
The Auto-pilot Benchmarking Suite

For version 2.1, 25 July 2005

Charles P. Wright and Erez Zadok

Copyright c© 2005 Charles P. Wright
Copyright c© 2005 Erez Zadok
Copyright c© 2005 Stony Brook University
Copyright c© 2005 The Research Foundation of SUNY
All Rights Reserved.
Permission to copy this document, or any portion of it, as necessary for use of this software
is granted provided this copyright notice and statement of permission are included.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE.

i

Table of Contents

1 Overview . 1

2 Auto-pilot Configurations 2

2.1 Directive Reference . 2
2.2 Configuration Example . 6

3 Auto-pilot Command Line Options 10

4 Benchmarking Scripts . 11

4.1 File System Setup and Cleanup . 13
‘fs-setup.sh’ . 13
‘fs-cleanup.sh’ . 14

4.2 Postmark . 14
4.3 Compile Benchmarks . 16
4.4 Included Script Plugins . 17

4.4.1 htree. 17
4.4.2 jfs . 17
4.4.3 meminfo . 17
4.4.4 netutilization . 17
4.4.5 partdiff . 17
4.4.6 procdiff . 18
4.4.7 remoteprocdiff . 18
4.4.8 scsicmds . 19
4.4.9 stackable . 19
4.4.10 strace . 19
4.4.11 xfs. 19

5 Defining your Own Benchmarks 20

5.1 Using Script Hooks to Add New Functionality 20
5.2 New Workloads . 21
5.3 New Benchmark Domains . 22

6 Data Analysis with Getstats 23

6.1 Tabular Reports. 24
6.2 Converting Results into CSV Files . 26
6.3 Hypothesis Testing with Getstats . 27
6.4 Evaluating Predicates for TEST Directives . 29

ii

7 Getstats Internals . 31

7.1 Basic Transformations . 31
7.1.1 Project Transformations . 31
7.1.2 Select Transformations . 33

Aggregate . 34
7.1.3 Control Transformations . 34
7.1.4 Output Transformations . 36

7.2 Default Function Library . 37
Manipulating Global Variables . 37
Time Related Functions . 38
Warning Primitives . 38
Built-in Warnings . 39
Default Transformations . 39
Analyzing Data . 39
Relation Renaming . 40

7.3 Replacements . 41
7.3.1 Global Replacement. 41
7.3.2 Row Replacement . 42
7.3.3 Column Replacement . 42
7.3.4 Value Replacement . 43
7.3.5 Temporary Variables . 43

7.4 Internal Representation of Transformations 43
7.5 Function Internals . 44
7.6 Command line arguments . 45
7.7 Adding Parsers to Getstats . 46

8 Graphing with Graphit 48

8.1 Graphit Usage Examples . 51
8.1.1 Bar Graph Examples . 51
Bar Graphs from Results Files . 51
Bar Graphs from CSV Files . 51
Stacked Bars . 52
8.1.5 Line Graph Examples . 53

8.2 Graphit Command Line Options . 54
8.3 Adding Parsers to Graphit . 57

9 Acknowledgments. 60

Function Index . 61

Variable Index . 63

Index . 65

Chapter 1: Overview 1

1 Overview

Running a benchmark in Auto-pilot requires the following four steps:

1. To run a benchmark, the benchmarker must write a configuration file that describes
which tests to run and how many times. The configuration file does not describe the
benchmark itself, but rather points at another executable, which is usually a small
wrapper shell script.

2. The next step is to create the benchmark script itself. The script is usually rather small,
and provides arguments to a program like Postmark or a compile benchmark. The
wrapper script is also responsible for measurement. We provide sample configuration
files and shell scripts for benchmarking file systems. These can easily be run directly
for common file systems, or easily adapted for other types of tests.

3. Given the configuration file and the shell scripts, the next step is to run the configu-
ration file with Auto-pilot. Auto-pilot parses the configuration file and runs the tests
producing two types of logs. The first type are simply the output from the programs.
This can be used to verify that benchmarks executed correctly and to investigate any
anomalies. The second log file is a more structured results file that contains a snapshot
of the system and the measurements that were collected.

4. The results file is then passed through our analysis program, Getstats, to create a
tabular report. Optionally, the tabular report can be used to generate a bar or line
graph using our plotting tools.

The rest of this manual is roughly divided into sections that correspond to these ac-
tions. Chapter 2 [Configurations], page 2 describes the Auto-pilot configuration language.
Chapter 4 [Scripts], page 11 describes the scripts and hooks that are included in the Auto-
pilot distribution and Chapter 5 [Custom Scripts], page 20 describes how to write your own
scripts. Chapter 6 [Getstats], page 23 describes how to use and customize Getstats and
Chapter 8 [Graphit], page 48 describes how to use our plotting tool.

Chapter 2: Auto-pilot Configurations 2

2 Auto-pilot Configurations

This chapter describes the Auto-pilot configuration syntax. Auto-pilot configurations are
much like programs, in that they support some simple loops and setting variables.

Comments start with a pound sign (#) and are terminated by the end of line. Blank
lines and initial spaces are ignored. Auto-pilot supports two types of variable substitution:
internal variables and environment variables. Before executing a line of the script %VAR% is
replaced with the value of the internal variable VAR and VAR is replaced with the value
of the environment variable VAR.

First we describe each directive in Section 2.1 [Directive Reference], page 2. Next, we
present an example configuration used by Postmark in Section 2.2 [Configuration Example],
page 6.

2.1 Directive Reference

INCLUDE FILE

OPTINCLUDE FILE

INCLUDE and OPTINCLUDE insert FILE into the current Auto-pilot configura-
tion. If the file does not exist, then INCLUDE causes the script to fail, whereas
OPTINCLUDE does not raise any errors. OPTINCLUDE is useful to allow users to
define optional local settings.

Auto-pilot first reads the entire configuration, then processes it. This means
that you can not use variable substitution within INCLUDE or OPTINCLUDE.

INCLUDEPATH PATH

Insert PATH into the list of directories to search for INCLUDE files.

Auto-pilot first reads the entire configuration, then processes it. This means
that you can not use variable substitution within INCLUDEPATH.

ECHO STRING

Prints STRING on standard out, leading and trailing spaces are stripped.

VAR VAR=VAL

VAREX VAR=VAL

Sets the value of the internal Auto-pilot variable VAR to VAL. VAREX is the
same, but VAL is first passed to Perl’s eval function.

ENV VAR=VAL

ENVEX VAR=VAL

Sets the value of the environment variable VAR to VAL. This also updates the
corresponding internal variable with the same name. ENVEX is the same, but
VAL is first passed to Perl’s eval function.

FOREACH VAR VAL1 [VAL2 ... VALN]

Set VAR to VAL1 and then execute all directives until a corresponding DONE is
reached. Not ending the loop with a DONE statement results in an error. VAR is
then set to VAL2, and the directives are executed again. This process repeats
until VALN is reached. Each value is separated by one or more whitespace
characters.

Chapter 2: Auto-pilot Configurations 3

FOR VAR=BEGIN TO END [FACTOR M|ADD I]

Set VAR to BEGIN, then execute all directives until a corresponding DONE is
reached. Not ending the loop with a DONE statement results in an error. VAR is
then updated and the directives are executed until VAR reaches END. If FACTOR
is specified, then VAR is multiplied by M after each iteration. If ADD is specified
then VAR is incremented by I after each iteration. If neither FACTOR nor ADD

is specified, then VAR is incremented by one.

IF VAR OP VAL

VAR is the name of an Auto-pilot variable. VAL is a value for comparison.
OP can "=", ">", "<", "<=", or ">=". A "!" before the operator negates
the result of the comparison. Only "=" and "!=" can be used with strings.
For more complicated conditions you can use VAREX, which sets a variable to
an evaluated Perl expression. For example, if you wanted to test a complex
condition such as a regular expression, you could use the following code:

VAREX SCSI=if ("%TESTDEV%" =~ /sd.[0-9]$/) \

{ return 1; } else { return 0; }

IF SCSI=1

ECHO %TESTDEV% is a SCSI device.

