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Abstract

A serious security threat today is malicious executables, especially new, unseen malicious executables. Many of these
new malicious executables are undetectable by current anti-virus systems because they do not contain signatures for these
new instances of malicious programs. These new malicious executables are created every day, and thus pose a serious
security threat. We present a framework that detects new, previously unseen malicious executables. Comparing our detec-
tion methods with a traditional signature-based method, our method more than doubles the current detection rates for new
malicious executables.

1 Introduction

A malicious executable is defined to be a program that performs a malicious function, such as compromising a system’s
security, damaging a system or obtaining sensitive information without the user’s permission. Our goal is to automatically
design and build a scanner usidgta miningmethods that accurately detect malicious executables before they have been
given a chance to run. Data mining methods detect patterns in large amounts of data, such as byte code, and uses these
patterns to detect future instances in similar data. Our frameworkalassifiersto detect new malicious executables.

A classifier is a rule set, or detection model, generated by the data mining algorithm that was trained over a given set of
training data.

One of the primary problems faced by the virus community is to devise methods for detecting new malicious programs
that have not yet been analyzed [24]. Eight to ten malicious programs are created every day and most cannot be detected un-
til signatures have been generated for them [25]. During this time period, systems protected by signature based algorithms
are vulnerable to attacks.

Malicious executables are also used as attacks for many types of intrusions. In the DARPA 1999 intrusion detection
evaluation, many of the attacks on the Windows platform were caused by malicious programs [17]. Recently a malicious
piece of code created a hole in a Microsoft’s internal network [21]. That attack was initiated by a malicious executable that
opened a back-door into Microsoft’s internal network resulting in the theft of Microsoft's source code.

Detecting malicious executables is the key to protecting a system from these types of attacks. Automatic signature based
scanners are already on the market, but they are not as accurate in detecting new malicious executables when compared
to our methods. These automatic algorithms they relgignaturesof known malicious executables to generate detection
models. Signature-based methods create a unique tag for each malicious program so that future examples of it can be
correctly classified with a small error rate. These methods do not generalize well to detect new malicious binaries. The
next evolution in malicious program detection is detecting these new malicious executables accurately and automatically.

We designed a framework that used data mining algorithms to train multiple classifiers on a set of malicious and benign
executables to detect new examples. The binaries were first statically analyzed to extract properties of the binary, and then
the classifiers trained over a subset of the data.

Our goal in the evaluation of this method was to simulate the task of detecting new malicious executables. To do this we
separated our data into two setstraining setand atest set The training set was used by the data mining algorithms to
generate classifiers to classify previously unseen binaries as malicious or benign. A test set is a subset of dataset that had no
examples in it that were seen during the training of an algorithm. This subset was used to test an algorithms’ performance



over similar, unseen data and its performance over new malicious executables. The data we tested our detection models on
was similar to the training data in that they were malicious executables gathered from public sources.

We implemented a traditional signature-based algorithm to compare with the the data mining algorithms. Using standard
statistical cross-validation techniques this framework had a detection rate of 97.76%, over double the detection rate of a
signature-based scanner.

1.1 Background

Detecting malicious executables is not a new problem in security. Early methods used signatures to detect malicious
programs. These signatures were composed of many different properties: filename, text strings, or byte code. Research
also centered on protecting the system from security holes these malicious programs created.

Experts were typically employed to analyze suspicious programs by hand. Using their expert knowledge signatures
were found that made a malicious executable example different from other malicious executables or benign programs. One
example of this type of analysis was performed by Spafford in 1988 [22]. He used his expertise to analyze the Internet
Worm and provided detailed notes on the spread of it over the Internet, the unique signatures in the worm’s code, the
method of the worm'’s attack, and a comprehensive description of system failure points.

Although accurate, this method of analysis is expensive, and slow. If only a small set of malicious executables will ever
circulate then this method will work very well, but th¥ildlist [20] is always changing and expanding. The Wildlist is a
list of malicious programs that are currently estimated to be circulating at any given time.

Current approaches to detecting malicious programs match them to a set of known malicious programs. The anti-virus
community relies heavily on known byte-code signatures to detect malicious programs. More recently these byte sequences
were determined by automatically examining known malicious binaries with probabilistic methods.

At IBM Kephart and Arnold [7] developed a statistical method for automatically extracting malicious executable signa-
tures. Their research was based on speech recognition algorithms and was shown to perform almost as good as a human
expert at detecting known malicious executables. Their algorithm was eventually packaged with IBM’s anti-virus software.

Lo et al. [13] presented a method for filtering malicious code based on “tell-tale signs” for detecting malicious code.
These are manually engineered based on observing the characteristics of malicious code. Similarly, filters for detecting
properties of malicious executables have been proposed for UNIX systems [8] as well as semi-automatic methods for
detecting malicious code [3].

