bounded liveness constraint, with time bound T .
Since each of these properties can be proved false by examining a finite exe-

cution, they are safety properties, and one can therefore construct a deterministic
finite automaton (DFA) A that recognizes violating executions [34, 70]. The syn-
chronous composition (product) CA of C with A is constructed by instrumenting
C with A such that C violates the property in question iff an object o of type C can
synchronize with A so as to lead A to an accepting state.
We view an object o of type C as executing in a closed system consisting of

the OS and its environment. We assume that the OS is deterministic but the en-
vironment is a (possibly evolving) Markov chain; i.e., its transitions may have as-
sociated probabilities. As a consequence, CA is also a Markov chain. Formally,
a Markov chain M = (X, E, p, p0) consists of a set X of states; a set E ⊆ X × X
of transitions (edges); an assignment of positive transition probabilities p(x, y) to all
transitions (x, y) so that for each state x, Σy∈Xp(x, y) = 1; and an initial probability
distribution p0 on the states such that Σx∈Xp0(x) = 1. A finite trajectory of M is the
finite sequence of states x = x0, x1, . . . , xn, such that for all i, (xi, xi+1) ∈ E and
p(xi, xi+1) > 0. The probability of a finite trajectory x = x0, x1, . . . , xn is defined as
PM(x) = p0(x0)p(x0, x1) · · · p(xn−1, xn).
Each trajectory of CA corresponds to an object execution. The more objects dis-

playing the same execution behavior, the higher the probability of the associated
trajectory. Hence, although the probabilities of CA are not explicitly given, they
can be learned via runtime monitoring.
Assuming that kernel-level objects have finite lifetimes (with the possible ex-

ception of objects such as the root file-system directory entry), and that state is
dependent on the object’s history, CA is actually a Markov tree, since no object goes
backward in time. The leaves of CA fall into two categories: (i) violation-free ex-
ecutions of objects of type C which are deallocated after their RCs return to zero,
and (ii) executions violating property stI, trI, or lkI.
Thus, a trajectory in CA can be viewed as an object execution from its birth to

its death or to an error state representing a property violation. We consider such a
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trajectory to be a Bernoulli random variable Z such that Z = 0 if the object terminated
normally, and Z = 1 otherwise. Further, let pZ be the probability that Z = 1 and
qZ = pZ − 1 be the probability that Z = 0. The question then becomes: how many
random samples of Z must one take to either find a property violation or to conclude with
confidence ratio δ and error margin ǫ that no such violation exists?
To answer this question, we rely, as we did in the case of Monte Carlo model

checking, on the techniques of acceptance sampling and confidence interval estimation.
We first define the geometric random variable X , with parameter pZ , whose value
is the number of independent trials required until success, i.e., until Z = 1. The
probability mass function of X is p(N) = P[X = N ] = qN−1

Z pZ , and the cumulative
distribution function (CDF) of X is

F (N) = P[X ≤ N ] =
∑

n≤N

p(n) = 1 − qN
Z

Requiring that F (N)=1−δ for confidence ratio δ yields:

N =
ln(δ)

ln(1 − pZ)

which provides the numberN of attempts needed to find a property violation with
probability 1−δ.
In our case, pZ is unknown. However, given error margin ǫ and assuming that

pZ ≥ ǫ, we obtain that

M =
ln(δ)

ln(1 − ǫ)
≥ N =

ln(δ)

ln(1 − pZ)

and therefore that P[X ≤ M ] ≥ P[X ≤ N ] = 1 − δ. Summarizing, forM = ln(δ)
ln(1−ǫ)

we have:

pZ ≥ ǫ ⇒ P[X ≤ M ] ≥ 1 − δ (3.1)

Inequality 3.1 gives us the minimal number of attempts M needed to achieve
success with confidence ratio δ under the assumption that pZ ≥ ǫ.
The standard way of discharging such an assumption is to use statistical hypoth-

esis testing [46]. We define the null hypothesis H0 as the assumption that pZ ≥ ǫ.
Rewriting inequality 3.1 with respect to H0 we obtain:

P[X ≤ M |H0] ≥ 1 − δ (3.2)

We now perform M trials. If no counterexample is found, i.e., if X > M , then
we reject H0. This may introduce a type-I error: H0 may be true even though
we did not find a counterexample. However, the probability of making this error
is bounded by δ; this is shown in inequality 3.3 which is obtained by taking the
complement of X ≤ M in inequality 3.2:

P[X > M |H0] < δ (3.3)
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With the above framework in place, we now present MCM, our Monte Carlo
Monitoring algorithm. MCM, whose pseudo-code is given in Table 3.2, utilizes DFA
A to monitor properties stI, trI, and lkI, while keeping track of the number of sam-
ples taken.

input: ǫ, δ, C, t, d;
global: tn, cn;

tn = cn = ln( δ)/ln(1- ǫ); set(timeout,d);

when (created(o:C) && flip())
if (tn > 0) { tn--; o.to=t; o.rc=0 };

when (destroyed(o:C)) {
cn--; if (cn = 0) monitoring stop; }

when (monitored(o:C) && modified(o.rc)) {
if (o ′.rc < 0 | | |o′.rc-o.rc |> 1) safety stop; / * stI, trI * /
if (o.rc-o ′.rc == 1) o.to = t; }

when (timeout(d))
for each (monitored(o:C)) {
o.to--; if (o.to == 0) leak stop; } / * lkI * /

Table 3.2: The MCM algorithm.

MCMconsists of an initialization part, which sets the target (tn ) and current
(cn ) number of samples, and a monitoring part, derived from the properties to be
verified. The latter is a state machine whose transitions (when statements) are trig-
gered either by actions taken by objects of type Cor by a kernel timer thread. The
timer thread wakes up every d time units, and the time window used to sample
object executions is t∗d, where t and d are inputs to the algorithm. When an object
o:C is created and the random boolean variable flip() is true, the target number
of samples is decremented. The random variable flip() represents one throw of
a multi-sided, unweighted coin with one labeled side, and returns true precisely
when the labeled side comes up. If enough objects have been sampled (tn=0 ),
no further object is monitored. For a monitored object, its reference count rc and
timeout interval to are appropriately initialized. When an object is destroyed, cn
is decremented. If the target number of samples was reached (cn=0 ), the required
level of confidence is achieved and monitoring can be disabled. When the RC of a
monitored object is altered, we check for a violation of safety properties stI or trI,
stopping execution if one has occurred. If an object’s RC is decremented, we reset
its timeout interval; moreover, should its RC reach zero, the object is destroyed or
reclaimed. When the timer thread awakens, we adjust the timeout interval of all
monitored objects. If an object’s timeout interval has expired, leak invariant lkI has
been violated and the algorithm halts.
Due to the random variable flip() , MCMdoes not monitor every instance o of

type C. Rather, it uses a sampling-policy automaton to determine the rate at which
instances of C are sampled. For example, consider the n-state policy automaton
PAn that, in state k, 1 ≤ k ≤ n, MCMwill only sample o if flip() returns true for
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a 2k-sided coin. Moreover, PAn makes a transition from state k to k + 1 mod n
after exactlyM samples. Hence, afterM samples (without detecting an error) the
algorithm uses a 4-sided coin, after 2M samples an 8-sided coin, etc. For a given
error margin ǫ, the associated confidence ratio δ will then be (1 − ǫ)M , (1 − ǫ)2M ,
(1−ǫ)3M and so on. PAn alsomakes a transition from state k to j, where j < k, when
an undesirable event occurs, such as a counterexample, or perhaps an execution of
as yet unexecuted code. Sampling policies such as the one encoded by PAn assure
that MCMcan adapt to environmental changes, and that the samples taken by MCM

are mutually independent (as n tends toward infinity).
MCMis very efficient in both time and space. For each random sample, it suffices

to store two values (old and new) of the object’s RC. Moreover, the number of
samples taken is bounded by M . That M is optimal follows from inequality 3.3,
which provides a tight lower bound on the number of trials needed to achieve
success with confidence ratio δ and lower bound ǫ on pZ .
Our kernel-level implementation of MCMis such that if a violating trajectory is

observed during monitoring, it is usually the case that a sufficient amount of di-
agnostic information can be gleaned from the instrumentation to pinpoint the root
cause of the error. For example, if an object’s RC becomes negative, the application
that executed the method that led to this event can be determined.
In another example, if the object’s RC fails to return to zero and a leak is sus-

pected, diagnostic information can be attained by identifying the object’s contain-
ing type. Suppose the object is an inode; we can use this information to locate the
corresponding file name and link it back to the offending application.
The MCMalgorithm of Figure 3.2 can be extended by expanding the class of

correctness properties supported by the algorithm. The third and fourth when
branches of the algorithm correspond to safety or bounded-liveness checks, re-
spectively. Hence, the MCMalgorithm can be generalized in the obvious way, to
allow the treatment of arbitrary safety and bounded-liveness properties for any
reactive program involving dynamic types. For example, in addition to reference
counts, Aristotle currently provides Monte Carlo monitoring support for the cor-
rect manipulation of pointer variables (bounds checking), lock synchronization
primitives, and memory allocation library calls. Due to its extensible, plug-in-
oriented architecture, support for other properties can easily be added.

3.1.3 Implementation

In Aristotle, we instrument a program with monitoring code using a modified ver-
sion of the GNU C compiler (GCC), version 4. We modified the compiler to load
an arbitrary number of plug-ins and invoke code from those plug-ins at the tree-
optimization phase of a compilation. At that point in the compilation, the abstract
syntax tree has been translated into the GIMPLE intermediate representation [22],
which includes syntactic, control-flow, and type information. A plug-in is invoked
that can use the GCCAPIs to inspect each function body in turn and add or remove
statements. The plug-in can even invoke other GCC passes to extract information;
for example, one plug-in we developed for bounds checking uses the reference-
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analysis pass to obtain a list of all variables used by a function.
Our use of GCC as the basis for Aristotle offers several advantages. First, it can

be used to instrument any software that compiles with GCC. Prior static-checking
and meta-compilation projects have used lightweight compilers [9, 28] that do not
support all of the language extensions and features of GCC. Many of these exten-
sions are used by open-source software, particularly the Linux kernel. Second, the
modular architecture of Aristotle allows programmers to instrument source-code
without actually changing it. Third, Aristotle users can take advantage of GCC’s li-
brary of optimizations and ability to generate code for many architectures. Adding
GCC support for plug-ins is very simple; we added a command-line option to load
a plug-in and changed the way GCC is built to expose GCC’s internal APIs to plug-
ins.
The information collected at the instrumented locations in the system’s source

code is used by runtimemonitors. A runtimemonitor is a static library, linkedwith
the system at compile time. The runtime monitor contains checking code which
verifies that each detected event satisfies all safety properties; furthermore, it may
spawn threads that periodically verify that all bounded liveness properties hold.
The monitor interfaces with the confidence engine, reporting rule violations and
regulating its operation according to the confidence engine’s instructions, which
reflect the operation of a sampling-policy automaton. Finally, it may also perform
other operations, like verbose logging and network-based error reporting, which
vary from application to application.