ELSE

ECHO %TESTDEV% is not a SCSI device.

FI

If the condition evaluates to true, then Auto-pilot executes all lines until an
ELSE or a FI. If there is an optional ELSE block, then the code between ELSE
and FI is only executed if the condition was false. Auto-pilot also supports an
arbitrary number of ELSE IF blocks, with the expected semantics. For example:

IF FOO = 0

ECHO Foo is zero.

ELSE IF FOO < 0

ECHO Foo is negative.

ELSE

ECHO Foo is positive.

FOO

WHILE VAR OP VAL

WHILE repeatedly executes all directives until the corresponding DONE, as long as
the condition remains true. Not ending the loop with a DONE statement results
in an error. See IF for a description of valid conditions.

RESULTS=PATH

Sets the path for the files that contain the Auto-pilot results. PATH must
be a directory that already exists. The file names within this directory are
determined by the NAME in the TEST directive.

LOGS=PATH

Sets the path for benchmark log files (these files record the stdout and stderr

streams). As with RESULTS, PATH must be a directory that already exists, and
the file names within this directory are determined by the NAME in the TEST

directive.

Chapter 2: Auto-pilot Configurations 4

THREADS=N

By default, Auto-pilot runs a single benchmark process at a time. The THREADS
directive instructs Auto-pilot to create N processes when running a benchmark.
Each process executes the same command, but they each have a different value
for the environment variable APTHREAD (ranging from 1 to N). By using the
value of APTHREAD, each process can perform a slightly different action (e.g.,
use separate test directories or thread 1 may execute the server while thread 2
executes a client).

Semaphores are used to synchronize the start of multi-threaded benchmarks.
Before executing a benchmark, a semaphore is set to the number of threads that
will be executed. The semaphore’s key is stored in the environment variable
APIPCKEY. Using the semdec utility, this semaphore can be decremented by
each of the threads. semdec then blocks until the semaphore reaches zero.

CHECKPOINT FILE

Write all internal Auto-pilot state to FILE. If Auto-pilot is invoked with FILE

as its argument instead of a script, then it reads the state and resumes execution
where it left off (starting with the line after checkpoint).

After checkpoint executes, the value of the Auto-pilot variable RESTORE is
"0", but after resuming from the checkpoint the value of RESTORE "1". This
can be thought of like the return value of Unix’s fork system call. For exam-
ple, if RESTORE is 0, then your configuration could reboot the system, but
it should not reboot the system after restoration (because it should continue
running benchmarks).

TEST NAME EPOCHS [INCREMENT PREDICATE]

The TEST directive begins a benchmark description, which is ended by a corre-
sponding DONE directive. Not ending the loop with a DONE statement results in
an error. Each benchmark can have several additional directives between the
TEST and DONE, including control structures (e.g., IF) and benchmark scripts.
TEST directives can not be nested.

Log and results files are saved to a file, which has a name derived from the
benchmark NAME. If NAME is ‘/dev/null’, then both the results and log
file are discarded. If NAME is any other name that begins with a slash, then
the absolute path is used, but the results are stored in NAME‘.res’ and the
stdout/stderr streams are stored in NAME‘.log’. Finally, if the name does
not begin with a slash, then the directories previously specified by RESULTS and
LOGS are prepended to the results and log file name, respectively. For example,
if the results directory is ‘/home/cwright/results’ and the NAME is "ext2:1",
the results are stored in ‘/home/cwright/results/ext2:1.res’.

EPOCHS specifies the minimum number of iterations to run the benchmark. If
no additional arguments are specified, then the benchmark runs exactly EPOCHS

times. INCREMENT and PREDICATE must be specified together, and control how
many additional times the benchmark should be run. After running the bench-
mark EPOCH times, Auto-pilot runs the script PREDICATE with an argument of
its results file each additional INCREMENT iterations. If predicate returns true
(an exit-code of zero), then the benchmark is finished. Otherwise, the bench-

Chapter 2: Auto-pilot Configurations 5

mark is run INCREMENT more times, and the predicate is checked again. See
Chapter 6 [Getstats], page 23, for information on using Getstats to evaluate
predicates based on the results.

SETUP SCRIPT

CLEANUP SCRIPT

PRESETUP SCRIPT

POSTCLEANUP SCRIPT

EXEC SCRIPT

These directives run a benchmark script. Each TEST directive can include any
number of EXEC, SETUP, CLEANUP, PRESETUP, and POSTCLEANUP scripts. EXEC

is the simplest one, and the script it specifies is run for each iteration of the
test. EXEC should be used for the actual processes that are being measured. If
THREADS has been specified, EXEC spawns multiple threads.

SETUP is also run for each iteration of the test, but should be used for scripts
that prepare the test environment (e.g, mounting file systems and clearing the
cache). CLEANUP is the complement of SETUP. It is also run for each iteration of
the test, but should be used to restore the test environment to a "clean" state
(e.g., unmounting test file systems). Only one instance of SETUP and CLEANUP

scripts are run at a time, even if THREADS has been set.

PRESETUP and POSTCLEANUP are similar to SETUP and CLEANUP, but they are
only run once per TEST directive. PRESETUP only runs on the first epoch, and
POSTCLEANUP runs only after the last epoch. These directives can be used for
more global setup and cleanup procedures that need not be repeated for each
iteration of a benchmark (e.g., creating a data set that is used by each iteration
of a read-only benchmark). Only one instance of PRESETUP and POSTCLEANUP

scripts are run at a time, even if THREADS has been set.

QUIET

QUIET (true|false)

By default, Auto-pilot sends a benchmark’s output to stdout and a log file.
Setting QUIET to true prevents benchmarks from sending output to stdout,
but still sends the output to a log file. If neither true or false is specified after
QUIET, then it is sent to true. This option can prevent "noisy" benchmarks from
being artificially slowed due to lots of information being sent to the monitor (or
network).

FASTFAIL

FASTFAIL SCRIPT

FASTFAIL causes Auto-pilot to immediately abort if a single benchmark run
fails. By default, Auto-pilot continues running the next iteration of the bench-
mark (or if all iterations are complete, moves on to the next directive). The
optional SCRIPT parameter tells Auto-pilot to additionally run a script (e.g., to
send you an email or page informing you of the failure).

EVAL PERL Execute the Perl snippet PERL.

STOP Terminates execution of Auto-pilot immediately.

Chapter 2: Auto-pilot Configurations 6

SYSTEM PROGRAM

Execute the program PROGRAM. The return code is stored in the Auto-pilot
variable RETURN.

2.2 Configuration Example

The following configuration executes a multi-threaded Postmark benchmark, and is included
in the distribution as ‘postmark.ap’:

1 #!/usr/bin/perl /usr/local/bin/auto-pilot

2 #

3 # Package: auto-pilot

4 # Erez Zadok <ezk@cs.sunysb.edu>

5 # Charles P. Wright <cwright@cs.sunysb.edu>

6 # Copyright (c) 2001-2005 Stony Brook University

7

8 # What is the name of this test? Auto-pilot doesn’t internally

9 # use it for Postmark, but we may want it for setting paths, etc.

10 VAR BENCH=postmark

11

12 # How many times do we run it?

13 # We could for example, run it ten times

14 # VAR TERMINATE=10

15 # However, it is more interesting to run it five times, then run

16 # getstats to check if the half-width of our confidence intervals

17 # are less than 5% of the mean for elapsed, user, and system time.

18 # We also don’t want it to run away and run more than 30 times on us.

19 VAR TERMINATE=10 1 getstats --predicate \

20 ’("$name" ne "User" && "$name" ne "System" && "$name" ne "Elapsed") || \

21 ("$delta" < 0.05 * $mean) || ($count > 30)’ --

22

23 # How many threads should we go up to?

24 VAR NTHREADS=32

25

26 # What file systems do we want to test?

27 VAR TESTFS=ext2 ext3 reiserfs

28

29 # Include common.inc. You can override variables and include your own

30 # commands by creating local.inc, which is automatically included by

31 # common.inc.