Unfortunately, a new malicious program may not contain any known signatures so traditional signature based methods
may not detect a new malicious executable. In an attempt to solve this problem different IBM researcher&\djfdiatl
Neural NetworksANN, to the problem of detecting boot sector malicious binaries [23]. An artificial neural network is a
classifier that models neural networks explored in human cognition. Because of the limitations of their implementation of
the classifier they were unable to analyze anything other than small boot sector viruses which comprise about 5% of all
malicious binaries.

Using an ANN classifier with all bytes from the boot sector malicious executables as input, IBM researchers were able
to identify 80—85% of unknown boot sector malicious executables successfully with a low false positive tatg (They
were unable to find a way to apply ANNSs to the other 95% of computer malicious binaries.

Our method is different because we analyzed the entire set of malicious executables instead of only boot sector viruses.

Our technique is similar to data mining techniques that have already been applied to Intrusion Detection Systems by Lee
etal. [11, 12]. Their methods were applied to system calls and network data to learn how to detect new intrusions. They
reported ample detection rates as a result of applying data mining to the problem of IDS. We applied a similar framework
to the problem of detecting new malicious executables.

2 Methodology

The goal of this work was to explore a number of standard data mining techniques to compute accurate detectors for
new (unseen) data. We gathered a large set of programs from public sources and separated the problem into two classes:
maliciousandbenignexecutables. Every example in our data set is a Windows or MS-DOS format executable, although
the framework we presentis applicable to other formats. To standardize our data-set, we used MacAfee’s [14] virus scanner
and labeled our programs as either malicious or benign executables.

We split the dataset into two subsets: thaning setand thetest set The data mining algorithms used the training set
while generating the rule sets. We used a test set to test the accuracy of the classifiers over unseen examples.

Next, we extracted a binary profile from each example in our dataset, and from the binary profiles we efeatigtes
to use with classifiers. Features in a data mining framework are properties extracted from each example in the data set,



such as byte sequences, that a classifier uses to generate detection models. Using different features, we trained a set of data
mining classifiers to distinguish between benign and malicious programs.

The framework supports different methods for feature extraction and different data mining classifiers. We used system
resource information, strings and byte sequences that were extracted from the malicious executables in the data set as
different types of features. We also used three learning algorithms:

¢ an inductive rule-based learner that generated boolean rules based on feature attributes
e a probabilistic method that generated probabilities that an example was in a class given features

e a multi-classifier system that combined the outputs from several classifiers to generate a model.

To compare the data mining methods with a traditional signature-based method we designed an automatic signature
generator. Since the virus scanner that we used to label the data set had been trained over every example in our data
set, it was necessary to implement a similar signature-based method to compare with the data mining algorithms. There
was no way to use an off-the-shelf virus scanner, and simulate the detection of new malicious executables because these
commercial scanners contained signatures for all the malicious executables in our data set. Like the data mining algorithms,
the signature-based algorithm was only allowed to generate signatures over the set of training data. This allowed our data
mining framework to be fairly compared to traditional scanners over new data.

To quantitatively express the performance of our method we show tables with the counts fursitivestrue negatives
false positivesandfalse negativesA true positive (TP) is an malicious example that is correctly tagged as malicious, and
a true negative (TN) is a benign example that is correctly classified. A false positive )(FP) is a benign program that has
been mislabeled by an algorithm as a malicious program, while a false negative (FN) is a malicious executable that has
been mis-classified as a benign program.

The results that are presented in this paper are the false positive rate and the detection rate. The false positive rate is
the number of benign examples that are mislabeled as malicious divided by the total number of benign examples. The
detection rate is the number of malicious examples that are caught divided by the total number of malicious examples.

2.1 Dataset Description

The data set consisted of a total of 4,301 programs split into 3,301 malicious binaries and 1,000 clean programs. There were
no duplicate programs in the data set and every example in the set is labeled either malicious or benign by the commercial
virus scanner. All labels are assumed to be correct.

All programs were gathered either from the FTP sites, or personal computers in the Data Mining Lab here at Columbia
University.

The malicious executables were downloaded from various FTP sites and were labeled by a commercial virus scanner
with the correct class label (malicious or benign) for our method. 5% of the data set was composed of Trojans and the other
95% consisted of viruses.Most of the clean programs were gathered from a freshly installed Windows 98 machine running
MSOffice 97 while others are small executables downloaded from the Internet.

We also examined a subset of the data that waEfi15], Portable Executable, format. The data set consisting of PE
format executables was composed of 206 benign programs and 38 malicious executables.

After verification of the data set the next step of our method was to extract features from the programs.

3 Feature Extraction

In this section we detail all of our choices of features. We statically extracted different features that represented different
information contained within each binary. These features were then used by the algorithms to generate detection models.

We first examine only the subset of PE executables using LibBFD, which is explained next. Then we used more general
methods to extract features from all types of binaries.