3.1.4 Case Study: The Linux VFS

The Linux Virtual File System (VFS) is an interface layer that manages installed
file systems and storage media. Its function is to provide a uniform interface to
the user and to other kernel subsystems, so that data on mass storage devices can
be accessed in a consistent manner. To accomplish this, the VFS maintains unified
caches of information about file names and data blocks: the dentry and inode caches,
respectively. The entries in these caches are shared by all file systems. The VFS
and file systems use reference counts to ensure that entries are not reused without
a file system’s knowledge and to prioritize highly-referenced objects for retention
in main memory as opposed to being swapped out.
The fact that these caches are shared by different file systems, implemented by

different authors and of varying degrees of maturity, introduces the potential for
system resource leaks and faults arising from misuse of cached objects. For ex-
ample, a misbehaving file system may prevent a storage device from being safely
removed because the reference count for an object stored to that device was not
safely reduced to zero. Worse, a misbehaving file system could hamper the perfor-
mance of other file systems by failing to decrement the reference counts of cache
data structures.
Using the Aristotle framework, we developed a tool that monitors reference

counts in the Linux VFS. As described in Section 3.1.2, we enforced a state invariant
(stI), a transition invariant (trI), and a leak invariant (lkI).
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The plug-in for this case study instruments every point in the source code at
which a reference count was modified. Because we had access to type information,
we were able to classify reference counts for dentry and inode objects. Whenever
it is invoked, the runtime monitor checks the operation to ensure that the safety
properties hold. Additionally, if the operation is a decrement, the monitor updates
a timestamp for that reference count, which is maintained in an auxiliary data
structure. A separate thread periodically traverses the data structure to verify that
all reference counts have been decremented more recently than time interval T .
Additionally, all checked operations are optionally logged to disk.
The confidence engine maintains separate confidence levels for dentry and

inode reference counts using our Monte Carlo model checking algorithm. For clar-
ity, we demonstrate the system with a sampling policy automaton that disables
checking when a 99.999% confidence level has been reached that the error rate for
that reference counter category is less than 1 in 105 samples. As discussed in Sec-
tion 3.1.2, a sample is defined as the lifetime of a cached object, that is, the period
when the object’s reference counter is nonzero. Other sampling policies, such as
flipping an n-sided coin where n increases as confidence increases to determine
whether to sample a given object, allow more fine-grained trade-offs of perfor-
mance vs. confidence; additionally, it may be advisable to increase the sampling
rate as the environment changes.
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Figure 3.2: Overhead reduction for the directory-tree micro-benchmark as confidence increases

Figure 3.2 shows the performance overhead of the system with logging and
checking enabled, logging disabled but checking enabled, and no instrumenta-
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tion, under a micro-benchmark designed to exercise the file system caches. In each
run, the micro-benchmark creates a tree of directories, does a depth-first traversal
of that tree, and deletes the tree. Because directories are being created and deleted,
on-disk data is being manipulated, causing creation and deletion of objects in the
inode cache. Additionally, the directory traversal stress-tests the dentry cache. We
observe an initial 10x overhead as both dentry and inode reference counts are being
monitored and all accesses are being logged. After five runs, which take six min-
utes in total, dentry confidence reaches the target, and overhead falls to a factor of
three. Finally, five minutes later, after eleven runs, overhead drops to 33% when
inode confidence reaches the target. The remaining overhead is a characteristic of
our prototype; we expect optimization to reduce it significantly.
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Figure 3.3: Overhead reduction for the compilation of GNU tar as confidence increases

Figure 3.3 shows the effects under a benchmark that puts less stress on the
file system. Compiling the GNU tar utility involves less cache activity than the
micro-benchmark described above, so the overheads from monitoring are lower;
however, it also takes longer for confidence to reach the target. Initial overhead
with logging was 46%. After ten runs, or eleven minutes, this overhead dropped
to 14% as dentry confidence reached the target. Forty minutes later, at the 55th
run, overheads dropped to 11% as inode confidence reached its target as well.

3.1.5 Conclusion

We have presented the MCMalgorithm for Monte Carlo monitoring and runtime
verification, which uses sampling-policy automata to vary its sampling rate dy-
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namically as a function of the current confidence in the monitored system’s cor-
rectness. We implemented MCMwithin the Aristotle tool environment, an exten-
sible, GCC-based architecture for instrumenting C programs for the purposes of
runtime monitoring. Aristotle realizes this architecture via a simple modification
of GCC that allows one to load an arbitrary number of plug-ins dynamically and
invoke code from those plug-ins at the tree-optimization phase of compilation.
Our experimental results show that Aristotle reduces the runtime overhead due to
monitoring, which is initially high when confidence is low, to long-term acceptable
levels as confidence in the deployed system grows.
We are investigating the integration of auxiliary information, such as code cov-

erage, into sampling policies. This would allow, for example, instrumentation to
be increased when a rarely-used section of code is executed.

3.2 Bounding Overhead Using Supervisory Control

In this section, we introduce the new technique of Software Monitoring with Control-
lable Overhead (SMCO). SMCO is formally grounded in control theory, in particular,
the supervisory control of discrete event systems [52, 1]. Overhead control, while max-
imizing confidence, is realized by disabling interrupts generated by the events be-
ingmonitored—and hence avoiding the overhead associatedwith processing these
interrupts—for as short a time as possible under the constraint of a user-supplied
target overhead ot. SMCO can be viewed as the problem of generating an optimal
controller for a specific class of nonlinear systems that can be modeled as the com-
position of a set of timed automata. Our controller is designed in amodularway by
composing a global controller with a set of local controllers, one for each monitored
object in an application. Moreover, SMCO is a general monitoring technique that
can be attached to any system interface or API.
We have applied SMCO to the problems of detecting stale or underutilized mem-

ory and checking for bounds violations. For memory staleness, we make novel use
of the virtual memory hardware by utilizing the mprotect system call to protect
each area suspected of being underutilized. If such an area is in fact accessed,
the program generates a segmentation fault, informing the monitor that the area
is not stale. If the time since the monitor protected an area is longer than a user-
specified threshold, and there were no segmentation faults from that area, then
it is stale. The SMCO controller controls the total overhead of memory under-
utilization checking by enabling and disabling the monitoring of each memory
area appropriately. For bounds checking, we use an approach based on plug-ins
as discussed in Section 2.1.
Experimental results of SMCO’s performance on the Lighttpd Web server,

the vim text editor, and our micro-benchmark suite are encouraging. SMCOmain-
tains bounded overhead well for both applications. When local controllers behave
linearly, SMCO controls overhead precisely; when local controllers behave non-
linearly, it becomesmore challenging for SMCO to control overhead, but results are
still acceptable. For Lighttpd , we also demonstrate a discovery, that one-third of
its heap footprint is completely unused. Our micro-benchmarks demonstrate how
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confidence grows monotonically with the target overhead up to CPU saturation,
and that this is done consistently and predictably. Collectively, our benchmarking
results show that using SMCO, it is indeed possible to achieve high-confidence
monitoring with bounded overhead.
We organize the rest of this section in the following way. Section 3.2.1 explains

SMCO’s control-theoretic approach to bounding overhead while maximizing con-
fidence. Section 3.2.2 presents our architectural framework for SMCO and de-
scribes how we apply it to bounds checking and staleness detection. Section 3.2.3
contains our performance evaluation and Section 3.2.4 offers concluding remarks
and directions for future work.

3.2.1 Control-Theoretic Monitoring

The controller design problem attempts to regulate the input v to a process P , hence-
forth referred to as the plant, to make its output y adhere to a reference input x. The
device that accepts x and y and produces v is called a controller; we write it Q. The
composition of Q and P must make y approximate xwith good dynamic response
and small error (see Figure 3.4).

x
Q P

v y

Figure 3.4: Plant (P) and Controller (Q) architecture.

Runtime monitoring can be beneficially stated as a controller-design problem,
where the controller is the runtime monitor, the plant is a software application and
the reference input x is the target overhead ot. To ensure that the plant is controllable,
one typically instruments the application so that it emits events of interest to the
monitor. The monitor catches these events, and controls the plant by enabling or
disabling event signaling (interrupts). Hence, the plant can be regarded as a discrete
event process.
The classic theory of digital control [17] assumes that the plant and the con-

troller are linear systems. This assumption allows one to apply a rich set of de-
sign and optimization techniques, such as the Z-transform, fast Fourier transform,
root-locus analysis, frequency response analysis, and state-space optimal design.
For nonlinear systems, however, these techniques are not directly applicable, and
various linearization and adaptation techniques must be applied as pre- and post-
processing, respectively.
Because of the enabling and disabling of interrupts, the problem we are consid-

ering is nonlinear: intuitively, the interrupt signal is multiplied by a control signal
which is 1 when interrupts are enabled and 0 otherwise. Although linearization
is one possible approach for this kind of nonlinear system, automata theory sug-
gests a better approach, recasting the controller design (synthesis) problem as one
of supervisory control [52, 1].
The main idea of supervisory control we exploit to enable and disable inter-
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rupts is the synchronization inherent in the parallel composition of state machines.
In this setting, the plant P is a state machine, the desired outcome (tracking the ref-
erence input) is a language L, and the controller design problem is that of design-
ing a controller Q, which is also a state machine, such that the language L(Q‖P ) of
the composition of Q and P is included in L. This problem is decidable for finite
state machines [52, 1].
The monitoring overhead depends on the timing of events and the monitor’s

per-event processing time. The specification language L therefore consists of timed
words a1, t1, . . . , an, tn where each ai is an (access) event and ti is the time at which
ai has occurred. Consequently, the state machines used to model P and Q must
also include a notion of time. Previous work has shown that supervisory control is
decidable for timed automata [3, 73] and for timed transition models [53]. In our set-
ting, we use a more expressive version of timed automata that allows clocks to be
compared to variables, and for such automata decidability is not guaranteed. We
therefore design our controller manually, but we are currently investigating tech-
niques for the automated synthesis of an approximate controller. The controller
we designed consists of the composition of a global controller and a set of local con-
trollers, one for each plant (object in the application software) that we monitor. We
define these two controllers later in this section.

Plant model. We describe the plant P (see Figure 3.5) as an extended timed au-
tomaton whose alphabet consists of input and output events. We use timing con-
straints to label its locations and transitions. These constraints take the form x ∼ c,
where x is a clock, c is a natural constant or variable, and∼ is one of<,≤,=,≥, and
>. We write transition labels in the form [guard] In / Out, Asgn , where guard is
a predicate over the automaton’s variables; In is a sequence of input events of the
form v?e denoting the receipt of value e on channel v; Out is a sequence of output
events of the form y!a denoting the sending of value a on channel y; and Asgn is a
sequence of assignments to the (local) variables. All fields in a label are optional.
A transition is enabled when its guard is true and the event (if specified) has ar-
rived. A transition is not forced to be taken unless letting time flow would violate
the condition (invariant) labeling the current location.

v?en / i=1 v?di / i=0

[i=1] / y!ac

k ≤ M
k ≥ M

True

Figure 3.5: State machine for the plant P of one monitored object.

The plant P has an input channel v where it may receive enable and disable
commands, denoted en and di, respectively. It has an output channel y where it
may send an access message ac. Upon receipt of v?di, the interrupt bit i is set to
zero which prevents the plant from sending further messages. Upon receipt of
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v?en, the interrupt bit is set to one which allows the plant to send messages at
arbitrary moments in time. The plant terminates when the maximum monitoring
timeM , a parameter of the model, is reached; i.e., when the clock k reaches value
M . Initially, i =1 and k =0.

Target specification. The specification for a single controlled plant is given as a
timed language L. Let Ndenote the natural numbers, R+ the positive reals, and A
the set of events. Then:

L = {a1, t1, . . . , an, tn | n ∈ N, ai ∈ A, ti ∈ R
+}

where the following conditions hold:

1. The average overhead o = (n pa)/(tn − t1) is ≤ ot, where pa is the average
event-processing time.

2. If the strict inequality o < ot holds, then the overhead undershoot is due to
time intervals (with low activity) during which all access events are moni-
tored.

The first condition talks only about the mean overhead o within a timed word
w ∈ L. Hence, various policies for handling overhead, and thus enabling/disabling
interrupts, are allowed. The second condition is a best-effort condition which guar-
antees that if the target overhead is not reached, this is only because the plant does
not throw enough interrupts. Our policy, which we describe next, satisfies these
conditions and will also be shown to be optimal in a specific sense.

The local controller. Each monitored plant P has a local controller Q, the state
machine for which is given in Figure 3.6. Within each iteration of its main con-
trol loop, Q disables interrupts by sending message di along v upon receiving an
access event ac along y, and subsequently enables interrupts by sending en along
v. Consider the i-th execution of Q’s control loop, and let τi be the time monitoring
is on within this cycle; i.e., the time between events v!en and y?ac. Let pi be the
time required to process event y?ac, and let di be the delay time until monitoring is
restarted; i.e., until event v!en is sent again. See Figure 3.7 for a graphical illustra-
tion of these intervals. Then ci = τi + pi + di is the total amount of time Q spends
in the i-th cycle, and we refer to oi = pi/ci as the overhead ratio at i.