32 INCLUDE common.inc

33

34 # Do the actual tests

35 FOREACH FS %TESTFS%

36 FOR THREADCOUNT=1 TO %NTHREADS% FACTOR 2

37 THREADS=%THREADCOUNT%

38

39 TEST %FS%-%THREADS% %TERMINATE%

Chapter 2: Auto-pilot Configurations 7

40 SETUP fs-setup.sh %FS%

41 EXEC postmark.sh

42 CLEANUP fs-cleanup.sh %FS%

43 DONE

44 DONE

45 DONE

46

47 # All done

48 INCLUDE ok.inc

Line 1 informs the OS to use Perl as the interpreter for this Auto-pilot configuration.
Only one level of interpreter is allowed, so you must execute Perl with Auto-pilot’s path
as the argument, because Auto-pilot itself uses an interpreter. Auto-pilot uses the pound
sign (#) as a comment symbol, and any text after a pound sign is ignored. Lines 3–6 are
comments containing copyright notice. Blank lines are ignored.

Line 10 assigns the value postmark to the variable bench. This variable is not directly
used by this configuration file, but later on we will use it to chose where to store the
Auto-pilot results.

Lines 12–19 set a variable named TERMINATE, which is used later in the configuration
to determine at what point a TEST should end. The simplest method is to specify a fixed
number of tests (e.g., VAR TERMINATE=10).

A more powerful method is to run a predicate command. In this example, we execute the
test at least ten times. For each iteration (denoted by the "1" in the variable), we execute
a predicate. To execute the predicate after every other iteration, we would replace the "1"
with a "2". It can be useful to run the predicate only after several runs, so that computing
the predicate does not use more time than the benchmark itself. In this case we execute
the command getstats --predicate ’("$name" ne "User" && "$name" ne "System" &&

"$name" ne "Elapsed") || ("$delta" < 0.05 * $mean) || ($count > 30)’ --. Getstats
is our generic results processing engine; for a complete description See Chapter 6 [Getstats],
page 23. Getstats can run arbitrary predicates using various summary statistics (e.g., the
mean, median, or standard deviation). The predicate is checked for each quantity that
Auto-pilot measures. The first part of the predicate, ("$name" ne "User" && "$name" ne

"System" && "$name" ne "Elapsed"), skips all but User, System, and Elapsed time, be-
cause these are the measured quantities we are generally interested in. Wait time and CPU
utilization are excluded because they are derived from these quantities. The next portion
of the predicate, ("$delta" < 0.05 * $mean), returns true if the half-width of a confidence
interval (the confidence level is 95% by default) is less than 5% of the mean. The final
portion, ($count > 30) prevents a poorly behaving test from executing for more than 30
iterations.

The TERMINATE variable is rather long, and spans multiple lines using a backslash.
To continue a line, the backslash must be the very last character before the newline (no
spaces are allowed).

We then set another two variables NTHREADS (line 24), which is later used to determine
the maximum number of threads, and TESTFS (line 27) which is used to determine the
file systems to execute the benchmark on.

Chapter 2: Auto-pilot Configurations 8

The next directive (on line 32), is INCLUDE common.inc (this file is included with the
Auto-pilot distribution). The ‘common.inc’ file performs several tasks:

1. Adds your libexec directory (by default /usr/local/libexec) to the shell’s PATH, so that
programs like aptime can be found.

2. Adds your share directory (by default /usr/local/share/auto-pilot) to the shell’s PATH,
so that shared shell script components and hooks can be found.

3. The FASTFAIL directive is used so that benchmarks stop after one fails.

4. The FORMAT and NOSERVICES variables are set to "0".

5. The file ‘local.inc’ is included.

6. If NOSERVICES is set to one, then background services (e.g., cron) are turned off to
prevent them from interfering with the benchmark.

To override any previous settings, and define new ones without editing the installed
configuration files you should create a ‘local.inc’ in the directory where you run the
benchmarks. For example, if you wanted to use another predicate, then you would override
TERMINATE here. You also need to set the TESTDEV, TESTROOT, RESULTS, LOGS,
OKADDR, and FAILADDR.

An example ‘local.inc’ could have the following:

RESULTS=$HOME$/results/%BENCH%

LOGS=$HOME$/logs/%BENCH%

VAR TESTFS=ext2

VAR NOSERVICES=1

ENV FORMAT=1

ENV TESTDEV=/dev/sda1

ENV TESTROOT=/mnt/test

ENV OKADDR=you@example.com

ENV FAILADDR=you@example.com

In this example, the results files are stored under the current user’s home directory in
results/%BENCH%, where %BENCH% is the name of the benchmark as defined in the
configuration file. The stdout/stderr logs are similarly stored in logs/%BENCH% under
the current user’s home directory.

The third directive, VAR TESTFS=ext2, overrides the default value of TESTFS, so that
only ext2 is tested. The fourth causes ‘common.inc’ to shutdown excess services.

The remaining lines set environment variables that are used by the default Auto-pilot
shell scripts. Setting FORMAT to 1 causes the scripts to recreate the file system. TEST-

DEV determines what device should be used, and TESTROOT determines what directory
is used.

The two remaining lines set addresses that should be used to send email. OKADDR,
FAILADDR are the address that mail is sent to on successful completion and failure, re-
spectively. I have found it useful to add ‘.procmailrc’ recipes like the following to forward
these messages to a mobile phone:

Chapter 2: Auto-pilot Configurations 9

Send a copy of all messages with a subject starting with Benchmarks to

another email address for Auto-pilot paging.

:0 c

* ^Subject: Benchmarks

! yourphone@telco.com

The remaining configuration files are similar to ‘postmark.ap’, and using these as tem-
plates you should be able to create your own.

Chapter 3: Auto-pilot Command Line Options 10

3 Auto-pilot Command Line Options

Auto-pilot processes and executes configuration files that describe a series of benchmarks.
Post processing tools such as Getstats and Graphit are used to read the results that it
produces. Auto-pilot has a rather simple command line structure. The simplest usage is
simply auto-pilot ‘config.ap’, which reads ‘config.ap’ and executes it. ‘config.ap’
can also be a saved Auto-pilot checkpoint.

The following command line options are supported:

‘-d’

Run the configuration in debug mode, printing out the PC and the source line
before execution. Add extra ‘-d’ options to produce more debugging (currently
the highest debugging level is 4).

‘-h’

Display the manual page.

‘-n’

Don’t actually run any programs or predicates, just pretend that they all suc-
ceed. This can be used to check the syntax of your Auto-pilot configuration.

‘--[no]status’
By default Auto-pilot creates ‘status.out’ that describes the what tests have
started and finished (actually the file is named after the environment variable
APSTATUS). If ‘--nostatus’ is passed, then this file is not created.

Chapter 4: Benchmarking Scripts 11

4 Benchmarking Scripts

Auto-pilot includes benchmarking scripts to run Postmark and compile benchmarks on sev-
eral file systems. We also include hooks that add functionality to the basic scripts, including
measuring network utilization, I/O operations, benchmarking JFS and XFS, benchmarking
stackable file systems and more. The scripts run as the same user as Auto-pilot, so many
benchmarks can be executed without root privileges. However, our file system scripts often
need to format, mount, and unmount partitions: which requires root access on most Unix
systems.

All of the included scripts first require ‘commonsettings’, which is located in
‘/usr/local/share/auto-pilot’ by default. ‘commonsettings’ first verifies that various
Auto-pilot variables are set. Auto-pilot automatically sets the following variables:

APEPOCH

An integer value with the iteration of the benchmark

APTHREAD

An integer value that indicates our thread number (each thread in a multi-
threaded benchmark gets a unique number from 1 to THREADS).

APMODE

A string containing the mode that Auto-pilot is executing in. This matches the
directive used to execute the script. Possible values are SETUP, EXEC, CLEANUP,
PRESETUP, and POSTCLEANUP.

APLOG The log file this thread should write results to. Each thread’s log is concatenated
into the final results file.

THREADS

An integer value that indicates how many total threads there are.