3.1 LibBFD

Our first intuition into the problem was to extract information from the binary that would dictate its behavior. The problem

of predicting a program’s behavior is reduceable to the halting problem and hence undecidable [1]. Perfectly predicting a
program’s behavior is unattainable but estimating what a program can or cannot do is possible. For instance if a Windows
executable does not call the User Interfaces DLL (USER32.DLL), then we could assume that the program does not have



the standard Windows user interface. This is of course an over-simplification of the problem because the author of that
example could have written or linked to another user interface library, but it did provide us with some insight to an optimal
feature set.

To extract resource information from Windows executables we used GNU’s Bin-Utils [4]. GNU'’s Bin—Utils suite of
tools can analyze PE binaries within Windows. In PE, or COFF (Common Object File Format), program headers are
composed of a COFF header, an Optional header, an MS-DOS stub, and a file signature. From the PE header we used
libBFD, a library within Bin—Ultils, to extract information iobject format Object format for a PE binary gives the file
size, the names of Dynamically Linked Libraries (DLLs), and the names of function calls within those DLLs and Relocation
Tables. From the object format, we extracted a set of features to compose a feature vector for each binary.

To understand how resources affected a binary’s behavior we performed our experiments using three types of features:

1. The list of DLLs used by the binary
2. The list of DLL function calls made by the binary

3. The number of different system calls used within each DLL

The first approach to binary profiling (seen in Figure 1) used the DLLs loaded by the binary as features. The feature
vector comprised of 30 boolean values representing whether or not a binary used a DLL. Typically, not every DLL was
used in all of the binaries, but a majority of the binaries called the same resource such as GDI32.DLL which almost every
binary called. GDI32.DLL is the Windows NT Graphics Device Interface and is a core component of WinNT.

—advapid2 N\ avicap32 A ... N winmm A\ ~wsock32

Figure 1: First Feature Vector: A conjunction of DLL names

The example vector given in Figure 1 is composed of at least two unused resources: ADVAPI32.DLL, the Advanced
Windows API, and WSOCK32.DLL, the Windows Sockets API. It also uses at least two resources: AVICAP32.DLL, the
AVI capture API, and WINNM.DLL, the Windows Multimedia API.

The second approach to binary profiling (seen in Figure 2) used DLLs and their function calls as features. This approach
was similar to the first, but with added function call information. The feature vector was composed of 2,229 boolean values.
Because some of the DLL's had the same function names it was important to record which DLL the function came from.

advapi32.AdjustT okenPrivileges() A advapi32.GetFileSecurity A() A ... AN wsock32.recv() A wsock32.send)()

Figure 2: Second Feature Vector: A conjunction of DLL's and the functions called inside each DLL

The example vector given in Figure 2 is composed of at least four resources. Two functions were called in AD-
VAPI32.DLL: AdjustTokenPrivileges() and GetFileSecurityA(), and two functions in WSOCK32.DLL: recv() and send().

The third approach to binary profiling (seen in Figure 3) counted the number of different function calls used within each
DLL. The feature vector included 30 integer values. This profile gives a rough measure of how heavily a DLL is used
within a specific binary. Intuitively, in the resource models we have been exploring, this is a macro-resource usage model
because the number of calls to each resource is counted instead of detailing referenced functions.

advapid2 = 2 A avicap32 = 10 A ... Awinmm = 8 Awsock32 =0

Figure 3: Third Feature Vector: A conjunction of DLL's and a count of the number of functions called inside each DLL

The example vector given in Figure 3 describes an example that calls two functions in ADVAPI32.DLL, ten functions
in AVICAP32.DLL, eight functions in WINNM.DLL and no functions from WSOCK32.DLL.

All of the information about the binary was obtained from the program header. In addition, the information was obtained
without executing the unknown program but by examining the static properties of the binary, using libBFD.

Since we could not analyze the entire dataset with libBFD we found another method for extracting features that works
over the entire dataset. We describe that method next.



3.2 GNU Strings

During the analysis of our libBFD method we noticed that headers in PE-format were in plain text. This meant that we
could extract the same information from the PE-executables by just extracting the plain text headers. We also noticed that
non-PE executables also have strings encoded in them. We theorized that we could use this information to classify the full
4,301 item data set instead of the small libBFD data set.

To extract features from the first data set of 4,328 programs we used thes@iNgksprogram. The strings program
extracts consecutive printable characters from any file. Typically there are many printable strings in binary files. Some
common strings found in our dataset are illustrated in Table 1.

kernel microsoft | windows| getmodulehandleq
getversion | getstartupinfoa win getmodulefilenamep
messageboxa closehandle null dispatchmessagea
library getprocaddress advapi getlasterror
loadlibrarya | exitprocess heap | getcommandlinea
reloc createfilea | writefile setfilepointer
application | showwindow | time regclosekey

Table 1: Common strings extracted from binaries using GNU strings

Through testing we found that there were similar strings in malicious executables which distinguished them from clean
programs, and similar strings in benign programs which distinguished them from malicious executables. The strings
contained in a binary may consist of re-used code fragments, author signatures, file names, system resource information,
etc. This method of detecting malicious executables is already used by the anti-malicious executable community to create
signatures for malicious executables.