True
y?ac / v!di,

[ k ≥ d ] / v!en, k=0

k ≤ p
M

[ k ≥ p
m
 ] / p = k , u!k,

k ≤ d
d = p÷o

t
 - p - τ , k = 0  τ = k , k = 0

x?ot / o
t
 = ot x?ot / o

t
 = ot x?ot / o

t
 = ot

Figure 3.6: State machine for local controller Q.

To ensure that oi = ot whenever the plant is throwing access events at a high
rate, the local controller computes di as the least positive integer greater than or
equal to pi/ot − pi − τi. If the plant throws events at a low rate, then all events are
monitored and di = 0. Whenever processing of event y?ac is finished, the local
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controller sends along u the processing time k to the global controller, which is
discussed following the soundness and optimality proofs for the local controller.
The processing time is assumed to lie within the interval [pm, pM ].
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Figure 3.7: Time-line for local controller.

Soundness and optimality of the local controller. We provide informal sound-
ness and optimality proofs for our local controller.

Theorem 3.2.1 (Soundness). The language L(Q‖P ) of the parallel composition of the
local controller Q with the plant P is included in the target specification language L.

Proof. The soundness follows from the definitions of Q and P . If P throws events
at a high rate, then Qmaintains the mean overhead rate o = ot. If P throws events
at a low enough rate, then Q monitors all events, and o < ot. If P alternates be-
tween intervals of high and low rates of event throwing, then o < ot; the difference
between o and ot is due to the low-rate intervals during which all events are mon-
itored.

The optimality condition we consider for the controller is with respect to the
space and time locality of the plant. In particular, a useful property of our controller
is that it tends to monitor a representative sample of “independent” events. This
is because of its fine-grained control strategy; i.e., when the event rate is high,
our controller (briefly) disables interrupts after each processed event. Since, by the
space and time locality of the plant, consecutive events are likely to be similar or
related, this strategy helps avoid monitoring similar events.

Theorem 3.2.2 (Locality-based optimality). The controller Q is optimal with respect to
space and time locality.

Proof. If an event is thrown at time ti by a statement s or memory location m,
then due to space locality, another event is likely to be thrown at a statement t
or memory location n close to s and m, respectively. Therefore, the time tj when
the second event is thrown is also close to time ti. Since Q disables interrupts
immediately following occurrence of an event, optimality follows.

The two applications of SMCO we consider are the detection of stale memory
and bounds violations. For stale memory detection, once an event is thrown, we

33



are certain that the corresponding object is not stale, so we can ignore interrupts
for a definite interval of time, without compromising soundness and at the same
time lowering the monitoring overhead. For array-bounds violations, we would
like to analyze the program in a uniform way. Two bounds violations close to each
other are likely to be caused by the same statement in the program. Hence, the
first interrupt is enough to identify the bug, while also lowering the monitoring
overhead.

The global controller. The local controller Q achieves its target overhead ot only
if the plant P throws events at a sufficiently high rate. Otherwise the mean over-
head o is less than ot. In case we monitor a large number of plants Pi simulta-
neously, it is possible to take advantage of this under-utilization of ot by increas-
ing the overhead ot of those controllers Qi associated with plants Pi that throw
interrupts at a high rate. In fact, we can scale the target overhead ot of all local
controllers Qi with the same factor λ, as the controllers Qj of plants Pj with low
rate of interrupts will not take advantage of this scaling. Furthermore, we do this
every T seconds, a period of time we call the adjustment-interval. The periodic ad-
justment of the local target overheads is the task of the global controller GQ. The
architecture of our overall control framework for SMCO is shown in Figure 3.8.
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Figure 3.8: Overall control architecture.

The timed state machine for the global controller GQ is given in Figure 3.9. It
inputs on x the user-specified target overhead ot, which it then assigns to local vari-
able ogt representing the global target overhead. It further outputs ot/n to the local
controllers and assigns ot/n to local variable ot, representing the target overhead
for the local controllers. The idea is that the global target overhead is evenly parti-
tioned among the n local controllers. It also maintains an array of total processing
time p, initially zero, such that p[i] is the processing time used by local controller
Qi within the last adjustment-interval of T seconds. Array entry p[i] is updated
whenever Qi sends the processing time pj of the most recent event aj ; i.e., p[i] is
the sum of the pj that local controller Qi generates during the current adjustment
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interval.
Whenever the time bound of T seconds is reached, GQ computes a scaling fac-

tor λ =
∑n

i=1 p[i]/(T · ogt) as the overall observed processing time divided by the
product of T , n and the global target overhead ogt. This factor represents the under-
or over-utilization of ogt. The new local target overhead ot is then computed by
scaling the previous ot by λ.

u
i
?p

i  
/ p[i]

 
= p[i] + p

i
 

k ≤ T

k ≤ 0
[ k ≥ T ] / k = 0,

λ
 
= Σp[i] 

 
÷ (T∙ o

gt 
) , o

t
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t  
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gt 
= ot

i=1

n

Figure 3.9: State machine for the global controller.

The target specification language LG is defined in a fashion similar to the one for
the local controllers, except that the events of the plant P are replaced by the events
of the parallel composition P1 ‖P2 ‖ . . . ‖Pn of all plants.

Theorem 3.2.3 (Global soundness). Let S be defined as
GQ‖Q1‖ . . .‖Qn‖P1‖ . . . ‖Pn, the parallel composition of the global controller GQ, local
controllers Qi and plants Pi, i ∈ [1..n]. Then the language L(S) is included in the target
specification language LG. Moreover, the discrepancy between o and ogt is the minimal
that can be achieved for the parallel composition of the plants and the adjustment interval
of T seconds.

Proof. We derive ot so that n × ot = ogt, where n is the number of plants. Each
local controller Qi achieves observed overhead oi ≤ ot, so

∑n

i=1 oi ≤ ogt. If the total
is less than ogt, then this is because some plants Pi are experiencing a low rate of
interrupts, but in that case those plants have reduced their delays di to 0 so they are
observing all possible events. Furthermore, because their rate is already as high as
possible, under-utilized local controllers will be unaffected by λ-scaling, whereas
others benefit. This fact can be used to prove minimal discrepancy.

GQ also balances the load of local controllers in an optimal way with respect to
the space and time locality of access events.

3.2.2 Design

In this section, we discuss the two applications that we have implemented for
SMCO, namely memory under-utilization detection and bounds checking. An ar-
chitecture overview of the system is shown in Figure 3.10. The controller in Fig-
ure 3.10 implements the global controller GQ and each local controller Qi. The
controller receives an event from the instrumented program each time the program
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Figure 3.10: SMCO architecture for bounds checking and memory under-utilization detection.

executes a bounds check and from the Memory Management Unit (MMU) each
time the program accesses a protected area. Based on the total time spent process-
ing these events, the controller activates and deactivates monitoring of functions
and memory areas.
The bounds checker and NAP (Non-Accessed Period) detector are responsible

for detecting and reporting errors. Together, they maintain a splay tree of mem-
ory ranges, including stack areas and dynamic memory allocations. The bounds
checker uses the splay tree to determine which accesses are out-of-bounds, and
the NAP detector searches dynamic allocations in the splay tree to find regions that
have not reported accesses in a prescribed amount of time. The stack tracing/access
reportingmodule intercepts stack-area creations/destructions and pointer derefer-
ences from instrumented functions and reports them to the bounds checker. Note
that our architecture cleanly separates the overhead controller from the modules
that perform fault detection and reporting.
Functions f and g andmemory areasm and o in Figure 3.10 are rendered in gray

to indicate that they are in the activated state. Function calls to f or g will therefore
result in the execution of their instrumented versions f ′ and g′, respectively, so
that bounds checking, with controllable overhead, can be performed. Similarly,
the MMU will intercept accesses to m and o so that events can be generated for
processing by the NAP detector.
We now describe the controller, the NAP detector, and the bounds checker in

more detail.

Controller Design. The controller’s role is to limit the number of events gener-
ated by the instrumentation in order to meet a target overhead goal, where overhead
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refers to the percentage of time an instrumented program spends processing the
events. To this end, after every event, the controller temporarily disables events
from the entity (activated function or memory area, in our case) that generated
the event. Consider bounds checking. A memory access within a function call
generates a bounds-checking event. The controller measures the total amount of
time the bounds check takes, and then computes a delay using the function’s local
controller, as described in Section 3.2.1. The function runs with bounds checking
turned off until the delay passes and the controller reactivates it. A similar mecha-
nism temporarily deactivates a protected memory area when it generates an access
event.

NAP Detection. We have implemented an SMCO-based under-utilization detec-
tor which identifies areas that are not accessed for a user-definable period of time.
We refer to such a time period as aNon-Accessed Period, or NAP. Figure 3.11 depicts
the error model for the under-utilization detector. Note that we are not detecting
areas that are never touched (i.e., leaks), but rather areas that are not touched for a
sufficiently long period of time to raise concerns about memory-usage efficiency.

time

access

nap threshold

nap nap

Figure 3.11: Our memory under-utilization detector reports non-accessed periods. NAPS can vary
in length, and multiple NAPS can be reported for the same area.

The implementation of a memory under-utilization detector would normally
involve instrumenting memory-access instructions. This technique, however, in-
troduces a number of issues, both practical and theoretical. First, there is the prac-
tical issue of finding accesses. This can be done using a compiler or by using tools
like Valgrind; compiler tools only works for programs with available source, and
both introduce significant overheads. Our under-utilization detector controls its
overhead using sampling. However, if one attempts to find NAPS by sampling a
subset of memory-access instructions, this introduces a theoretical problem: in or-
der to be able to say with certainty whether or not a particular area was accessed in
a particular time period, allmemory-access instructions must be monitored during
that period, which could again result in considerable overhead.
To address these problems, we introduce a memory-access interposition mech-

anism called memcov that intercepts accesses to particular areas, not accesses by
particular instructions. We take advantage of the memory-protection hardware by
using the mprotect interface, which allows a programmer to control access to a
particular memory region. Accesses that violate the access controls set in this way
cause segmentation fault signals (SIGSEGVon Linux) to be sent to the process in
question. By intercepting such faults, which include the faulting address, memcov

can determine which areas are being accessed by the program and when.
To perform our memory-access interposition, we implemented a shared library
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that replaces the standard memory-allocation functions, notablymalloc and free ,
with functions that handle memory in multiples of the block size that mprotect

can protect. Due to the implementation of memory protection in hardware, this
block size is nearly always larger than the smallest addressable unit: on x86-based
platforms, it is usually 4,096 bytes. After allocating an area, our custom allocator
adds an entry to a splay tree that contains information about its size, the last time
an access was observed, and data to support our controller, which controls each
area individually.
When the controller instructsmemcovtomonitor an area,memcovusesmprotect

to disallow reads and writes that reference that area. Then, when the program at-
tempts to access that area, the memory protection hardware intercepts the access
and the kernel passes a SIGSEGVto the process. The signal is then handled by
memcov, which performs a lookup in the splay tree and registers a hit with the
appropriate controller. Memcov periodically checks for areas that have been mon-
itored and unaccessed for longer than the user-defined threshold, and reports them
as NAPs if that NAP has not already been reported.

Bounds Checking. Our second application is amore traditional problem: bounds
checking. Bounds checking may be broadly defined as ensuring that pointers are
dereferenced only when they are valid, which typically means that they point to
memory addresses located in properly-typed regions of the stack, heap, or static
(including text, data, and BSS) segments of the program’s address space. Our def-
inition of a valid pointer is one that points to a region that

• has been allocated using the system’s heap memory allocation functions (no-
tably malloc ),

• corresponds to some instance of a stack variable (either a local variable or a
function parameter), or

• corresponds to a static variable.