You must set the following variable manually:

TESTROOT

What directory the test file system should be mounted on. There are also other
variables that ‘commonsettings’ sets to reasonable default values:

‘commonsettings’ automatically assigns sensible defaults to these variables:

TESTDIR

What directory the test should be executed in, by default TESTROOT.

BLOCKSIZE

The block size of the file system.

APTIMER

The program that is executed to time your workload. By default it is aptime

$APLOG .

‘commonsettings’ includes ‘commonfunctions’, which has various shell functions. For
extensibility, commonsettings searches each path in the APLIB environment variable for
a directory named ‘commonsettings.d’, each file in that directory is sourced by the shell.
Additionally, ‘commonsettings.‘uname -n‘’ is loaded. uname -n expands to the machine’s

Chapter 4: Benchmarking Scripts 12

host name, so different machines can have slightly different configurations, but share scripts.
The functions defined by commonfunctions are as follows:

ap_action

Execute another program or function. Print ‘[OK]’ or ‘[FAILED]’ (in color)
based on the exit code.

ap_hook

ap_requirehook

These functions are used to execute hooks, which are described in Section 5.1
[Hooks], page 20. These functions take one or more arguments. The first argu-
ment is the type of hook that should be executed, and the remaining arguments
are hook specific. For a hook of type TYPE, the value of the environment vari-
able AP_TYPE_HOOK is executed. If no hook is defined, then ap_hook returns
success, but ap_requirehook returns failure.

ap_log

ap_logexec

These functions append to the current thread’s results log (each thread has
a separate results log that Auto-pilot combines into a single log after each
test). ap_log uses echo to write its arguments to the file, whereas ap_logexec
executes a program and saves its stdout stream to the log file.

ap_measure

This function actually takes a measurement for a process and creates a mea-
surement block within the results file. A measurement block begins with
‘[measurement]’, and each line has a name-value pair separated by an equal
sign. An example of a measurement block is:

[measurement]

thread = 2

epoch = 2

command = postmark /tmp/postmark_config-9868

user = 0.200000

sys = 1.170000

elapsed = 5.470682

status = 0

The ‘[measurement]’, thread, and epoch lines are produced by ap_measure.
Then a measurement hook is called. The first argument to a measurement hook
is either premeasure, start, end, or final. The remaining arguments are the
program being executed. The measure hook is called with premeasure first. A
premeasure hook can be used to execute relatively long running initial mea-
surements that should not be included by other hooks, or perform any other
operation that prepares for measurement. Next, the measurement hook is called
with start, which should save any information that is needed for a measurement
(e.g., the initial value of a measured quantity). At this point the actual bench-
mark is executed through $APTIMER. By default, the aptime program is used.
aptime produces the command, user, sys, elapsed, and status portions of the
measurement block. Finally, the measurement hook is called two more times.
First, it is called with an argument of "end". At this point measurements

Chapter 4: Benchmarking Scripts 13

should complete, and more quantities can be added to the measurement block.
New blocks should not be created yet, because other measurement hooks may
want to add quantities to the main measurement block. After all measurement
hooks have been executed with the "end" argument, they are called one last
time with "final." At this point new blocks can be created.

ap_snap ap_snap adds several blocks to the file that describe the machine being executed
on. The first is a ‘uname’ block that prints the vital statistics from uname. A
‘users’ block contains the output of w. ‘cpuinfo’, ‘meminfo’, and ‘mounts’
contain the contents of their respective ‘/proc’ files. ‘df’ contains the output
of df -k, and if TESTDEV is set to an Ext2 file system, ‘dumpe2fs’ contains
the output of dumpe2fs -h. This snapshot of the machine state can be used to
reproduce results more accurately, or help explain why results are different.

ap_unmount

ap_unmount attempts to unmount the file system mounted on a directory or
device. If the file system is not mounted, then it returns success. If the umount

command fails, or file system is not unmounted after an unmount is attempted,
then it returns failure. Before executing the umount command, an unmount
hook is called with an argument of the file system to be unmounted.

‘commonsettings’ concludes by running ap_snap on the setup phase of the first epoch.

See Section 4.1 [File System Scripts], page 13, for information on how Auto-pilot formats,
mounts, and unmounts file systems. See Section 4.2 [Postmark], page 14, for information
about how Auto-pilot runs the Postmark benchmark. See Section 4.3 [Compile Bench-
marks], page 16, for information on executing compile benchmarks. See Section 4.4 [In-
cluded Script Plugins], page 17, for information about the various plugins that are included
with Auto-pilot’s benchmarking scripts.

4.1 File System Setup and Cleanup

Auto-pilot includes a file system setup script, ‘fs-setup.sh’, that formats and mounts a
file system, and a corresponding script ‘fs-cleanup.sh’ that later unmounts it. By default,
Ext2, Ext3, and Reiserfs are supported, but the scripts are sufficiently extensible to allow
other types of file systems to be mounted. The special file system type ‘none’ bypasses
file system setup and cleanup (this can be used if you mount your file system outside of
Auto-pilot, but do not want to modify the default scripts).

‘fs-setup.sh’

The file system setup script takes a single argument on the command line, which is the file
system type to mount (e.g., ‘ext2’ or ‘reiserfs’).

Aside from the command line argument, the file system setup script is controlled by
several environment variables:

FORMAT

If FORMAT is 1, then the file system is formatted.

FSSIZE

If FSSIZE is set, then the file system is formatted to be FSSIZE bytes. If
FSSIZE is not set, then the file system fills the partition. For more reproducible

Chapter 4: Benchmarking Scripts 14

results, you should attempt to set the file-system size to the smallest value that
contains your data set (to eliminate large seeks).

TESTDEV

TESTDEV is the device that is used.

TESTDIR

TESTDEV is the directory that the test runs in. This should be a subdirectory
of TESTROOT.

TESTROOT

TESTROOT is the directory that the file system is mounted on.

First, TESTROOT and TESTDEV are unmounted using the ap_unmount function. This
is designed to prevent previous failed iterations of a test from impacting this iteration. Next,
if FORMAT is 1, ap_initfs is called to format the file system. The ap_initfs function
takes the file system type as its only argument. It formats TESTDEV with the specified
file system time, and uses FSSIZE to determine how many megabytes the file system is.
Before executing mkfs, it calls the "mkfsopts" hook. This hook takes four arguments,
the file system time, the device, the block size, and the file system size. It prints any
additional options to pass to mkfs on stdout. Next, for ext2, ext3, and reiserfs the file
system is formatted using mkfs. For other file system types, a mkfs hook is called. The
mkfs hook takes the same arguments as mkfsopts, and formats the file system according to
the arguments and environment variables. If a mkfs hook is not defined, then ap_initfs

fails. After the file system is formatted, a tunefs hook is called with two arguments: the
file system type and the device. The tunefs hook can modify file system properties. For
example, a tunefs hook can toggle directory indexing on an Ext2 or Ext3 partition.

After the file system is formatted, it is mounted. First, a mount hook is called with
arguments of $FSTYPE $TESTDEV $TESTROOT. This hook can perform pre-mount operations,
or mount the file system itself. To suppress ‘fs-setup.sh’ from mounting the file system,
the hook can set DOMOUNT to zero. After the mount is completed, a postmount hook is
called with the same arguments as the mount hook. Finally, TESTDIR is created if it does
not already exist.

‘fs-cleanup.sh’

The file system cleanup script, ‘fs-cleanup.sh’, is simpler than the setup script. After load-
ing ‘commonsettings’, the unmount hook is called with arguments of $TESTDEV $TESTROOT,
and then ap_unmount is called with an argument of TESTROOT.

4.2 Postmark

Postmark is a benchmark designed to simulate the behavior of mail servers. Postmark
consists of three phases. In the first phase a pool of files are created. In the next phase
four types of transactions are executed: files are created, deleted, read, and appended to.
In the last phase, all files in the pool are deleted. See http://www.netapp.com/tech_

library/3022.html for more information on Postmark.