Extracted strings from an executable are not very robust as features because they can be changed easily, so we analyzed
another feature, byte sequences.

3.3 Byte Sequences using Hexdump

Byte sequences are the last feature that we used, and they also analyzed the entire 4,301 member data seexXdinused
[16], a tool that transforms binary files into hexadecimal files. The byte sequence feature is the most informative because
it represents the machine code in an executable instead of resource information like libBFD features. Secondly, analyzing
the entire binary gives more information for non-PE format executables than the strings method.

After we generated the hexdumps we had features in the form of Figure 4 where each line represents a short sequence
of machine code instructions.

1fOe Oeba b400 cd09 b821 4c01 21cd 6854
7369 7020 6f72 7267 6d61 7220 7165 6975
6572 2073 694d 7263 736f 666f 2074 6957

646e 776f 2e73 0a0d 0024 0000 0000 0000
454e 3c05 026¢ 0009 0000 0000 0302 0004
0400 2800 3924 0001 0000 0004 0004 0006
000c 0040 0060 021e 0238 0244 02f5 0000
0001 0004 0000 0802 0032 1304 0000 030a

Figure 4: Example Hexdump

We again assumed that there were similar instructions in malicious executables that differentiated them from benign
programs, and the class of benign programs had similar byte code that differentiated them from the malicious executables.

4  Algorithms

In this section we describe all the algorithms used in this paper including the signature based method that we use to
compare our data mining algorithms to. We used three different data mining algorithms to generate classifiers using
different features: RIPPER, Naive Bayes, and a Multi-Classifier system.

We detail the signature based method first.



4.1 Signature Methods

We examine signature-based methods to compare our results to traditional anti-virus methods. Signature-based detection
methods are the most commonly used algorithms in the industry [25]. These signatures are picked to differentiate one
malicious executable from another, and from benign programs. These signatures can generated by an expert in the field or
an automatic method. Typically a signature is picked to illustrate the unusual properties of a specific malicious executables.

We implemented a signature-based scanner with this method. First we calculated the byte-sequences that were only
found in the malicious executable class. These byte-sequences were then concatenated together to make a unique signature
for each malicious executable example. Thus each malicious executable signature contained only byte-sequences found in
the malicious executable class. To make the signature unigue the byte-sequences found in each example were concatenated
together to form one signature. This was because a byte-sequence that is only found in one class during training could
possibly be found in the other class during testing [7], and lead to false positives in testing.

The method described above for the commercial scanner was never intended to detect unknown malicious binaries, but
the data mining algorithms that follow were built to detect new malicious executables.

4.2 RIPPER

The next algorithm we used, RIPPER [2] is an inductive rule learner. This algorithm generated a detection model composed
of resource rules that was built to detect future examples of malicious executables. This algorithm used libBFD information

as features.

RIPPER is a rule-based learner that builds a set of rules that identify the classes while minimizing the amount of error.
The error is defined by the number of training examples misclassified by the rules.

An inductive rule learner works as follows. An inductive algorithm learns what a malicious executable is given a set of
training examples. The four features seen in Table 2 are:

1. “Does it have a GUI?”
2. “Does it perform a malicious function?”
3. “Does it compromise system security?”
4. “Does it delete files?”

and finally the class question “Is it a malicious executable?”.

Has a | Malicious | Compromise| Deletes Isita
GUI? | Function?| Security? | Files? || malicious executable?
yes yes yes no yes
no yes yes yes yes
yes no no yes no
yes yes yes yes yes

Table 2: Example Inductive Training Set. Intuitively all malicious executables share the second and third feature, “yes”
and “yes” respectively.

The defining property of any inductive learner is that no a priori assumptions have been made regarding the final concept.
The inductive learning algorithm makes as its primary assumption that the data trained over is similar in some way to the

unseen data.
A hypothesis generated by an inductive learning algorithm for this learning problem has four attributes. Each attribute

will have one of these values:
1. T, truth, indicating any value is acceptable in this position,
2. avalue, either yes, or no, is needed in this position, or

3. al, falsity, indicating that no value is acceptable for this position



For example, the hypothes{3, T, T, T) and the hypothesi§es, yes, yes, no) would make the first example true.
(T, T, T, T)would make any feature set true afyds, yes, yes, no) is the set of features for example one.

The algorithm we describe End-S[18]. Find-S finds the most specific hypothesis that is consistent with the training
examples. For a positive training example the algorithm replaces any attribute in the hypothesis that is inconsistent with
the training example with a more general attribute. Of all the hypothesis values 1 is more general than 2 and 2 is more
general than 3. For a negative example the algorithm does nothing. Positive examples in this problem are defined to be the
malicious executables and negative examples are the benign programs.