We consider any dereferenced pointer to be valid if its target matches the above
criteria, regardless of the pointer’s type or the region it originally pointed to. This
means that we do not need to keep track of each pointer update, which would
impose additional overheads. Instead, we need only keep track of areas as they
are allocated and deallocated. To accomplish this, we use the splay tree that we
use for NAP detection. At the entry to each function, the function’s stack variables
and static variables are registered in the splay tree. At each function’s exit points,
the function’s stack variables are deregistered.
To add instrumentation to a program, we use a branch of the GNU C compiler

modified to use plug-ins [10]. Plug-ins are written as normal GCC-optimization
passes that modify GCC’s GIMPLE intermediate representation, but can be com-
piled separately from GCC and loaded dynamically. This dramatically reduces
turnaround time for modifications and facilitates debugging. Our bounds-checker
plug-in, called meminst , performs three tasks, which we discuss in detail below:
emitting registrations and deregistrations, duplicating the source code for each
function, and emitting instrumentation into one of the copies. Figure 3.12 shows
an example duplicated function along with its added instrumentation and the con-
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trol block that switches between the two copies.

L2:

int i;

for(i = 0; i < len; i++) {

  check_bounds(&values[i]);

  total += values[i];

}

deregister(bases, extents, 1);

return total;

void* uid;

void* bases = { &values };

size_t extents = { sizeof(values) };

register(bases, extents, 1);

if(controller(uid)) goto L2; else goto L1;

L1:

int i;

for(i = 0; i < len; i++) {

  total += values[i];

}

deregister(bases, extents, 1);

return total;

Figure 3.12: meminst adds initial registrations and a call to the controller in a function’s first
block; the rest is duplicated, and one copy (left) of the function only has deregistrations, whereas the
instrumented copy (right) also includes bounds checking.

Emitting registrations/deregistrations. meminst first locates each addressable
variable in the internal representation of the function being transformed, and adds
it to a list. This takes O (n + r2) time, where n is the size of the function’s IR and
r is the number of such variables (the r2 is due to the fact that we enforce unique-
ness in the list). It then builds an array containing the address of each variable,
and another array containing the size of each variable. The plug-in adds a call
to an area-registration function at the beginning of the function, and a call to an
area-deregistration function at each return point from the function.

Duplicating the source code. To create instrumented and uninstrumented ver-
sions of the program,meminst duplicates the basic blocks in the control-flow graph
for each function. This takes O (n) time, where n is the size of the function’s inter-
nal representation. In order for the controller to determinewhich set of basic blocks
is executed before the beginning of each function, meminst inserts a call to the con-
troller. The controller maintains a data structure corresponding to each function,
which contains the computed τ for that function and the most recent value of p;
meminst adds a static variable to the function that is passed to the controller and
which the controller sets to point to this structure.

Emitting instrumentation. At each pointer dereference or array-member access
in the instrumented copy of the code, meminst adds a call to the bounds checker.
This step takes O (n) time.
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3.2.3 Evaluation

In this section, we describe a series of benchmarks we ran to validate our imple-
mentation and determine its runtime characteristics. The results show that SMCO
fulfills its goals: it closely adheres to the desired overhead for a range of target
overheads, and it observes events at higher rates, and catches bugs with greater
effectiveness, as more overhead is allowed. We begin with a real-world demon-
stration using the Lighttpd Web server [33] and the Vim 7.1 text editor [71]. Then
we further investigate the effectiveness of SMCO by demonstrating its usage with
a micro-benchmark that causes bounds violations.
We ran our benchmarks on a group of identically configured machines, each

with two 2.8GHz EM64T Intel Xeon processors with 2 megabytes of L2 cache each.
The computers each had 1 gigabyte of memory and were installed with the Fedora
Core 7 distribution of GNU/Linux. The installed kernel was a vendor version of
Linux 2.6.23. We built all packages tested from source: we built the instrumented
programs with a custom 4.3-series GCC compiler modified to load plug-ins [10],
and we built other utility programs using a vendor version of GCC 4.1.2. Our
Lighttpd benchmarks use Lighttpd version 1.4.18. Graphs that have confidence
intervals show the 95% confidence interval over 10 runs, assuming a sample mean
distributed according to the Student’s-t distribution.

Overhead Control Benchmark Results

SMCO’s main goal is to monitor as much as possible while regulating overhead so
that it adheres closely to the specified target overhead. This adherence should be
largely independent of the load conditions of the system. As our theoretical result
in Section 3.2.1 shows this to be achievable, any deviation of the measured perfor-
mance results from user specification must arise from implementation limitations.
The first and most obvious limitation is saturation: at high enough overhead,

events stay enabled all the time. Increasing the desired overhead past this point
will not generate more events to process. All programs eventually reach peak over-
head, since a programmust spend at least some percent of its time outside of event
processing in order to generate events. A less obvious limitation is the latency of
global controller updates. Changing conditions can cause overhead increases that
require a quick response from the global controller; when the target overhead is
low and the load is high, the actual overhead may temporarily exceed the target
overhead.
Figure 3.13 shows observed overhead vs. target overhead for the Lighttpd server

and the Vim text editor, each tested separately with bounds checking and memory
under-utilization detection. For Lighttpd, we use the curl-loader tool to hit the
server with one request per second from each of 75 simulated clients. We ran Vim
with a scripted workload that loads a large (1.2MB) text file and alternates between
sorting and reversing its contents. We ran Lighttpd and Vimwith target overheads
from 5% to 100% in increments of 5%. The solid line shows the observed percent
overhead (left axis), which should ideally adhere to the thin dotted y = x line. The
dotted line shows the number of events processed—function-call events for the
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(a) Bounds checker on Lighttpd
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(b) Memory under-utilization detector on
Lighttpd
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(c) Bounds checker on Vim

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60  70  80  90  100
 0

 1

 2

 3

 4

 5

 6

 7

 8

O
bs

er
ve

d 
ov

er
he

ad

M
ill

io
ns

 o
f e

ve
nt

s

Target overhead

Observed overhead
Access events

(d) Memory under-utilization detector on Vim

Figure 3.13: Observed load versus desired load for the Lighttpd server with 75 clients issuing
one request per second and the Vim text editor with an automated workload. Observed overhead
is shown in % (y axis), and the number of observed functions calls (for the bounds checker) and
memory accesses (for the under-utilization detector) are shown in millions (y2 axis).

bounds checking benchmark and memory-access events for the under-utilization
detector—in millions of events (right axis).
For the bounds checker, the observed overhead closely tracks the target over-

head up to a target overhead of 30%. At higher target overheads, the system sat-
urates: every function call runs with bounds checking on, leaving no opportunity
to produce higher overhead.
In the Lighttpd memory under-utilization results, we observe that the system

meets its overhead target in the region from 5% to 20%. In the region from 20% to
60%, the local controllers start to show instability. After deactivation, eachmemory
area waits for reactivation on a priority queue. In the unstable region, memory
regions spend most of their time on this priority queue. When the queue size
gets large, dequeuing a memory region takes longer, adding to its wait time and
preventing it from meeting its overhead goal. This effect is non-linear—changing
the desired overhead changes the average queue size—so our global controller
does not accurately compensate for it, though the system is able to keep actual
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overhead below the bound in all cases.
Above 60% target overhead, the system achieves its maximum possible over-

head: memory regions skip the priority queue and reactivate as fast as possible.
The Vim under-utilization results also show instability, with the global controller
unable to use all the overhead it is allowed, up to 70% desired overhead.
During our benchmarking, we did not observe any bounds violations resulting

from bugs in Lighttpd. However, we observed a number of NAPs (non-accessed
periods, see Section 3.2.2). This can be seen in Figure 3.14, which shows the pro-
portion of areas that have been monitored for various periods of time over a single
run of Lighttpd. Unused regions in the run were classified into eight buckets based
on how long the region remained active with no access. Each set of stacked verti-
cal bars shows the number of bytes in regions from each bucket at a time during
Lighttpd’s run, with the lightest shaded bar showing the allocations that have gone
longest without an access.
This graph shows that a comparatively large amount of memory goes unused

for almost all of the program’s run. Lighttpd is intended as an embedded Web
server with a low memory footprint. Its total heap footprint is 540 kilobytes—
so the unused 180 kilobytes are of particular interest and comprise a significant
reduction in Lighttpd’s heap memory footprint (one-third less). We have verified
that at least some of these areas come from a pre-loaded MIME type database that
could be loaded incrementally on demand.

Micro-Benchmark Results

Having demonstrated the effectiveness of SMCO with real-world applications,
we turn to the micro-benchmarks to demonstrate the high-confidence nature of
SMCO. Specifically, we demonstrate that an SMCO-basedmonitor will detect more
faults in a buggy system when it is allowed to use more overhead.
We first designed a micro-benchmark called MICRO-BOUNDS that runs for ten

seconds, accessing a single memory area as fast as it can. Ten times per second, it
issues an out-of-bounds access. This micro-benchmark allows us to examine the
performance of SMCO in more detail.
Figure 3.15 shows our effectiveness at detecting bounds violations in this micro-

benchmark for different target overhead settings. The solid line shows the percent
of bounds violations caught, and the dotted line shows how many events SMCO
observed overall. (Under-utilization detection is still active, but we do not show
the results becauseMICRO-BOUNDS does not use heap-allocatedmemory.) Initially,
we observe a linearly increasing number of accesses, which saturates near 100% of
accesses observed, confirming that we are not only achieving our overhead targets,
but we are in fact getting something for that overhead: we are monitoring as much
as possible given the overhead constraints.
Figure 3.16 demonstrates the bounds-checking characteristics of ourmicro-benchmark

over time with different target overheads. Each line shows a single 10 second run
of the micro-benchmark, with the y-values being the total number of bounds vi-
olations observed up until each point in time. The graph demonstrates that the
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SMCO-based monitor continues to observe bounds violations at a roughly uni-
form rate. This demonstrates the difference between SMCO and most existing
adaptive sampling tools [29], which reduce overhead over time, making violations
occurring later less likely to be caught than early violations.
Finally, we designed a micro-benchmark called MICRO-NAP that runs for one

minute. It maintains 100 separately-allocated heap areas—allowing the bench-
mark’s auxiliary data structures to reside comfortably in CPU caches—and uses a
pseudo-random number generator to generate access intervals for each of these ar-
eas. Initially, and whenever it performs an access, MICRO-NAP generates a random
interval between one and eight seconds (a NAP is three seconds, and we left time
for monitoring to resume); after this interval, it performs an access. Figure 3.17
shows that given more overhead, the NAP detector finds more NAPs. We observe
that NAP detection works well even with low overheads, because underutilized
memory areas require little overhead to monitor so their local controllers can af-
ford to monitor them regardless of global targets.
TheMICRO-BOUNDS andMICRO-NAP micro-benchmarks demonstrate that both

bounds checking and NAP detection can use additional overhead effectively.

Summary of Experimental Results

In this evaluation section, we have demonstrated two things:
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Figure 3.15: Number of function executions bounds-checked and number of bounds violations
caught, versus target overhead for the MICRO-BOUNDS micro-benchmark.

1. SMCO is zealous in enforcing the overhead goal specified by the user while
making a best effort to observe increasing amounts of events, and

2. tools using SMCO are effective at detecting memory under-utilization and
bounds violations.

When the local controllers behave linearly, SMCO maximizes the number of
events it observes by using as much overhead as it is allowed. With non-linear
local controllers, the overhead control problem is more difficult, but SMCO still
enforces an upper bound on overhead. We have also shown that SMCO-based
monitoring tools observe more events as they are given more overhead, and can
use this information to catch real as well as injected errors. In Lighttpd, we found
that 33% of the heap footprint is spent on memory that is completely unused, even
under load.