Postmark is a single threaded benchmark, but Auto-pilot can automatically run several
concurrent processes and analyze the results. Postmark generates a small workload by

Chapter 4: Benchmarking Scripts 15

default: only 500 files are created and 500 transactions performed. Auto-pilot increases the
workload to a pool of 20,000 files, and performs 200,000 transactions by default.

Several environment variables control how Postmark behaves when running under Auto-
pilot that you can set in ‘local.inc’:

Variable Default Description

BUFFERING false Use C library functions like fopen
instead of system calls like open.

CREATEBIAS 5 What fraction (out of 1) of cre-
ate/delete operations are create. -
1 turns off creation and deletion.

INITFILES 20000 How many files are in the initial
pool.

MINSIZE 512 The minimum file size.

MAXSIZE 10240 The maximum file size.

MYINITFILES $INITFILES/$THREADS Number of initial files in this pro-
cess’s pool.

MYSUBDIRS $SUBDIRS/$THREADS Number of subdirectories for this
process.

MYTRANSACTIONS $TRANSACTIONS/$THREADS Number of transactions this pro-
cess executes.

POSTMARKDIR $TESTDIR/postmark/$APTHREAD What directory to run in.

READBIAS 5 What fraction (out of 10) of
read/append operations are read.
-1 turns off read and append.

READSIZE 4096 The unit (in bytes) that read op-
erations are executed in.

SEED 42 The seed for random number gen-
eration.

Chapter 4: Benchmarking Scripts 16

THREADS 1 How many concurrent processes
to run (this variable is auto-
matically set by the Auto-pilot
THREADS directive).

TRANSACTIONS 200000 How many total transactions to
execute.

WRITESIZE 4096 The unit (in bytes) that write op-
erations are executed in.

The Postmark script generates a configuration based on these variables, and then decre-
ments the semaphore specified by APIPCKEY. Decrementing this semaphore using semdec

ensures that all threats begin processing and measuring at approximately the same time.
After semdec returns, postmark is run via ap_measure. Finally, the configuration and any
left over files are removed.

4.3 Compile Benchmarks

Auto-pilot includes ‘compile.sh’, which can be used to benchmark the unpacking, com-
pilation, and removal of several packages. We have tested it with GCC, OpenSSL, and
Am-Utils. No command line arguments are passed to ‘compile.sh’. It is controlled en-
tirely with environment variables. The two most important variables to set are DATADIR

and BENCH. DATADIR is the directory where you have stored the package to compile, and
BENCH is which program to compile. If BENCH is ‘gcc’, ‘openssl’, or ‘amutils’, then the
PACKAGE variable is automatically set, otherwise PACKAGE must be defined. PACK-

AGE is the prefix of the source package (e.g., ‘gcc’). Using these two variables, compile.sh
searches for all files that match $DATADIR/$PACKAGE*. If only one file matches, then it is
automatically selected as the package file and stored in the environment variable PKGFILE.
If no file is found or multiple files are found, then compile.sh fails, and you should correct
the problem. If you set PKGFILE before compile.sh begins, then no automatic search is
performed.

After determining PKGFILE, compile.sh unpacks it using tar and changes the present
working directory to the one extracted by tar. This assumes that the package is well
behaved, and creates only one top-level directory. If this assumption is violated, an error
message is printed.

If you set BENCH to one of the predefined benchmarks, then compile.sh already con-
tains the commands to compile the script. If you are compiling your own package, then
you should either create a compilecommand hook or set the COMPILECMD variable to
the command you want executed. If you need to perform multiple commands, and want
them timed separately, then you need to use a compilecommand hook. The hook takes
two arguments. The first is PACKAGE and the second is PKGFILE. If the hook returns
success, then it must set the environment variable CMDLIST to an array containing each
command to execute. For example, to compile GCC the following statements are used:

I=0

CMDLIST[$((I++))]=./configure

CMDLIST[$((I++))]=make

Chapter 4: Benchmarking Scripts 17

If neither the COMPILECMD variable or the compilecommand hook are defined, the
compilation fails.

After compilation, the package is removed.

By default, all three phases are executed (unpacking, compilation, and deletion). To
disable a phase set UNPACK, COMPILE, or DELETE to "0".

4.4 Included Script Plugins

This section describes the script hooks that are included with the Auto-pilot distribution.

4.4.1 htree

This hook enables or disables hash trees on Ext2 and Ext3 using the tunefs hook. To enable,
set the HTREE environment variable to ‘yes’ or ‘no’, which enables or disables directory
indexing, respectively. If HTREE is not set, then hash trees are not changed.

4.4.2 jfs

This mkfs hook adds support for creating JFS file systems. The BLOCKSIZE and FSSIZE

parameters are ignored. JFS does not need a mount or unmount hook, as ‘fs-setup.sh’
already handles it.

4.4.3 meminfo

This hook adds extra fields to each measurement block describing the amount of used and
free memory as reported by ‘/proc/meminfo’. The new fields are: MemTotal, MemFree,
MemShared, Buffers, SwapTotal, and SwapFree. You can use this hook to see if the program
is leaking memory or just to measure the memory usage of various workloads. To enable,
set the environment variable MEASURE MEMINFO.

4.4.4 netutilization

This measures how many bytes are sent and received over a network interface. To enable
set NETUTILIF to the interface to be measured (e.g., ‘eth0’).

4.4.5 partdiff

This hook measures the number of I/O operations that took place during a bench-
mark based on ‘/proc/partitions’ statistics. To use this hook you must have
set CONFIG BLK STATS when you compiled your kernel. If you are unsure, cat
‘/proc/partitions’. If you have ‘rio’ and ‘wio’ columns, then you can use this hook,
otherwise you need to recompile the kernel.

This hook has two functions. First it can add a new column to Getstats for a specific
partition (e.g., "hda2"), you can enable this functionality by setting the environment vari-
able PARTDIFF LIST to a space separated list of partitions to measure. Second, a list
of partitions and the differences of interesting values (those that are non-zero) are printed
in a new block named partdiff. This can be useful for analyzing odd results. If you just
want this block to be produced set the MEASURE PARTDIFF environment variable to a
non-zero value.

Chapter 4: Benchmarking Scripts 18

4.4.6 procdiff

This hook measures the amount of CPU time used by background processes. This hook has
three distinct functionalities:

1. If PROCDIFF PROCS is set, then add a column to each measurement line for pro-
cesses that match the PROCDIFF PROCS regular expression (PROCDIFF PROCS

is a space separated list). For example PROCDIFF_PROCS="nfsd" should match nfsd
processes. The regular expression can be useful when your processes have numbers or
other minor variations. The regular expression is a POSIX Extended Regular Expres-
sion (specifically the C library’s regcomp function with the REG_EXTENDED|REG_NOSUB

arguments is used).

2. If MEASURE PROCDIFF is set, then print out the amount of CPU time used by
all other processes as the ‘procdiff’ measurement column. This lets you know if
something else was using CPU during your benchmark.

3. If either PROCDIFF PROCS or MEASURE PROCDIFF is set, a set of ‘[procdiff]’
blocks are printed that shows the differences in processes and CPU time before and
after the benchmark.

Set PROCDIFF THRESHOLD to change the amount of CPU time (in milliseconds)
that is ignored. By default 10ms (1 quantum on various Linux kernels) is ignored.

4.4.7 remoteprocdiff

This hook functions the same as procdiff, except it is designed for execution on a remote
system. To reduce execution time and connections to the server, only specified processes
are measured.

To use this hook you must set the following variables:

REMOTEPROCDIFF

The processes you are interested in.

RPDIFFSERVER

The server to run on

RPDIFFUSER

The user to run as

The following variables are set automatically, but you may need to override them :

Variable Default Description

AP SSH ssh -n What SSH command to use for remote exe-
cution. You need to change this if you want
to use RSA identity files or other similar
mechanisms. You can also use RSH instead
of SSH.

RPDIFFSCRIPT apremote.sh

procdiff

What is the name of the remote script to
execute? apremote.sh is a shell script
included in the distribution that executes
procdiff or other commands defined using
an apremote hook.