The initial hypothesis that Find-S starts with(is, L, 1, L ). This hypothesis is the most specific because it is true over
the fewest possible examples, none. Examining the first positive example in Talgles 2yes, yes, no), the algorithm
chooses the next most specific hypothégis, yes, yes, no). The next positive exampléno, no, no, yes), is inconsistent
with the hypothesis in its first and fourth attribute (“Does it have a GUI?” and “Does it delete files?”) and those attributes
in the hypothesis get replaced with the next most general attrihute,

The resulting hypothesis after two positive exampleg§Tisyes, yes, T). The algorithm skips the third example, a
negative example, and finds that this hypothesis is consistent with the final example in Table 2. The final rule for the
training data listed in Table 2 i§T, yes, yes, T). The rule states that the attributes of a malicious executable, based on
training data, are that has a malicious function and compromises system security. This is consistent with the definition of a
malicious executable we gave in the introduction. It does not matter in this example if a malicious executable deletes files,
or if it has a GUI or not.

Find-S is a relatively simple algorithm while RIPPER is more complex. RIPPER looks at both positive and negative
examples to generate a set of hypotheses that more closely approximate the target concept while Find-S generates one
hypothesis that approximates the target concept.

4.3 Naive Bayes

The next classifier we describe is a Naive Bayes classifier [5]. The naive Bayes classifier computes the likelihood that a
program is malicious given the features that are contained in the program. This method used both strings and byte-sequence
data to compute a probability of a binary’s maliciousness given its features.

Nigam et al. [19] performed a similar experiment when they classified text documents according to which newsgroup
they originated from. In this method we treated each executable’s features as a text document and classified based on that.
The main assumption in this approach is that the binaries contain similar features such a signatures, machine instructions,
etc.

Specifically, we wanted to compute the class of a program given that the program contains a set of feAilgréefine
C to be arandom variable over the set of classestign andmaliciousexecutables. That is, we want to compRte’| F),
the probability that a program is in a certain class given the program contains the set of féatWesapply Bayes rule
and express the probability as:

P(F|C) % P(C)
P(C|F) = TR 1)

To use the naive Bayes rule we assume that the features occur independently to one another. If the features of a program
F include the featuresy, F», F3, ..., F,,, then equation (1) becomes:

_ IIiZ, P(F|C) = P(C)
PR = Py @

EachP(F;|C) is the percentage of the time that the strifigoccurs in a program of clags. P(C) is the proportion of

the clas<” in the entire set of programs.

The output of the classifier is the highest probability class for a given set of strings. Since the denominator of (1) is the
same for all classes we take the maximum class over all clésséthe probability of each class computed in (2) to get:

Most Likely Class= max <P(C) ﬁ P(Fi|C)> 3)
i=1

Most Likely Class is the class i@ with the highest probability and hence the most likely classification of the example
with features?'.

To train the classifier, we recorded how many programs in each class contained each unique feature. We used this
information to classify a new program into an appropriate class. We first used feature extraction to determine the features
contained in the program. Then we applied equation (3) to compute the most likely class for the program.



We used the Naive Bayes algorithm and computed the most likely class for byte sequences, and strings.

4.4 Multi-Naive Bayes

The next data mining algorithm we describe is Multi-Naive Bayes. This algorithm was essentially a collection of Naive
Bayes algorithms that voted on an overall classification for an example. Each Naive Bayes algorithm classified the exam-
ples in the test set as malicious or benign and this counted as a vote. The votes were combined by the Multi-Naive Bayes
algorithm to output a final classification for all the Naive Bayes.

This method was required because even using a machine with one gigabyte of RAM, the size of the binary data was too
large to fit into memory. The Naive Bayes algorithm required a table of all strings or bytes to compute its probabilities.
To correct this problem we divided the problem into smaller pieces that would fit in memory and trained a Naive Bayes
algorithm over each of the subproblems.

The subproblem was to classify based on every 6th line of machine code instead of every line in the binary. For this we
trained six Naive Bayes classifiers so that every byte-sequence line in the training set had been trained over. In general,
NaiveBayes; trained on every line wheré«{6) mod 6 equaled 0.

The Multi-Naive Bayes promotes a vote of confidence between all of the underlying Naive Bayes classifiers. Each
classifier gives a probability of a claésgiven a set of bytes’ which the Multi-Naive Bayes uses to generate a probability
for classC' given F' over all the classifiers.

We want to compute the likelihood of a claSsgiven bytesF’ and the probabilities learned by @llaive Bayes;. In
equation (4) we compute the overall probability & 5 (C|F'), the Multi-Naive Bayes probability of clags given a set
of bytesF'.