3.2.4 Conclusion

We have presented Software Monitoring with Controllable Overhead (SMCO), an
approach to overhead control for the runtime monitoring of instrumented soft-
ware. SMCO is high-confidence because, as we have shown in the paper, it moni-
tors as many events as possible without exceeding the target overhead level. This
is distinct from other approaches to software monitoring which promise low or
adaptive overhead, but where overhead, in fact, varies per application and un-
der changing usage conditions. The key to SMCO’s performance is an underlying

44



 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  2  4  6  8  10

N
um

be
r 

of
 b

ou
nd

s 
vi

ol
at

io
ns

 o
bs

er
ve

d

Time in benchmark (sec)

10% overhead
20% overhead
30% overhead

Figure 3.16: Cumulative number of bounds violations caught over time in runs of the MICRO-
BOUNDS micro-benchmark with 10%, 20%, and 30% overhead

control strategy based on an optimal controller for a nonlinear control problem
represented in terms of the composition of timed automata.
Using SMCO as a foundation, we have developed two sophisticated monitor-

ing tools: a memory staleness detector and a bounds checker. The staleness detec-
tor detects memory areas that are unused for longer than a user-definable interval.
This is achieved by taking advantage of memory-protection hardware, a technique
normally used in the kernel to evict pages from physical memory but rarely seen
in user-space. The bounds checker instruments memory accesses and checks them
against a splay tree of valid areas. Both the per-area checks in the staleness detector
and the per-function checks in the bounds checker are activated and deactivated
by the same generic controller, which achieves a desired target overhead with both
of these systems running.
Our benchmarking results demonstrate that it is possible to perform correct-

ness monitoring of large software systems with fixed overhead guarantees. As
such, the promise of SMCO is attractive to both developers and system adminis-
trators; developers desire maximal monitoring coverage, and system administra-
tors need a way to effectively manage the overhead runtime monitoring imposes
on system performance. Moreover, our system is fully responsive to changes in
system load, both increases and decreases, which means that administrators need
not worry about load spikes causing unusual effects in instrumented software. We
also demonstrated the effectiveness of our system at detecting real-world bugs: for
example, we found out that one-third of the Lighttpd Web server’s heap footprint
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Figure 3.17: Observed NAPs increase with target overhead for theMICRO-NAP micro-benchmark.

is unused.

3.3 Other Approaches to Controlling Overhead

In this section, we discuss approaches to overhead control that others have imple-
mented, and which provide context for our own approach.

Java-based code replication. Arnold and Ryder developed a system that per-
forms profiling by replicating code using the Java just-in-time (JIT) compiler [4].
This was implemented as a compilation phase for the Jikes research virtual ma-
chine [67]. In this approach, instrumentation activates when a counter expires.
This is similar to couter overflow sampling, which we discussed in Section 2.2.1.
This gives instrumentation developers a knob to control instrumentation, adding
another input to the system. However, it does not provide any feedback mecha-
nism except benchmarks, and consequently is not suited to in-line control.

Context-based overhead reduction. Artemis reduces overhead from runtime checks
by enabling them for only certain function executions [16]. To observe as many be-
haviors as possible, Artemis always monitors a function when the function runs in
a context that it has not seen before, where a function’s execution context consists
of the values of global variables and arguments. Artemis’s context-based filtering
can, when the developer specifies the contexts correctly, be very effective for fo-
cusing instrumentation on areas where it is needed. Artemis, however, does not
address the case where the target overhead is prescribed by the user. Also, Artemis
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does not address timing issues because timing is not part of an Artemis context.

Leak detection using adaptive profiling. SWAT is a leak-detection tool that uses
a binary instrumentation framework to periodically rewrite pieces of code, en-
ablingmonitoring for those pieces of code [29]. The monitoring observes the mem-
ory accesses those code fragments make, and use that information to infer which
memory areas are unused. SWAT reduces the rate at which it activates individual
regions as they execute, meaning that commonly-used code-paths are monitored
less intensively. This means that commonly-used pieces of code use less overhead.
This approach resembles MCM, which we discussed in Section 3.1 in that it keeps
monitoring high for rarely-used code, but there is no formal definition of confi-
dence used.
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Chapter 4

The Asynchronous Debugging
Framework

The Asynchronous Debugging framework (adb ) is an extensible, general-purpose
remote debugging tool based on the GNU compiler collection (GCC) [22]. In this
chapter, we describe the features adb provides to the user. We also provide imple-
mentation details for the adb system, a guide to extending adb using its generic
provider mechanism, and a performance analysis substantiating the performance
guarantees made by the adb API.
The users of debugging systems are some of the most demanding software

users in the world. In most cases, debugging systems are not subject to the same
critical reliability requirements that medical software or certain kinds of mechani-
cal control or communications software are; however, users expect them to fit into
their development model, which can vary significantly from site to site. Although
many vendors provide graphical interfaces to debuggers as part of their develop-
ment environments, they are usually built on mechanisms that expose very low-
level interfaces to the user in order to allow the maximum amount of customiza-
tion.
The most commonly-used debugger today is the source-level debugger [19, 62].

Source-level debuggers go to great lengths to provide an interface that closely re-
sembles code in the target language. For example, GDB interprets a large set of the
C language and uses linker information and debugging information in the target
binary file to evaluate C expressions as they would be evaluated in the target pro-
gram. This allows the programmer to use the source language’s syntax to exploit
the functionality and data available in the target program to debug it. (Source-level
debuggers do this inefficiently, but we have addressed that in Section 2.2.)
The interface to debuggers has become even more programmatic with the ad-

vent of DTrace [11], which allows the user to specify points in the target program
using a uniform syntax and then write snippets of code in a C-like language that
execute at those points. We have designed adb to follow this trend; we provide
a similar execution model—specify points in the target program and run code at
those points—but the snippets of code execute natively, in the address space of the
target process, rather than as a separate process. To this compelling debugging
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model we add comprehensive overhead auditing as well as an overhead-control
system based on the SMCO mechanism, which we discussed in Section 3.2.
This chapter is organized as follows. Section 4.1 provides an overview of adb ’s

salient features and how they can be used for debugging. Section 4.2 describes the
adb architecture and how it provides these features. Section 4.3 describes some
implementation details for adb providers, which create the instrumentation points
that allow the insertion of debugging code. Section 4.4 demonstrates adb at work,
providing benchmarks on real-world applications, micro-benchmarks, and SPEC.
In Section 5, we conclude and discuss future development directions for adb .

4.1 Overview of adb

The adb system is intended to enable remote debugging of software with limited
interactivity. Debugging is the process of removing faults in a program, typically
by examining its execution. To obtain information about a program’s execution,
programmers typically choose one of two approaches: traditional debugging tools
that allow the programmer to pause the program and inspect its state interactively,
and tracing or profiling tools that do not stop the program but rather collect simple
information regularly during its execution. Traditional debugging tools have the
following problems:

• many bugs only appear in production environments and are difficult to re-
produce under controlled conditions,

• bugs can take a long time to manifest, and it is onerous to step through a
program to determine when a bug occurred, and

• many bugs manifest themselves as corruption in data structures, and only
cause crashes long after the corruption occurs.

On the other hand, tracing tools have their own problems:

• the information they can collect is often severely limited because the program
has been optimized,

• performing thorough auditing, even when possible, imposes severe perfor-
mance penalties, and

• compiling for any but the simplest kinds of tracing usually requires a full
recompile, so changing the tracing after deployment is infeasible.

The adb framework overcomes these limitations by hybridizing the two ap-
proaches. It combines the capability of traditional debuggers to inspect data with
the capacity of tracing tools to inspect entire runs of a program, and does this while
limiting the overhead it imposes on the program’s execution and allowing modifi-
cation of the tracing apparatus after compilation.

4.1.1 Distinctive features of adb

adb presents a suite of innovative features for debugging C programs after deploy-
ment. We enumerate the most important of these features below, and compare
them to existing tools in each field.
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Ease of compilation. Compiling a program for use with adb requires only that
the user add a flag to the GCC command line for each source file that will be in-
strumented, and add one library to the application’s final link step. Often this can
be achieved simply through the use of the CFLAGSand LDFLAGSvariables. This
results from the fact that adb ’s implementation is based on GCC; it contrasts with
tools like Cil [20] or Atom [58], which require separate compilation phases. Such
tools are not only less convenient to use, but they also introduce their own set of
dependencies.

Rich hooks. Because it needs to allow debugging after deployment, adb is a dy-
namic instrumentation tool that allows runtime insertion of debugging code. This
approach is similar to DTrace and Dyninst in philosophy [11, 8]; much like these
tools, adb places hooks, called probes, in the program. (Dyninst uses the term points
analogously.) DTrace and Dyninst are binary instrumenters, which means that they
use symbolic information and debugging information to insert probes. In practice,
they only use symbolic information because debugging information is complex to
parse, and performing any analyses is considerably more difficult than in compil-
ers. This information is of limited utility because compiler optimizations affect the
ordering of code, and there is no support for any kind of analyses. In contrast,
adb takes advantage of GCC’s full access to the program’s source code to insert
tracepoints and provide the necessary infrastructure to pass program data to in-
strumentation code. Because these probes are inserted during compilation, op-
timizations respect the ordering and data-layout constraints that probes impose,
ensuring that the information they expose is correct.

Reflection on C data. Although some applications of program tracing involve
the use of special-purpose code intended specifically for use at particular trace-
points (such as a sanity check of a data structure when a function that modifies it
returns), many tools are not aware a priori of the context available to them at a tra-
cepoint. For example, function argument value profilers, locking-policy verifiers,
or bounds-checkers need to know type information but are typically implemented
in a generic fashion. To allow such tools to handle a variety of data types, adb pro-
vides type information along with pointers to the data. Inserted code that is aware
of application-specific types can simply cast the pointers to the appropriate types,
but generic code can use the CTF API, discussed in Section 4.2, to examine record
and array types as well as simple integral types. DTrace has a similar mechanism,
but it fails when values are not in memory, for example, when the register allocator
has placed them in registers or when they have been optimized out.

Comprehensive overhead management. The adb system uses high-resolution
timers based on the CPU’s cycle counter to audit instrumentation code on a per-
tracepoint basis. It uses the SMCO overhead-management policy, discussed in
more detail in Section 3.2, to ensure that the aggregate time spent in instrumenta-
tion is nomore than a fixed proportion of total runtime. This puts adb in a category
of sampling instrumentation that includes tools like Liblit et al.’s statistical sam-
pling technique [37], Chilimbi and Hauswirth’s bursty sampling [29], and Arnold
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et al.’s QVM [5]. All of these tools control overhead using parameters that have
a non-linear relationship to time; of these tools, only QVM attempts to measure
the effect of these adjustments on overhead, which they measure in terms of time.
SMCO, on the other hand, regulates the time until a probe is activated, a parameter
that is directly related to overhead.

4.1.2 Using adb

The adb framework is implemented as a GCC plug-in and associated runtime li-
brary. We describe the plug-in mechanism in more detail in Section 2.1. The pro-
cedure for compiling a program with adb is:

• Determine a location for the CTF and PIF files (described in detail in Sec-
tion 4.2) that will accompany the program and provide all the type informa-
tion required by adb ’s reflection mechanism.

• Compile each source file that will contain tracepoints using the adb instru-
mentation plug-in, passing it the location of the CTF and PIF files as an argu-
ment.

• Link the final executable with libadb , which provides definitions for the
runtime symbols that adb tracepoints call.

A program compiled with adb requires libadb to be available if it is linked
dynamically; however, in all other respects the program can be executed normally.
In particular, it does not require a wrapper program in order to run, as tools like
DTrace [11] and Pin [38] do. We will explain the adb execution process in more
detail in Section 4.2.