Chapter 4: Benchmarking Scripts 19

4.4.8 scsicmds

This hook adds a measurement column for Getstats that measures the number of
SCSI commands queued on Adaptec SCSI adapters. Set the environment variable
MEASURE SCSISTAT to enable this hook.

4.4.9 stackable

This hook is used to mount and unmount FiST generated stackable file systems
(http://www.filesystems.org). This hook includes the list sample file systems included
with the FiST. To add your own stackable file system to the list of file systems handled by
this hook, set the STACKFS environment variable to a space separated list of file system
names. If you need extra mount options, set the environment variable STACKOPTS.

You must set LOWERFS to the type of file system you want to mount. If modprobe
can not find your stackable module, then you need to set MODDIR to the location of your
modules.

The lower level file system is mounted on ‘/n/lower’ by default. The LOWERROOT

environment variable overrides this value.

4.4.10 strace

The strace measurement hook creates a new block with system call counts for each measured
process. To enable this hook set the environment variable MEASURE STRACE.

4.4.11 xfs

This mkfs hook adds support for creating XFS file systems. XFS does not need a mount or
unmount hook, as ‘fs-setup.sh’ already handles it.

Chapter 5: Defining your Own Benchmarks 20

5 Defining your Own Benchmarks

There are essentially four ways to customize your benchmark scripts. First, you can sim-
ply run programs that don’t have complex setup or cleanup directly. A small shell script
‘aptime.sh’ is included in the distribution that executes and and measures a single com-
mand. The configuration ‘cksum.ap’ uses ‘aptime.sh’ to run various checksumming pro-
grams.

Section Section 5.1 [Hooks], page 20 describes how to benchmark new file systems or add
functionality to the existing benchmarking scripts. To replace the existing benchmarking
scripts (e.g., ‘postmark.sh’ and ‘compile.sh’ with your own benchmarks, See Section 5.2
[New Workloads], page 21. To replace the file-system setup scripts with scripts from your
own domain, See Section 5.3 [New Benchmark Domains], page 22.

5.1 Using Script Hooks to Add New Functionality

Auto-pilot’s benchmarking scripts include nine points in which you can insert your own
code without modifying the original scripts. These hooks allow you to benchmark new file
systems, compile new programs, and measure new quantities. The first three hooks are
generic, and not related to file systems:

measure (premeasure|start|end|final)

The first argument to a measurement hook describes at what point the hook
is being executed. ‘premeasure’ indicates that it is before the measurement is
actually taking place. ‘start’ indicates that measurement should begin, and
‘end’ indicates that measurement should complete. For example, during ‘start’
a measurement hook could save important system state (e.g., the number of
I/O operations to date), and during ‘end’ the same quantity could be measured
and the original value subtracted from the current value. During ‘end’, the
hook must print a line of the format ‘name = value ’, which is added to the
measurement block. During ‘final’ new blocks can be added.

The remaining arguments are the command that is being measured.

compilecommand PACKAGE PKGFILE

The compilecommand hook allows a series of compilation commands to be
defined for new packages. The first argument is the name of the package to be
compiled, and the second argument is the package file that is being compiled. If
the hook returns success, then it must set the environment variable CMDLIST

to an array containing each command to execute. For example, to compile GCC
the following statements are used:

I=0

CMDLIST[$((I++))]=./configure

CMDLIST[$((I++))]=make

apremote To execute remote commands on another machine, some Auto-pilot scripts
execute ‘apremote.sh’. To add new commands to ‘apremote.sh’, you can
define an apremote hook. The first argument is the command passed to
‘apremote.sh’, and the remaining arguments are the arguments for that com-
mand.

Chapter 5: Defining your Own Benchmarks 21

The remaining hooks are used by the file system setup scripts.

mkfsopts FS TESTDEV BLOCKSIZE FSSIZE

The mkfsopts hook is called before mkfs. This hook takes four arguments, the
file system time, the device, the block size, and the file system size. It should
print any additional options to pass to mkfs on stdout.

mkfs FS TESTDEV BLOCKSIZE FSSIZE

For Ext2, Ext3, and Reiserfs, ‘fs-setup.sh’ executes the appropriate mkfs

command, but for other types of file systems it relies on the mkfs hook to
properly format the file system. The mkfs hook takes the same arguments as
mkfsopts, and formats the file system according to the arguments and environ-
ment variables.

tunefs FS TESTDEV

After the file system is formatted, a tunefs hook is called with two arguments:
the file system type and the device. The tunefs hook can modify file system
properties. For example, a tunefs hook can toggle directory indexing on an
Ext2 or Ext3 partition.

mount FSTYPE TESTDEV TESTROOT

Before a file system is mounted, a mount hook is called with arguments of
$FSTYPE $TESTDEV $TESTROOT. This hook can perform pre-mount operations,
or mount the file system itself. To suppress ‘fs-setup.sh’ from mounting the
file system, the hook can set DOMOUNT to zero.

postmount FSTYPE TESTDEV TESTROOT

After a file system is mounted, a postmount hook is called with the same argu-
ments as the mount hook.

unmount TESTDEV TESTROOT

The unmount hook should unmount the file system mounted on TESTROOT

and the file system located on TESTDEV.

5.2 New Workloads

Defining new workloads is relatively simple—all that is strictly required is that you have
a program that executes the workload and measures it somehow. However, to fit into the
Auto-pilot analysis infrastructure you should keep in mind the following points:

You should include ‘commonsettings’ so that you can use ap_measure.You should use
ap_measure so that you can process the results easily with Getstats. You should mea-
sure each component of your benchmark separately (e.g., a compilation should separately
measure ./configure and make).

We have found that reusing benchmark scripts is very useful, but each project often needs
small changes. Originally, these changes resulted in several incarnations of each script (one
for each project); and maintenance became very difficult. Therefore, we suggest that you
design your scripts in such a way that they can be extended for specific projects without
forks.

Make as much of your benchmark configurable with environment variables as possible.
Use a function like set default so that you do not need to define every configuration option

Chapter 5: Defining your Own Benchmarks 22

in your Auto-pilot configuration. This achieves a reasonable balance between avoiding
modifications to the benchmark script, and making it easy to use.

Insert hooks liberally into your script when environment variables are not sufficient to
allow extensibility. This again helps to avoid modifications to your script.

5.3 New Benchmark Domains

Writing benchmark scripts for new domains requires forethought, and the same principles
that apply to writing scripts for new workloads applies to writing scripts for new benchmark
domains, See Section 5.2 [New Workloads], page 21. There are not necessarily any hard
and fast rules, since everyone’s benchmarks are different, but we have found that it helps
to keep the following things in mind when developing file-system benchmarks.

The setup, benchmark, and cleanup should be clearly separated. If you are benchmarking
multiple systems of the same type, then you should have common setup and cleanup scripts,
with small blocks of if statements that change the behavior for the different systems (e.g.,
we have one ‘fs-setup.sh’ script that handles all file systems). Instead of simply failing if
your script does not recognize the system you are benchmarking, use ap_requirehook to
search for a plugin.

Use variables for all of your options, and make sure you support host-specific options. If
you include ‘commonsettings’, the host-specific options are already taken care of.

Finally, your setup script should actually perform a bit of cleanup as well. For example,
our ‘fs-setup.sh’ script unmounts any file system that is already mounted. This is im-
portant, because you don’t want a previous bad run of your benchmarks to cause the next
iteration to fail.

Chapter 6: Data Analysis with Getstats 23

6 Data Analysis with Getstats

The basic Auto-Pilot work flow is essentially that Auto-pilot produces two files for each
experiment (as defined by a TEST directive in your ‘.ap’ file). The first file is a log of
stdout and stderr, with the suffix ‘.log’. No processing is done on this file—it is just
there so you can take a look at what happened (for example, if something broke or you can’t
explain your results). The second file is more interesting—it is the results file which has
the suffix ‘.res’. The results file contains information that the benchmarker deems worthy
of automatic extraction (the default Auto-pilot scripts record time and optionally several
other quantities, see Section 4.4 [Included Script Plugins], page 17).