INB|
Pyg(C|F) = [ Pns.(C|F) x Pyg,(C) 4
i=1
Pngi(C|F) (generated from equation (2)) is the probability for cle@ssomputed by the classifié¥ aive Bayes; given
F divided by the likely of a clas€’ computed byWaive Bayes;. These probabilities were multiplied together to compute
Py p(C|F), the final probability ofC' givenF'. [N B| is the size of the set NB such théalV B;e N B.
The output of the multi-classifier given a set of byfess the class of highest probability over the classes given the
probabilities of the underlying Naive Bayes classifiers &g (C) the prior probability of a given class.

Most Likely Class= max (Png(C) * Pnp(C|F)) (5)

Most Likely Class is the class i with the highest probability hence the most likely classification of the example with
featuresF'.

5 Rules

Each data mining algorithm generated its own rule set to evaluate new examples. These detection models were the final
result of our experiments. Each algorithm’s rule set could be incorporated into a scanner to detect malicious programs.
The generation of the rules only needed to be done periodically and the rule set distributed in order to detect new malicious
executables.

5.1 RIPPER

RIPPER'’s rules were built to generalize over unseen examples so the rule set was more compact than the signature based
methods. For the data set that contained 3,301 malicious executables the RIPPER rule set contained the five rules in Table
5.

malicious := —user32.EndDialog() A kernel32. EnumCalendarInfoA()
malicious := —user32.LoadIconA() A —kernel32.GetTempPathA() A madvapi32. *
malicious := shell32. Extract AssociatedIconA()

malicious := msvbvm. x
benign : — otherwise

Figure 5: Sample Classification Rules using features found in Figure 2



Here, a malicious executable was consistent with one of four hypotheses:

1. didn’t call user32.EndDialog() but did call kernel32.EnumCalendarinfoA()
2. didn’t call user32.LoadlconA(), kernel32.GetTempPathA(), or any function in advapi32.dll
3. called shell32.ExtractAssociatediconA(),

4. called any function in msvbbm.dll, the Microsoft Visual Basic Library

A binary is labeled benign if it is inconsistent with all of the malicious binary hypotheses in Figure 5.

5.2 Naive Bayes

The Naive Bayes rules were more complicated than the RIPPER, and signature based hypotheses. These rules took the
form of P(F'|C), the probability of an examplE' given a clas€”'. The probability for a string occurring in a class is the

total number of times it occurred in that class’s training set divided by the total number of times that the string occurred
over the entire training set. These hypotheses are illustrated in Figure 6.

P(“windows” |benign) = 45/47
P(“windows” |maliciousexecutable) = 2/47
P(“*.COM”|benign) = 1/12

P(“ % .COM”|maliciousexecutable) = 11/12

Figure 6: Sample classification rules found by Naive Bayes.

Here, the string “windows” was predicted to more likely to occur in a benign program and string “*.COM” was more
than likely in a malicious executable program.

However this leads to a problem when a string (e.g. “CH20H-CHOH-CH20H?") only occured in one set, for example
only in the malicious executables. The probability of “CH20H-CHOH-CH20H” occurring in any future benign example is
predicted to be 0, but this is an incorrect assumption. If a Chemistry TA's program was built to print out “CH20H-CHOH-
CH20H?", glycerol, it will always be tagged a malicious executable even if it has other strings in it that would have labeled
it benign.

In Figure 6 the string “*.COM” does not occur in any benign programs so the probability of “*.COM” occurring in class
benign is approximated to be 1/12 instead of 0/11. This approximates real world probability that any string could occur in
both classes even if during training it was only seen in one class [7].

5.3 Multi-Naive Bayes

The Multi-Naive Bayes algorithm generated rule sets are illustrated in Figure 7. These rules took the form of probabilities
of the collected underlying Naive Bayes classifiers. Each estimated probaBility,C| X ), of a class(, given a binary
program.X, is the product of all underlying Naive Bayd3y g, (C;|X), for C; equal toC.

benign|X) = [N2! Py, (benign|X) = 45/47 % 33/40 + 30/35 * 15/16 * 10/40 * 24/36 = 10%

maliciouserecutable| X) = H‘NB‘ Py g, (maliciousexecutable| X) = 2/47+7/40%5/35%1/16x30/40%12/36 = 0.01%
benign|Y) = [1!V P! P g, (benign|Y) = 5/50 % 2/20 % 3/300 * 15/30 + 1/22 ¥ 2/3 = 1.5 % 10~°%
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Figure 7: Classification rules found by Multi-Naive Bayes for examples X and Y.

In Figure 7, X was predicted by the Multi-Naive Bayes algorithm to be more likely to be a benign program because
six of the six underlying Naive Bayes algorithms classified it as most likely benign. They predicted this class with likely-
hoods of 45/47, 33/40, 30/35, 15/16, 10/40 and 24/36 respectively. Likewise they classified X as malicious with respective
probabilities of 2/47, 7/40, 5/35, 1/16, 30/40, and 12/36.