4.2 adbArchitecture

The adb architecture consists of twomain components: a compiler-based component
that is responsible for adding probes into a program, and a run-time component
that is responsible for managing the probes as the program runs. Probes can be
defined as points in the program’s execution at which reflection—access to C data
via a meta-linguistic API—becomes possible. Reflection is typically a feature of
languages, and is closely linked to the term dynamic, which describes a language
that produces programs whose structure can be modified at run-time. One early
example of language reflection is the Lisp programming language; Lisp code is
represented as lists called s-expressions which are passed to the eval function for
execution. Lisp data is also represented as lists, and the type-of function can
be used to determine the structure of a particular piece of data without a priori
knowledge [61]. Lisp is also dynamic because evaluation of expressions can be
completely replaced using the * evalhook * mechanism.
Smalltalk is a more recent example of a dynamic language [23]. Smalltalk pro-

grams consist entirely of objects, and objects pass each othermessages to dowork. A
Smalltalk object’s methods can be overridden using the addSelector:withMethod:

mechanism, and member variables can be modified using the at:put: mecha-
nism. The programmer can determine what type a Smalltalk object has by send-
ing the class message. The Objective-C programming language, which is largely
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based on Smalltalk, combines Smalltalk’s dynamicmessage dispatchwith statically-
compiled C code [40]. Programmers can overridemethods using the class addMethod

runtime function, modify object member variables using the object setIvar run-
time function [41], and determine the type of an existing object using the class

message. However, this dynamic behavior extends only to objects created using
the Objective-C object system; statically-compiled C code does not benefit from
this reflection.
Philosophically, adb arises from the desire to provide language-level reflection

for C. As discussed above, reflection has two aspects: code reflection, in which it
is possible to modify or replace code, and data reflection, in which it is possible to
alter data. In adb , code reflection is provided by means of probes. These are specific
locations in the program’s source code, and are inserted by providers that closely
resemble DTrace’s provider mechanism [11]. Providers work with the compiler
to make it possible to insert code at arbitrary locations in a program. These lo-
cations can be syntactic (entry points to functions) or semantic (accesses to global
variables). We will discuss the way providers do this in full in Section 4.3. adb

provides data reflection by allowing providers to expose arbitrary program data at
probes; a type API allows clients to determine the type of this program data and
modify it in a type-safe manner.
The adb system adds awareness of overhead to the features above. For some

applications, particularly ones with strict performance requirements, adding de-
bugging into the program can be unacceptable unless the overhead it incurs is
strictly controlled. Other approaches, such as bursty sampling [29] and context-
based sampling [16], attempt to address this issue using sampling, a concept we
adopt. Sampling is the technique of monitoring only a subset of the events that
a program generates. However, these other approaches attempt to minimize, not
control overhead. We choose, instead, to let the end-user of the software specify
a tolerable amount of overhead, and regulate instrumentation in order to ensure
that it meets these overhead requirements. This regulation imposes an important
restriction: instrumentation must be tolerant of missing certain events.
In Section 4.2.1, we discuss the mechanism adb provides for code reflection,

and how to write clients that activate specific probes. Then, in Section 4.2.2, we
describe how clients can access program data, and the means adb uses to provide
this functionality. Finally, in Section 4.2.3, we describe the way the SMCO runtime
regulates instrumentation at a high level.

4.2.1 Using providers and probes

We illustrate the high-level architecture of the adb compile-time infrastructure in
Figure 4.1.
A modified version of the GNU C compiler (described in Section 2.1) loads

the adb instrumenter, which is implemented as a plug-in. The instrumenter has
access to GCC’s intermediate representation, called GIMPLE, and can modify it
to insert probes. These probes are implemented as function calls which, as the
program runs, pass the program’s internal data to the adb runtime, which in turn
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Figure 4.1: The ADB compile-time system.

distributes it to consumers. Determining where probes are installed, and what
information they provide, is the role of providers. We will discuss existing and
possible future providers in Section 4.3. Probes can be activated and deactivated
at runtime as needed by consumers, and are regulated by the SMCO policy as
described in Section 3.2.
Consumers activate probes using probe specifiers. A probe specifier can be ini-

tialized with the desired provider, file, and function. Any of these can be null, in
which case the runtime assumes that the consumer is interested in probes that
have any value for that category. (In the extreme, a consumer that specifies a
null provider, file, and function will activate all probes in the program.) If mul-
tiple providers, files, or functions are desired, a consumer can use multiple probe
specifiers. Although SMCO regulates individual probes to reduce overhead when
probes are active, it is better for consumers to activate only relevant probes, be-
cause other probes will consume overhead that could be used to monitor events
of interest. adb performs reference-counting so consumers can be loaded and un-
loaded safely as the program runs.
Information about probes is recorded in a PIF (Probe Informatio Format) file,

which contains an entry for each probe installed into the system. The PIF format
records the information necessary to classify probes, as well as a unique ID that is
generated for each probe, and which the probe passes to the runtime component
of adb to allow it to identify the probe correctly. The PIF file also includes the types
of all pieces of data that are exposed to the consumer. The information required to
read the data types in the PIF file is recorded in a separate CTF (Compact ANSI-C
Type Format) file, which we discuss in the next section.

4.2.2 Accessing program data

One of adb’s salient features is the fact that it allows consumers to modify program
data as it runs. This feature is similar to one found in debuggers, but is imple-
mented quite differently. Debuggers manipulate programs’ variables by editing
the memory and registers using an API provided by the operating system. In So-
laris, this API is exposed through the /proc file system. Writing to a special file
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called /proc/ pid/ctl allows a debugger to read or modify the register state and
memory of a paused thread [63]. In Linux, a similar (though slightly less efficient,
because memory writes are in units of one word) API is provided by the ptrace

system call [27]. Mac OS X allows similar manipulation through Mach ports [32].
DTrace allows interaction with memory through a restricted pointer interface [45].
Although it is possible in each of these cases to access a program’s memory, this

access is highly inefficient because in each case a separate process is interacting
with the program. Although DTrace scripts run in kernel space, allowing memory
accesses to take place with just one memory copy (from the process to the kernel,
or vice versa), the Linux and Solaris approaches require a copy from user to kernel
memory and back into user memory. The Mach approach may be the quickest of
these (because it allows remapping of another process’s memory into the debugger
process); however, modifying register state is still cumbersome. In addition, all of
these have to map variable names to locations in memory, which can become very
difficult when optimization is enabled [68].
Our approach relies on the compiler to permit access to variables when probes

execute. Probes expose pointers to variables; when a variable is exposed, it is as if
the original code had beenwritten to pass a pointer to the variable to the consumer.
This feature has its own (far more modest) set of associated overheads, which we
will discuss in more detail in Section 4.3 and demonstrate in Section 4.4. To ex-
tract the data that is the target of these pointers, the consumer consults an API that
wraps the CTF file, obtaining an object that can be used to read andwrite the target
object. The CTF file contains data in the Compact ANSI-C type format [64], which
was originally developed for DTrace and provides support for all types, integral,
pointer, and composite, in ANSI C. (Although CTF provides support for function
pointers, and adb generates proper CTF data for functions, calling function point-
ers has not yet been implemented in the adb runtime.)

4.2.3 Regulating overhead

We have described the general operation of SMCO in detail in Section 3.2. As a
result, we will provide only a brief overview of SMCO’s operation here, and leave
the details to Section 4.3. Figure 4.2 illustrates the ADB runtime overhead-control
system.
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Figure 4.2: The adb overhead-control system.
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At runtime, all probes in the monitored program generate data that can be pro-
cessed by consumers. Whether this data arrives at consumers is determined by
two separate decisions. First, this data is only processed if some consumer has
requested it. An activator, which we will discuss in more detail in Section 4.3,
serves as the first filter and admits events from activated probes. It induces a small
overhead even when the probe is disabled; this overhead will be discussed in Sec-
tion 4.4. The next decision is made by a regulator, which determines whether the
SMCO policy permits the current event to be processed.
The SMCO policy is implemented as follows. When a consumer processes an

event, a timer measures the processing time Pi, which includes the time taken by
the consumer and the time taken by SMCO to compute the next cycle time. This
time is saved and passed to SMCO when the consumer runs next. (It cannot be
used for the current run because pi is computed after the delay has already been
set.) Consequently, the value used in place of pi in the SMCO calculation is actually
pi−1, the processing time for the previous monitored execution of the probe. We
also use a simplification of the delay computation. Figure 4.3 shows the relevant
variables in our implementation of the SMCO local controller.

di τi pipi-1

ci

Ti

Figure 4.3: Variables used in adb’s implementation of SMCO.

The time ci is the SMCO cycle time, which is the sum of the delay di before
the probe was reactivated, wait time τi between the activation of the probe and
the time the probe was executed, and the processing time pi for the execution.
Given the local target overhead O, we can compute the local instrumentation rate
I = O/(1 + O), which expresses the proportion of total runtime that should be
consumed by processing. The relationship between pi and ci can be expressed as
pi = Ici, or ci = pi/I . The time Ti marks the time the probe was when the probe
was activated for the current cycle, and Ti+1 can be computed from Ti by adding ci.
As stated earlier, because we do not have access to pi yet when Ti+1 is computed,
we use pi−1 instead. This means that adb ’s response to changes in p remains linear,
but that it may be delayed.

adb also employs an SMCO global controller, which monitors the total process-
ing time accrued by the system over a fixed period of time, and adjusts a factor
λ that is applied to the target instrumentation rate I for each local controller, as
described in more detail in Section 3.2. This λ is computed by a separate global
controller thread.
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4.3 How adb is implemented

The core of adb is implemented as a plug-in for the GNU C compiler. As described
in Section 2.1, GCC plug-ins have access to the compiler’s intermediate represen-
tation for programs, called GIMPLE. In order to perform its function, adb must be
able to perform the following tasks:

• adb must allow consumers to run, and give them read-write access to vari-
ables, at every enabled probe.

• In order to permit overhead control, adb must obtain the accurate processing
time p for each probe.

• Each probe must permit activation and deactivation, so adb must add high-
performance mechanisms for executing a probe only when it is active.

This section discusses how we implement these features. In Section 4.3.1, we
provide a brief overview of relevant details of the GIMPLE intermediate represen-
tation. Then, in Section 4.3.2, we describe the structure of an SMCO probe, hi-
lighting important design details. Finally, in Section 4.3.3, we describe currently-
implemented and future providers.

4.3.1 GIMPLE overview

GIMPLE is a representation for a program as it is transformed by a compiler in
preparation for the emission of assembly code. GIMPLE is a three-address code,
which means that every operation (except for a function call) has at most two
operands, and most operations produce a result. Complex statements in the orig-
inal code are broken into sequences of simpler statements in GIMPLE in order to
satisfy this constraint.
We will begin by describing control flow structures in GIMPLE. The control

flow of a function is described by the control-flow graph, a directed graph. Vertices
in this graph are called basic blocks, sequences of statements with a single entry
point and a single exit point. Many basic blocks have labels which serve as a form
of identification. The edges between basic blocks determine the feasible control
flows in the program. A basic block can have up to two outgoing edges; if there
are two, the block ends with a conditional expression, which jumps to one of two
blocks based on the result of a test. All conditional expressions and loops in C are
expressed as basic blocks and edges; intuitively speaking, GIMPLE’s control flow
can be thought of as C control flow limited to if-then-else and goto statements.
Nowwewill describe data flow primitives in GIMPLE. The basic unit of data in

GIMPLE is a variable declaration. The attributes of variable declarations determine
their semantics. There are two main kinds of variables: registers, which are subject
to a wide variety of optimizations, and virtuals, which are guaranteed to reference
a location in memory.
The value of a register can be used in any expression except reference-taking

operations like C’s & operator; however, a register must be referred to using SSA
names, which obey the rules of single static assignment form [13]. An SSA name
is assigned to in one unique location; it may be read from at arbitrary points. In
cases where two different definitions of a register reach the same basic block (for
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example, at the end of an if-then-else in which a variable is assigned 1 in one
branch and 2 in another), a φ-node serves as a use of both SSA names and defines
a new one for use in the current basic block. Because the effect of φ-nodes is asso-
ciated with the entry point of basic blocks, and because the number of operands
to a φ-node varies with the number of incoming edges, φ-nodes are not considered
normal GIMPLE statements, but are rather kept in a separate list attached to each
basic block.
Virtuals may (given the appropriate attributes) have their addresses taken; how-

ever, before an expression can use the value of a virtual, the virtual’s value must
first be loaded into a register. Virtuals can be written to directly. Virtuals can have
several attributes:

• Static virtuals retain their value across multiple executions of the same func-
tion; their values are maintained in static storage such as a binary’s data

segment. Non-static virtuals are typically stored on the stack.
• External virtuals are undefined in the current translation unit, and a reference
will be generated by the assembler to be resolved later by the linker.