Profile True True False False Detection| False Positivel Overall
Type Positives (TP)| Negatives (TN)| Positives (FP) | Negatives (FN)| Rate Rate Accuracy
Signature Method

— Bytes 1121 1000 0 2180 33.96% 0% 49.31%
RIPPER

— DLLs used 22 187 19 16 57.89% 9.22% 83.62%
— DLL function calls 27 190 16 11 71.05% 7.77% 89.36%
— DLLs with

counted function cally 20 195 11 18 52.63% 5.34% 89.07%
Naive Bayes

— Strings 3176 960 41 89 97.43% 3.80% 97.11%
Multi-Naive Bayes

— Bytes 3191 940 61 74 97.76% 6.01% 96.88%

Table 3: These are the results of classifying new malicious programs organized by algorithm and feature. Multi-Naive
Bayes using Bytes had the highest Detection Rate, and Signature Method with Strings had the lowest False Positive Rate.
Highest overall accuracy was the Naive Bayes algorithm with Strings. Note that the detection rate for the signature-based
methods are lower than the data mining methods.

6 Results and Analysis

We estimate our results over new data by using 5-fold cross validation [10]. Cross validation is the standard method to
estimate likely predictions over unseen data in Data Mining. For each set of binary profiles we partitioned the data into 5
equal size partitions. We used 4 of the partitions for training and then evaluated the rule set over the remaining partition.
Then we repeated the process 5 times leaving out a different partition for testing each time. This gave us a very reliable
measure of our method’s accuracy over unseen data. We averaged the results of these five tests to obtain a good measure
of how the algorithm performs over the entire set.

To evaluate our system we were interested in several quantities:

1. True Positives (TP), the number of malicious executable examples classified as malicious executables
2. True Negatives (TN), the number of benign programs classified as benign.
. False Positives (FP), the number of benign programs classified as malicious executables

3
4. False Negatives (FN), the number of malicious executables classified as benign binaries.

We were interested in the detection rate of the classifier. In our case this was the percentage of the total malicious
programs labeled malicious. We were also interested in the false positive rate. This was the percentage of benign programs
which were labeled as malicious, also called false alarms.

The Detection Rate is defined asf, False Positive Rate asy-lr7, and Overall Accuracy asp—uirrrr-

The results of all experiments are presented in Table 3.

For all the algorithms we plotted the detection rate vs. false positive rateR€iGgurves [9]. ROC (Receiver Operating

Characteristic) curves are a way of visualizing the trade-offs between detection and false positive rates.

6.1 Signature Method

As is shown in Table 3, the signature method had the lowest false positive rate, 0% This algorithm also had the lowest
detection rate, 33.96%, and accuracy rate, 49.31%.

Since we use this method to compare with the learning algorithms we plot its ROC curves against the RIPPER algorithm
in Figure 8 and against the Naive Bayes and Multi-Naive Bayes algorithms in Figure 9.

6.2 RIPPER

The RIPPER results shown in Table 3 are equivalent to each other in detection rates and overall accuracy, but the method
using features from Figure 2, a list of DLL function calls, has a higher detection rate.
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Figure 8: RIPPER ROC. Notice that the RIPPER curves have a higher detection rate than the comparison method with
false-positive rates greater than 7%.

The ROC curves for all RIPPER variations are shown in Figure 8. The lowest line represents RIPPER using DLLs only
as features, and it was roughly linear in its growth. This means that as we increase detection rate by 5% the false positive
would also increase by roughly 5%.

The other lines are concave down so there was an optimal trade-off between detection and false alarms. For DLL's with
Counted Function Calls this optimal point was when false positive rate was 10% and detection rate was equal to 75%. For
DLLs with Function Calls the optimal point was when false positive rate was 12% and detection rate was less than 90%.

6.3 Naive Bayes

The Naive Bayes algorithm using strings as features performed the best out of the learning algorithms and better than the
signature method in terms of false positive rate and overall accuracy (see Table 3). It is the most accurate algorithm with
97.11% and within 1% of the highest detection rate, Multi-Naive Bayes with 97.76%. It performed better than the RIPPER
methods in every category.

In Figure 9, the slope of the Naive Bayes curve is initially much steeper than the Multi-Naive Bayes. The Naive Bayes
with strings algorithm has better detection rates for small false positive rates. Its results were greater than 90% accuracy
with a false positive rate less than 2%.
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10 § Signature Method -
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Figure 9: Naive Bayes and Multi-Naive Bayes ROC. Note that the Naive Bayes and Multi-Naive Bayes methods have
higher detection rate than the signature method with a greater than 0.5% false positive rate.
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6.4 Multi-Naive Bayes

The Multi-Naive Bayes algorithm using bytes as features had the highest detection rate out of any method we tested,
97.76%. The false positive rate at 6.01% was higher than the Naive Bayes methods (3.80%) and the signature methods
(< 1%).