• Addressable virtuals may be referenced.

Because several of GCC’s source languages allow in-line assembly, GIMPLE
also has facilities for in-line assembly. An in-line assembly statement is exceptional
in the sense that it reads from and writes to a number of variables determined
by the CPU architecture; however, the rules of Tree-SSA still apply. If assembly
statements are marked as volatile, their side-effects are presumed to be critical to
the proper operation of the software, so they are neither reordered nor optimized
out.

4.3.2 Probe structure

P 

N 

A  SMCO  T[A:] [S:] [T:]

[N:]

activator.1 = ACTIVATOR;

if(activator.1 = 1)

  goto S:;

  else goto N:;

last_clock.1 = LAST_CLOCK;

time_target.1 = TIME_TARGET;

if(last_clock.1 > time_target.1)

  goto T:;

  else goto N:;

start_time.1 = asm volatile(”rdtsc”);

// Probe code goes here

end_time.1 = asm volatile(”rdtsc”);

LAST_P = end_time.1 - start_time.1;

Figure 4.4: High-level structure of an adb tracepoint. Virtuals are shown in small caps, and
registers are shown in lower case with a suffix uniquely identifying each SSA name.

The overall structure of an adb probe is shown in Figure 4.4. The probe consists
of three basic blocks; if the probe is intended to lie inside another basic block, adb ’s
plug-in splits that basic block to make room. Although this structure may appear
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large, in fact it avoids consuming overhead by allowing control to pass to the next
block—that is, the normal program code following the probe—at every available
opportunity. There are three basic blocks, whose function we describe below.

• The activation decision consults a static, addressable virtual called the activator
to determine whether the current probe is enabled. If there are no consumers
interested in the probe, then the activator will read 0. If consumers are inter-
ested in the probe, then the activator will read 1. The address of the activator
is passed to the runtime whenever the probe runs, so the runtime can enable
the probe at any time by setting the activator to 1. This approach resembles
the is-enabled probes employed by DTrace to reduce overhead. If the acti-
vator is 0, then control passes to the next block; otherwise, it passes to the
SMCO decision block.

• The SMCO decision consults an extern virtual that contains the time of the last
tick of the fast clock mechanism, which we will discuss in detail below. It also
reads in the target time (i.e., Ti) set by SMCO in the previous execution. If the
time Ti has passed (i.e., it is less than the current time), then the probe should
fire, so control passes through to the tracepoint block; otherwise, it passes to
the next block.

• The tracepoint computes pi using the high-resolution in-line assembly instruc-
tion readtsc . All probe computation should take place between the writes
to the start-time and end-time variables; indeed, the adb implementation is
written in such a way that providers are only able to write code inside the
tracepoint block, and the location inside the tracepoint that they are given to
write code at is between the start-time and end-time assignments.

At first glance, it may appear odd that adb uses two distinct timingmechanisms
in a probe. The base mechanism for both of these, however, is the Intel rdtsc

instruction. (SPARC has the tick register, and PowerPC has the mftb /mftbu in-
structions that achieve the same goal.) The rdtsc instruction allows the program-
mer to read a register that reflects the current value of the CPU time-step counter
(TSC). The time-step counter increments by one for each cycle the CPU executes;
on a multiprocessor computer, the operating system synchronizes the time-step
counters during boot. We have micro-benchmarked the rdtsc instruction, how-
ever, and shown that executing it on the Intel Xeon microprocessors we tested
takes between 70 and 100 cycles. This would add a considerable slow-down in the
SMCO decision block for disabled probes, so we implemented a fast clock mech-
anism that leverages rdtsc but updates a global variable from a separate thread
that executes at 1kHz. Referring to that variable instead of the time-step counter
dramatically reduces overhead, and the thread can safely run on another core.
We now turn our attention to the code that implements the transfer of control

between the monitored program and the adb run-time. The code shown in Fig-
ure 4.5 shows the GIMPLE code for a typical probe that exposes two variables, one
register and one virtual, to the client.
The first item of note is that adb creates addressable virtuals to hold the value

of any registers. This requires making a new SSA name for the version of the
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T [T:]

…

A_CONTAINER = a.1;

POINTERS[0] = &A_CONTAINER;

POINTERS[1] = &B;

last_p.1 = LAST_P;

time_target.2 = TIME_TARGET;

TIME_TARGET = hook(id, &ACTIVATOR, &POINTERS[0], last_clock.1, time_target.2, last_p.1);

a.2 = A_CONTAINER;

…

Figure 4.5: GIMPLE code for a probe that exposes a register a and a virtual B to the adb run-time.
id is the tracepoint identifier.

register after the probe runs; in the figure, the addressable container for a is called
a container and the new name is called a.2 . Since this new definition of the
variable is visible from the next block, we add a new φ-node to the next block to
unify the versions of each register that is used by the probe. Virtuals do not need
this treatment, as they do not adhere to SSA. The pointers to the containers and
virtuals are put into an array which is passed to the hook function. Along with
them the probe passes several other variables:

• The probe identifier allows the runtime to look the probe up in the PIF file (see
Section 4.2.1). This is necessary to identify the probe for activation purposes
and to determine the data types of the entries in the pointer array.

• The last clock is simply the value of the fast clock when the decision was
made to run the probe, in the SMCO decision block. This value is used for
debugging.

• The time target is Ti. The SMCO controller uses this to compute Ti+1, as de-
scribed in Section 4.2.3.

• The last processing time, better known as pi−1. The SMCO controller uses this
value to compute Ti+1.

The hook function is defined in the adb runtime library, and returns Ti+1.

4.3.3 adb providers

Having described the generic way in which probes are implemented in adb , we
now turn to the implementation of adb providers. Providers are subclasses of the
virtual class Provider , which implements all the functionality discussed above
transparently. Providers only need to specify which variables are to be exposed,
and where the probes are to be located. Only if they affect the control flow of the
program (such as inserting a return statement) do they need to ensure that this
modification does not conflict with the time-keeping necessary for SMCO.

Function entry provider. The function entry provider places a probe at the entry
point to each function in a program. This provider exposes each of the function’s
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arguments to consumers, and allows them to rewrite the arguments before the
body of the function is executed. To do this, it places a probe before the first basic
block in each function. The function entry provider is implemented in 35 lines of
C++ code.

Function return provider. The function return provider places a probe at every
return statement for each function in a program. The provider exposes the return
value to consumers, and allows them to modify the return value before the func-
tion returns. To do this, it locates each return statement in the function. However,
in GIMPLE, return statements do not necessarily return variables but rather return
special constructs called result declarationswhichmay not be used in any other con-
text. As a result, the function return provider must construct a temporary variable
to hold the return declaration; the address of this variable, then, is passed to the
probe. Figure 4.6 shows an example transformation.

T [T:]

…

D_CONTAINER = a.1 + b.2;

POINTERS[0] = &D_CONTAINER;

…  // tracepoint

d.1 = D_CONTAINER;

…  // accounting

return (result = d.1);

…

d.1 = a.1 + b.2;

return (result = d.1);

…

Figure 4.6: GIMPLE code for a return probe, showing the return statement before the probe is
inserted and as it appears in the tracepoint. result is a result declaration.

The function return provider is implemented in 176 lines of C++.

4.4 Performance characteristics

In this section, we turn to an evaluation of adb ’s performance characteristics. We
examine the actual overheads incurred by adb in a variety of usage scenarios. We
also investigate worst-case performance characteristics when adb is saturated with
events. These results demonstrate that adb fulfills the performance guarantees
made by SMCO. The overhead adb incurs is divided into two parts: mandatory
overhead, which is incurred regardless of the overhead target, and discretionary
overhead, which is subject to regulation using the SMCO policy. We will discuss
each of these effects along with their causes.

4.4.1 Benchmark setup

The main benchmark we use in this evaluation is a portion of the SPEC CPU2006
benchmark suite [30]. This portion consists of the integer benchmarks imple-
mented in C, which are:
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• 400.perlbench , a cut-down version of the Perl 5.8.7 interpreter running sev-
eral mail workloads and a file-difference workload;

• 401.bzip2 , a modified version of the bzip2 1.0.3 compression tool compress-
ing images, binaries, source code, HTML, and synthetic data;

• 403.gcc , the GCC 3.2 suite generating AMD Opteron code for a variety of
benchmark source files;

• 445.gobmk , a benchmark derived from the GNU Go engine that analyzes a
repository of Go games;

• 456.hmmer , a gene sequence analyzer that uses finite state machines to search
a reference database for a particular set of sequences;

• 458.sjeng , a modified version of the Sjeng 11.2 chess engine, which uses α-β
search to analyze chess positions from a repository of chess games; and

• 464.h264ref , a modified version of theH.264 reference video encoder, which
encodes several videos using a variety of profiles.

There are two additional integer benchmarks implemented in C, mcf (a public
transport simulation), and libquantum (a quantum computer simulator). We omit
mcf because of excessive runtime (both instrumented and uninstrumented), and
libquantum because it relies on a compiler-supplied complex number data type
that we are extending adb to support.
We selected the SPEC CPU2006 benchmarks for two reasons. First, there is

a long tradition of using SPEC benchmarks as measures of performance both for
compilers and for instrumentation suites. For example, the evaluation for ATOM, a
binary instrumenter from 1994, uses the SPECint92 benchmark [59], the evaluation
for Liblit et al.’s distributed sampling tool uses the SPEC int95 benchmark [37],
and the evaluation of Artemis, a context-based overhead-control system, uses the
SPEC CPU2000 benchmark [16]. Second, the SPEC benchmark series is intended
as a set of algorithms representative of very CPU-intensive workloads found in
the real world. The algorithms are designed to remove sources of external latency
like disk reads and writes, network I/O, and user interaction. As a result, they
provide enough probe hits to allow us to demonstrate adb ’s use of SMCO to control
overhead under situations of high, yet realistic, load.
We also developed a synthetic micro-benchmark called erbench in order to

demonstrate the base overhead and regulation behavior of adb under the highest
possible load. The erbench benchmark contains one leaf function that takes two
arguments and returns their sum. GCC emits this function as two Intel assembly
instructions: an addition and a return instruction. The main benchmark loop con-
ducts five sample runs; in each sample run, the benchmark executes the function
five billion times and divides the total runtime of the loop by five billion tomeasure
how many cycles a single iteration of the loop took. The slowdown experienced
by this benchmark after adb has added entry and exit probes to the leaf function
provides an estimate of the overhead a probe imposes on a single function (hence
the name, an abbreviation of entry-return benchmark). In addition, the further rise
in erbench ’s runtime as SMCO’s target overhead increases provides an estimate
of SMCO’s ability to control overhead under artificially high load.
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All benchmarks were performed on aDell PowerEdge 1425 1U server computer
with dual 2.8GHz Intel Xeon microprocessors. Each microprocessor had 2MiB of
L2 cache, and the computer had 2GiB of memory. We used the CentOS 5.2 distri-
bution of Linux (a free distribution consisting of the open-source portions of the
Red Hat Enterprise Linux distribution) under a vendor-patched version of Linux
2.6.18, in 64-bit mode. All benchmarks were compiled using a version of the GCC
4.3 compiler modified to use plug-ins, under optimization level -O2 .