The ROC curves in Figure 9 show a slower growth than the Naive Bayes with strings method until the false positive rate
climbed above 4%. Then the two algorithms converged for false positive rates greater than 6% with a detection rate greater
than 95%.

7 Defeating Detection Models

Although these methods can detect new malicious executables, if the detection model were to be compromised a malicious
executable author could bypass detection.

First, to defeat the signature based method requires removing all malicious signatures from the binary. Since these are
typically a subset of a malicious executable’s total data, changing the signature of a binary would be possible although
difficult.

Defeating the models generated by RIPPER would require generating functions that would change the resource usage.
These functions do not have to be called by the binary but would change the resource signature of an executable.

To defeat our implementation of the Naive Bayes classifier it would be necessary to change a significant number of
features in the example. One way this can be done is through encryption, but encryption will add overhead to small
malicious executables.

We corrected the problem of authors evading a strings-based rule set by initially classifying each example as malicious.
If no strings that were contained in the binary had ever been trained over then the final class was malicious. If there
were strings contained in the program that the algorithm had seen before then the probabilities were computed normally
according to the Naive Bayes rule from Section 4.3. This took care of the instance where a binary had encrypted strings,
or had changed all of its strings.

The Multi-Naive Bayes method improved on these results because changing every line of byte code in the Naive Bayes
detection model would be an even more difficult proposition than changing all the strings. Changing this many of the lines
in a program would change the binary’s behavior significantly. Removing all lines of code that appear in our model would
be difficult and time consuming, and even then if none of byte sequences in the example had been trained over then the
example would be initially classified as malicious.

The Multi-Naive Bayes is a more secure model of detection than any method discussed in this paper because we evaluate
a binary’s entire instruction set whereas signature methods looks for segments of byte sequences. It is much easier for
malicious program authors to modify the lines of code that a signature represents than to change all the lines contained in
the program to evade a Naive Bayes or Multi-Naive Bayes model. The byte sequence model is the most secure model we
devised in our test.

8 Conclusions

The first contribution that we presented in this paper was a method for detecting previously undetectable malicious ex-
ecutables. We showed this by comparing our results with traditional signature based methods and with other learning
algorithms. The Multi-Naive Bayes method had the highest accuracy and detection rate of any algorithm over unknown
programs, 97.76%, over double the detection rates of signature-based methods. Its rule set was also more difficult to defeat
than other methods because all lines of machine instructions would have to be changed to avoid detection.

The first problem with traditional anti-malicious executable methods is that in order to detect a new malicious executable,
the program needs to be examined and a signature extracted from it and included in the anti-malicious executable software
database. The difficulty with this method is that during the time required for a malicious program to be identified, analyzed
and signatures to be distributed, systems are at risk from that program. Our methods may provide a defense during that
time. With a low false positive rate the inconvenience to the end user would be minimal while providing ample defense
during the time before an update of models is available.

Virus Scanners are updated about every month. 240-300 new malicious executables are created in that time (8-10 a
day [25]). Our method would catch roughly 216-270 of those new malicious executables without the need for an update
whereas traditional methods would catch only 87—-109. Our method more than doubles the detection rate of signature based
methods.
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The methods discussed in this paper are being implemented as a network mail filter. We are implementing an network-
level email filter that uses our algorithms to catch malicious executables before users receive them through their mail.
We can either wrap the potential malicious executable or we can block it. This has the potential to stop some malicious
executables in the network and prevent DoS (Denial of Service) attacks by malicious executables. If a malicious binary
accesses a user’s address book and mails copies of itself out over the network, eventually most users of the LAN will clog
the network by sending each other copies of the same malicious executable. This is very similar to the old Internet Worm
attack. Stopping the malicious executables from replicating on a network level would be very advantageous.

Since both the Naive Bayes and Multi-Naive Bayes methods are probabilistic we can also tell if a bbwdeidine
A borderline binary is a program that has similar probabilities for both classes (i.e. could be a malicious executable or
a benign program). If it is a border-line case we have an option in the network filter to send a copy of the malicious
executable to a central repository such as CERT. There, it can be examined by human experts.

8.1 Future Work

Future work involves extending our learning algorithms to better utilize byte-sequences. Currently the Multi-Naive Bayes
method learns over sequences of set length, but we theorize that rules with higher accuracy and detection rates could
be learned over variable length sequences. There are some algorithms such as Sparse Markov Transducers [6] that can
determine how long a sequence of bytes should be for optimal classification.

We are planning to implement the system on a network of computers to evaluate its performance in terms of time and
accuracy in real world environments. We also would like to make the learning algorithms more efficient in time and space.
Currently, the Naive Bayes methods have to be run on a computer with one gigabyte of RAM.
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