4.4.2 Mandatory overhead

The first portion of our study concerns mandatory overhead. adb imposes manda-
tory overhead for three reasons. First, there is overhead from an auxiliary thread
that updates the fast clock device (discussed in detail in Section 4.2. Second, there
is overhead from the code necessary to perform the SMCO checks. Third, the pres-
ence of probes in the system limits the ability of GCC to optimize code. Specifi-
cally, functions that were previously leaf functions may now contain probes and
therefore no longer be leaf functions. Also, because any variable passed to a probe
can be modified by that probe, GCC can no longer perform certain operations that
require the data flow to be known at compile time, like constant propagation.
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Figure 4.7: SPEC benchmark runtimes with no instrumentation (light bars), adb instrumentation
with probes disabled (dark bars), and adb instrumentation with probes enabled, but with 0% target
overhead (black bars).
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Figure 4.7 shows the mandatory overhead imposed by adb on benchmarks
from the SPECCPU2006 suite. Overheads range from aminimumof 2% for 401.bzip2

to 18% for 458.sjeng when all probes are enabled. The degree of overhead re-
flects the architecture of the algorithms: bzip2 ’s core is an iterative compression
algorithm that performs many computations per function call, whereas sjeng ’s
core is a highly recursive α-β search algorithm with auxiliary heuristic functions.
This range of mandatory overheads is competitive with other sampling-based ap-
proaches; for example, Artemis’s stated theoretical asymptotic lower bound is
11% [16], and Liblit et al. found a similar range (2–22%) for a set of benchmarks
including ones from SPECint95 [37]. We can therefore conclude that the base over-
head for our approach is comparable with other approaches. Disabling probes
further improves runtime, bringing it into the range 0.1% for 456.hmmer to 13%
for 458.sjeng .
We continue with a more detailed examination of adb ’s base overhead using

erbench . As described in Section 4.4.1, the erbench leaf function is very simple:
GCC emits it as two lines of assembly code. When the leaf function is uninstru-
mented, one execution of the erbench benchmarking loop takes 18 cycles (stan-
dard deviation 0.1 cycle, or 0.5% of the mean, for 5 runs), including loop counter
maintenance and the call to the leaf function. When the leaf function is instru-
mented using entry and return probes, but the probes are disabled, one execution
of the benchmarking loop takes 33 cycles (standard deviation 0.4 cycles for 5 runs).
When adb overhead target is set to 0%, one execution of the benchmarking loop
takes 40 cycles (standard deviation 0.2 cycles, or 0.5% of the mean, for 5 runs).
An examination of the way GCC emits the erbench code gives insight into

these overhead numbers. The erbench leaf function was previously emitted with
no stack frame; now, it has a stack frame 296 bytes in size. The function’s preamble
and postamble each now have 6 instructions to perform stack maintenance. Each
probe takes 2 instructions if there are no consumers using it (a compare and a con-
ditional jump); if there are consumers but the probe is disabled by SMCO policy,
it takes four more instructions (two loads, a compare, and a conditional jump).
The contents of the probe are regulated by SMCO; their overhead is measured us-
ing the rdtsc instructions. On our test machine, the rdtsc instructions introduce
approximately 128 cycles of additional overhead.

4.4.3 Discretionary overhead

Having determined the base overhead of simply having probes in a program, we
continue to a discussion of SMCO’s ability to regulate overhead. For this discus-
sion, we use the 403.gcc benchmark from SPEC CPU2006, as well as the erbench

benchmark. There are two effects we seek to confirm. First, observed overhead
must track desired overhead correctly; this is a property of SMCO. Second, as
allowed overhead increases, the number of events should increase as well; oth-
erwise, there is no benefit to sacrifices in runtime. We confirm both of these in
two different, but very challenging environments: 403.gcc is a multi-phase pro-
gramwith a rapidly-changing execution profile, whereas erbench is a single-phase
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benchmark with extremely high throughput. Afterwards, we investigate details
of 403.gcc ’s multi-phase behavior through the eyes of SMCO, observing as λ,
the compensation factor that increases individual probes’ share of global over-
head when some probes are underused, compensates for changes in the number
of probes hit over time.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

O
b

se
rv

ed
 o

v
er

h
ea

d
 (

%
)

M
il

li
o

n
s 

o
f 

ev
en

ts

Desired overhead (%)

Measured overhead
Ideal overhead

Events observed

Figure 4.8: Observed overhead (y axis) versus target overhead (x axis) with SMCO control for the
403.gcc benchmark. The dotted line is ideal (a 1:1 ratio), and the solid line is measured.

Figure 4.8 shows SMCO regulating the 403.gcc benchmark. The graph shows
two curves besides the ideal overhead curve. The first is the measured overhead
for each value of target overhead, computed by dividing the wall-clock runtime of
the 403.gcc run by the wall-clock runtime of a run with target overhead set to 0%;
the second is the number of events observed for each value of target overhead. At
first, the observed overhead tracks the desired overhead accurately, until reaching
the 60% mark. (These are stable results: the standard deviation of three runs is
below 5% of the mean). Afterwards, the observed overhead lags behind. This
drop in overhead is observed by SMCO as well: overhead under adb varies in a
range of 10% based on the particular gcc input file. (The results are still stable in
the sense that they do not vary significantly between runs on the same source file.)
What we are observing is a crucial point about the SMCO controller: insta-

bility in the program’s execution profile is constant, so as the desired overhead
increases, SMCO must increase the value of λ and consequently be more affected
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by this instability. Hence asking for high overhead in a large program like GCC
with a complicated execution profile implies that the SMCO controller’s obtained
overhead will tend to fluctuate more. We inspect GCC’s execution profile more in
Figure 4.10.
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Figure 4.9: Observed overhead and number of events monitored versus target overhead with SMCO
control for erbench. The dashed diagonal line is the ideal 1:1 line for observed overhead.

Figure 4.9 shows SMCO regulating the erbench benchmark. The curves have
the same meanings as in Figure 4.8, but we have included runs at 0.1%, 0.2%,
0.4%, 0.6%, and 0.8%. We observe that SMCO does an excellent job of adhering
to overhead targets in general, but at very low desired overheads the observed
overhead exceeds the desired overhead somewhat. This overshoot is not due to
problems in the SMCO controller; the controller’s internal statistics, as opposed
to wall-clock time, indicate overhead extremely close to the target. Rather, the
overshoot occurs due to cache misses in the inlined SMCO code. The conclusion
that the control scheme is not at fault in this case is further supported by the rigidly
linear increase in the number of events observed: SMCO is clearly throttling the
probes correctly, but there are fluctuations in the unmeasured overhead.
Figure 4.10 shows the operation of the SMCO global controller as a single ex-

ecution of gcc runs. A single run of the 403.gcc benchmark consists of multiple
executions of the gcc executable on different test files; hence, although the full run
took 1,691 seconds, this execution only took 127 seconds. This figure shows data
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Figure 4.10: Observed overhead per interval and values of λ throughout a single gcc invocation
from 403.gcc with target overhead set to 30%. Both y axes are logarithmic, but λ (right-hand y
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collected at each interval by the SMCO global controller, which runs at the end of
each 0.1-second interval. The controller determines the current overhead, which
is represented by the upper data series. The ratio of the desired overhead to this
overhead is the error, an estimate of the accuracy of the previous value of λ. λ
is then corrected by multiplying it by this error; this and λ’s effect on overhead
constitute a feedback loop.
In the execution of gcc depicted in Figure 4.10, target overhead is set to 30%.

Observed overhead stays close to this target, and, when it is stable, λ is greater than
1. We expect a large positive value of λ in all but trivial programs because only a
few portions of a program’s code are executed in any particular period of time,
limiting the number of probes that can fire. In GCC, for example, each phase of
compilation—parsing, optimization, register allocation, instruction selection—has
its own set of functions.
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Chapter 5

Conclusion

Internet connectivity is ubiquitous. Internet gaming and Web-based applications
are two of the largest applications for personal computers; handheld computers
without an Internet connection, whether through WiFi or cellular services, are be-
coming curiosities. The server space now largely exists to provide services on the
Internet. Software development is changing too, with user input, both in the form
of posts on support forums and in the form of crash reports—becoming one of the
primary ways software developers have to find new bugs and prioritize existing
ones.
User participation in the debugging process is helpful, but users are not ex-

perts. There are certain sectors where the end-user is a trained system adminis-
trator or developer. In such sectors, interactive tools like DTrace are invaluable
for diagnosing correctness and performance problems in software. In other cases,
users should be able to opt in to a debugging system that allows developers to
track down bugs remotely. Such a debugging system will not be fully interactive,
because developers have neither the time nor the privilege to interactively query
customer computers; rather, a developer will write agents that represent hypothe-
ses about bugs, and deploy these agents to existing installations of the software
being debugged.

adb is precisely the mechanism for this new form of debugging. As we have
seen, adb provides a clean separation between the provider, which adds multipur-
pose probes to an application, and the consumer, which can be deployed later, be
developed entirely separately from the program’s source base, and yet be capable
of full data reflection on the application by using adb ’s generic APIs. In addition,
we have observed that adb represents the user’s interests by regulating the over-
head that the instrumentation imposes, ensuring that it does not slow down the
user experience unacceptably. This is crucial to continuing user participation in
any voluntary debugging effort.
In addition to developing adb itself, we have contributed a variety of other

technologies which promise to have significant impact themselves.

• GCC plug-ins are a mechanism for loading new transformation passes into
GCC as it compiles a program. These transformation passes have full access
to the GCC internal API, and can manipulate the intermediate representa-
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tion of the program being compiled as if they were a part of GCC. The GCC
plug-in technology promises to make GCC accessible to a variety of new de-
velopers, including researchers, application developers with domain-specific
transformations, and developers of experimental transformations that are
not yet mature enough to be included in mainline GCC. For each of these
clients, plug-ins offer the ability to develop compiler code without the incon-
venience of maintaining a patch series and rebuilding the whole compiler
tool-chain when the developer changes the transformation. Additionally,
for the maintainers of GCC, plug-ins hold the promise of less maintenance
overhead because non-essential functionality can be separated into plug-ins.
GCC plug-ins is scheduled to appear in GCC 4.5.

• Compiler development tools are used to assist developers in implementing
compilers and transformations. We have developed a tool called GIMPLEViz
that helps developers inspect the intermediate representation for code being
compiled by GCC; by using GIMPLE Viz, a GCC developer can find out how
GCC compiles particular code fragments, and what the exact results of a cer-
tain compiler optimization are. We are currently extending GIMPLE Viz to
allow dumping of the GIMPLE intermediate representation into a database,
and are integrating it with GDB to allow interactive debugging of GCC code.

• Debugging tools based on plug-ins leverage our GCC plug-in technology to
perform useful software diagnoses. For example, we have developed plug-
ins for array bounds-checking, execution tracing, race condition detection,
memory leak detection, and reference counter validation. We have also de-
veloped a plug-in that embeds Python in GCC, exposing the GCC intermedi-
ate representation to programs written in the Python scripting language [54].
Programmers can use this plug-in to prototype algorithm-intensive optimiza-
tions using Python’s easy-to-use data structures and extensive standard li-
brary, saving time and implementation effort.

• Overhead-control policies for instrumentation control the degree to which
instrumentation affects performance. During our research, we developed
two innovative overhead-control schemes: Monte Carlo Monitoring (MCM),
based on Monte Carlo Model Checking [25], and Software Monitoring with
Controllable Overhead (SMCO). MCM initially monitors all possible events,
checking if a certain correctness property for the system holds true at every
event. When the confidence that the property is always true for a given class
of events passes a threshold (say, 99.999%), MCM disables the checks for that
class of events. SMCO regulates the delay betweenmonitored events to make
the observed overhead match a particular desired value.

5.1 Future Work

Whereas adb is the best tool for the job at the moment, there are improvements
that could be made. Specifically, it should not be required to specify in advance
what probe-points are necessary. To facilitate this, we propose an extension of the
superblocking technique common in VLIW compilers [15]. A superblock is a con-
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catenation of basic blocks (see Section 4.3.1) that is optimized for a particular im-
portant code path. Entry and exit points from the middle of a superblock exist, and
the compiler guarantees that if control passes in or out that the proper instructions
will be issued, but those paths are comparatively slow.
We propose an application of superblocking in which variables are optimized

as desired in the fast path, but for each variable for which operations are out of
order in the fast path, there is a sequence of slow paths that performs the same op-
erations. To improve performance, there would be no branches to these slow paths;
rather, each path would be associated with an instruction that could be rewritten
to an unconditional branch to enable that path. Each slow path could then be fur-
ther modified, allowing any portion of the code to be rewritten (in this case, for
instrumentation purposes). This would require extensive compiler support, but
provide full code reflection with no performance penalty.
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