The results files are made up of blocks, which start with ‘[blockname]’, and then contain
simple text (for example, the system snapshot contains the output of various commands,
without any special formatting). Each command that is measured with the ap_measure

function creates a measurement block, which looks like the following:

[measurement]

thread = 2

epoch = 2

command = postmark /tmp/postmark_config-9868

user = 0.200000

sys = 1.170000

elapsed = 5.470682

status = 0

Using a measure hook, arbitrary fields can be added to this measurement. The Auto-
Pilot distribution has two measure hooks distributed by default. The first keeps track of
the number of SCSI commands queued on Adaptec SCSI cards. The second determines
the amount of CPU time used by all processes in the system, which can be compared with
the amount of CPU time your benchmark used. These two hooks have proven useful to
investigate possible anomalies. These hooks in ‘@pkgdatadir@/commonsettings.d’ can be
used as samples for creating your own measurement hooks. By default @pkgdatadir@ is
‘/usr/local/share/auto-pilot’.

After you have these results files, you can pass them through the Getstats program. Get-
stats is an automated and powerful way to transform the results files into nicely formatted
tables, and to compare two different results files.

If you just want to know how to use Getstats and not how it works then read only this
Chapter. If you want to understand the internals, and perform more complex transforma-
tions, then you should read Chapter 7 [Getstats Internals], page 31.

Getstats starts off by processing its command line. The command line consists of options
and transformations, followed by a list of files to read.

Getstats takes each transformation that is specified on the command line and pushes it
onto a stack (@TRANSFORMS) for later use.

Each file that is specified on the command line is parsed into a two dimensional array.
You can specify either a CSV file, an Auto-pilot results file, or a sequence of GNU time
output. Getstats automatically determines the right file type and parse the file. Section 7.7
[Getstats Parsers], page 46 describes how to add your own parser. The two dimensional

Chapter 6: Data Analysis with Getstats 24

array is a relation that Getstats then manipulates. The relation consists of labels (or names)
for each field, and then rows (or tuples) with a value for each field.

Each individual transformation on the @TRANSFORMS stack is done to each of the relations,
in turn. If two transformations are specified A and B; and there are two files R and S, then
A is applied to R, A is applied to S, B is applied to R, and finally B is applied to S.

This section describes how to produce tabular reports, how to convert a results file into
a CSV file, and how to do simple hypothesis testing with Getstats.

6.1 Tabular Reports

The simplest form of invocation is just: getstats file, where ‘file’ is a results, CSV, or
GNU time file. For example, the command ‘getstats ext2:1.res’ produces the following
tabular report:

ext2:1.res: High z-score of 2.21853230276562 for elapsed in epoch 3.

ext2:1.res: High z-score of 2.03783855068 for io in epoch 3.

ext2:1.res

NAME COUNT MEAN MEDIAN LOW HIGH MIN MAX SDEV% HW%

Elapsed 10 6.055 6.063 5.991 6.120 5.855 6.180 1.491 1.067

System 10 2.758 2.760 2.709 2.807 2.640 2.880 2.499 1.788

User 10 1.675 1.680 1.615 1.735 1.510 1.820 5.044 3.609

Wait 10 1.622 1.636 1.567 1.677 1.465 1.718 4.759 3.404

CPU% 10 73.221 73.079 72.572 73.871 72.007 74.981 1.240 0.887

In this report, we see that elapsed time had a z-score of 2.2 in the third iteration (i.e.,
the value was 2.2 standard deviations away from the mean). We also see that I/O time
was 2.0 standard deviations away from the mean. Because this is only a single test, and
is not that far away, we can still analyze the results without much concern. We then see
that there were ten values for Elapsed, System, and User time. Two additional quantities
are reported: Wait, which is the Elapsed time less CPU time used (i.e. Wait = Elapsed -

(System + User)); and CPU utilization. We also see the mean and median values. The ‘LOW’
and ‘HIGH’ columns are used to create error bars with Graphit (See Chapter 8 [Graphit],
page 48). The ‘MIN’ and ‘MAX’ columns are the minimum and maximum values. The last
two columns are the standard deviation and the half-width of a 95% confidence interval,
presented as a percentage of the mean.

The second most common usage of Getstats is probably to compare two results files
and print out the percentage overhead for each measured quantity. Simply add more files
on the command line, and each subsequent one is compared with the first file. For exam-
ple, getstats ext2:1.res ext2:2.res ext2:4.res produces similar warnings, and three
tables, the second two of which have an overhead column.

ext2:1.res: High z-score of 2.21853230276562 for elapsed in epoch 3.

ext2:1.res: High z-score of 2.03783855068 for io in epoch 3.

ext2:2.res: High z-score of 2.02151683729612 for io in epoch 9.

ext2:2.res: High z-score of 2.04675213832333 for cpu in epoch 9.

ext2:4.res: High z-score of 2.67440053238888 for elapsed in epoch 17.

ext2:4.res: High z-score of 3.49505543943413 for elapsed in epoch 18.

ext2:4.res: High z-score of 2.08010266128444 for user in epoch 24.

ext2:4.res: High z-score of 2.07085419644225 for sys in epoch 7.

ext2:4.res: High z-score of 2.7647669231535 for io in epoch 17.

ext2:4.res: High z-score of 3.4658463687201 for io in epoch 18.

ext2:4.res: High z-score of 2.78135167661708 for cpu in epoch 17.

ext2:4.res: High z-score of 3.57552849516685 for cpu in epoch 18.

ext2:1.res

Chapter 6: Data Analysis with Getstats 25

NAME COUNT MEAN MEDIAN LOW HIGH MIN MAX SDEV% HW%

Elapsed 10 6.055 6.063 5.991 6.120 5.855 6.180 1.491 1.067

System 10 2.758 2.760 2.709 2.807 2.640 2.880 2.499 1.788

User 10 1.675 1.680 1.615 1.735 1.510 1.820 5.044 3.609

Wait 10 1.622 1.636 1.567 1.677 1.465 1.718 4.759 3.404

CPU% 10 73.221 73.079 72.572 73.871 72.007 74.981 1.240 0.887

ext2:2.res

NAME COUNT MEAN MEDIAN LOW HIGH MIN MAX SDEV% HW% O/H

Elapsed 11 4.904 4.966 4.793 5.015 4.579 5.042 3.377 2.269 -19.012

System 11 2.524 2.520 2.478 2.569 2.410 2.630 2.695 1.810 -8.498

User 11 0.811 0.810 0.774 0.848 0.740 0.910 6.720 4.514 -51.588

Wait 11 1.569 1.616 1.453 1.686 1.219 1.748 11.057 7.428 -3.253

CPU% 11 68.075 67.141 66.332 69.818 65.164 73.385 3.811 2.560 -7.029

ext2:4.res

NAME COUNT MEAN MEDIAN LOW HIGH MIN MAX SDEV% HW% O/H

Elapsed 31 4.300 4.318 4.230 4.369 3.636 4.513 4.413 1.619 -28.993

System 31 2.360 2.350 2.333 2.387 2.220 2.510 3.069 1.126 -14.431

User 31 0.502 0.470 0.476 0.528 0.410 0.650 14.141 5.187 -70.014

Wait 31 1.437 1.472 1.366 1.508 0.766 1.667 13.467 4.940 -11.396

CPU% 31 66.708 65.822 65.455 67.961 62.851 78.923 5.121 1.879 -8.895

When running Getstats, you may want to skip the leading warnings, because you are
impatient and don’t want to wait for them to complete (e.g., if you’ve already looked
at them), or you simply don’t want the output (e.g., if you are using the output in an
automated Graphit script). To disable warnings, simply add --set warn=0 to the command
line. The command ‘getstats --set warn=0 samples/ext2:1.res’ produces the tabular
report alone, as follows:

ext2:1.res

NAME COUNT MEAN MEDIAN LOW HIGH MIN MAX SDEV% HW%

Elapsed 10 6.055 6.063 5.991 6.120 5.855 6.180 1.491 1.067

System 10 2.758 2.760 2.709 2.807 2.640 2.880 2.499 1.788

User 10 1.675 1.680 1.615 1.735 1.510 1.820 5.044 3.609

Wait 10 1.622 1.636 1.567 1.677 1.465 1.718 4.759 3.404

CPU% 10 73.221 73.079 72.572 73.871 72.007 74.981 1.240 0.887

The ‘--set’ option, is actually rather generic. It can be used to set any Getstats internal
variable. You can also turn off the overhead column, with --set overhead=0. For example,
getstats --set overhead=0 --set warn=0 ext2:1.res ext2:2.res produces the follow-
ing:

ext2:1.res

NAME COUNT MEAN MEDIAN LOW HIGH MIN MAX SDEV% HW%

Elapsed 10 6.055 6.063 5.991 6.120 5.855 6.180 1.491 1.067

System 10 2.758 2.760 2.709 2.807 2.640 2.880 2.499 1.788

User 10 1.675 1.680 1.615 1.735 1.510 1.820 5.044 3.609

Wait 10 1.622 1.636 1.567 1.677 1.465 1.718 4.759 3.404

CPU% 10 73.221 73.079 72.572 73.871 72.007 74.981 1.240 0.887

ext2:2.res

NAME COUNT MEAN MEDIAN LOW HIGH MIN MAX SDEV% HW%

Elapsed 11 4.904 4.966 4.793 5.015 4.579 5.042 3.377 2.269

System 11 2.524 2.520 2.478 2.569 2.410 2.630 2.695 1.810

User 11 0.811 0.810 0.774 0.848 0.740 0.910 6.720 4.514

Wait 11 1.569 1.616 1.453 1.686 1.219 1.748 11.057 7.428

CPU% 11 68.075 67.141 66.332 69.818 65.164 73.385 3.811 2.560

Chapter 6: Data Analysis with Getstats 26

If you want to adjust the confidence interval, you also use ‘--set’. If you wanted tighter
confidence intervals, you could use ‘getstats --set confidencelevel=99 ext2:1.res’,
and the output would change as follows:

ext2:1.res: High z-score of 2.21853230276562 for elapsed in epoch 3.

ext2:1.res: High z-score of 2.03783855068 for io in epoch 3.

ext2:1.res

NAME COUNT MEAN MEDIAN LOW HIGH MIN MAX SDEV% HW%

Elapsed 10 6.055 6.063 5.962 6.148 5.855 6.180 1.491 1.532

System 10 2.758 2.760 2.687 2.829 2.640 2.880 2.499 2.568

User 10 1.675 1.680 1.588 1.762 1.510 1.820 5.044 5.184

Wait 10 1.622 1.636 1.543 1.701 1.465 1.718 4.759 4.891

CPU% 10 73.221 73.079 72.289 74.154 72.007 74.981 1.240 1.274

There are several other variables, which are described within the transform that they
control.

6.2 Converting Results into CSV Files

After parsing the results file, Getstats runs several default transformations as described in
Section 7.2 [Default Function Library], page 37. These transformations essentially combine
the results from several tests, and produce the derived quantities (e.g., Wait time). If we
want to see these raw values we can use the ‘--dump’ transform. The following output is
produced by getstats --dump ext2:1.res:

epoch elapsed user sys io cpu

1 6.138 1.700 2.720 1.718 72.007

2 6.026 1.820 2.640 1.566 74.015

3 5.855 1.590 2.800 1.465 74.981

4 5.983 1.680 2.750 1.553 74.045

5 6.063 1.730 2.700 1.633 73.071

6 6.180 1.680 2.790 1.710 72.331

7 6.043 1.510 2.880 1.653 72.645

8 6.089 1.680 2.770 1.639 73.086

9 6.063 1.630 2.820 1.613 73.396

10 6.113 1.730 2.710 1.673 72.637

ext2:1.res: High z-score of 2.21853230276562 for elapsed in epoch 3.

ext2:1.res: High z-score of 2.03783855068 for io in epoch 3.

ext2:1.res

NAME COUNT MEAN MEDIAN LOW HIGH MIN MAX SDEV% HW%

Elapsed 10 6.055 6.063 5.991 6.120 5.855 6.180 1.491 1.067

System 10 2.758 2.760 2.709 2.807 2.640 2.880 2.499 1.788

User 10 1.675 1.680 1.615 1.735 1.510 1.820 5.044 3.609

Wait 10 1.622 1.636 1.567 1.677 1.465 1.718 4.759 3.404

CPU% 10 73.221 73.079 72.572 73.871 72.007 74.981 1.240 0.887

As we can see the tabular report is still printed. This is because the standard transforms
are being executed before and after the ‘--dump’ transformation. To solve this problem, we
can simply exit after the dump by adding ‘--eval "exit(0);"’. The complete command
getstats --dump --eval "exit(0);" ext2:1.res produces:

epoch elapsed user sys io cpu

1 6.138 1.700 2.720 1.718 72.007

2 6.026 1.820 2.640 1.566 74.015

3 5.855 1.590 2.800 1.465 74.981

4 5.983 1.680 2.750 1.553 74.045

5 6.063 1.730 2.700 1.633 73.071

6 6.180 1.680 2.790 1.710 72.331

7 6.043 1.510 2.880 1.653 72.645

Chapter 6: Data Analysis with Getstats 27

8 6.089 1.680 2.770 1.639 73.086

9 6.063 1.630 2.820 1.613 73.396

10 6.113 1.730 2.710 1.673 72.637

This output, however, is post processed. To produce raw output, we need to disable
the standard transforms by passing ‘--nostdtransforms’. The command getstats --

nostdtransforms --dump ext2:1.res produces the following table (note that we do not
need to suppress the default tabular report, as ‘--nostdtransforms’ already suppresses it):

thread epoch command status elapsed user sys

1 1 postmark /tmp/postmark_config-30126 0 6.138 1.700 2.720

1 2 postmark /tmp/postmark_config-30312 0 6.026 1.820 2.640

1 3 postmark /tmp/postmark_config-30498 0 5.855 1.590 2.800

1 4 postmark /tmp/postmark_config-30684 0 5.983 1.680 2.750

1 5 postmark /tmp/postmark_config-30870 0 6.063 1.730 2.700

1 6 postmark /tmp/postmark_config-31056 0 6.180 1.680 2.790

1 7 postmark /tmp/postmark_config-31242 0 6.043 1.510 2.880

1 8 postmark /tmp/postmark_config-31428 0 6.089 1.680 2.770

1 9 postmark /tmp/postmark_config-31614 0 6.063 1.630 2.820

1 10 postmark /tmp/postmark_config-31800 0 6.113 1.730 2.710

To produce CSV files, which are suitable for use with other programs, you can replace
‘--dump’ with ‘--csv’. For example, getstats --nostdtransforms --csv ext2:1.res

produces

"thread","epoch","command","status","elapsed","user","sys"

"1","1","postmark /tmp/postmark_config-30126","0","6.138273","1.700000","2.720000"

"1","2","postmark /tmp/postmark_config-30312","0","6.025781","1.820000","2.640000"

"1","3","postmark /tmp/postmark_config-30498","0","5.854844","1.590000","2.800000"

"1","4","postmark /tmp/postmark_config-30684","0","5.982848","1.680000","2.750000"

"1","5","postmark /tmp/postmark_config-30870","0","6.062588","1.730000","2.700000"

"1","6","postmark /tmp/postmark_config-31056","0","6.179898","1.680000","2.790000"

"1","7","postmark /tmp/postmark_config-31242","0","6.043082","1.510000","2.880000"

"1","8","postmark /tmp/postmark_config-31428","0","6.088717","1.680000","2.770000"

"1","9","postmark /tmp/postmark_config-31614","0","6.062965","1.630000","2.820000"

"1","10","postmark /tmp/postmark_config-31800","0","6.112608","1.730000","2.710000"

6.3 Hypothesis Testing with Getstats

Getstats supports simple hypothesis testing using a two sample t-test. If you have two
samples (i.e., configurations), and you want to determine whether one configuration’s re-
sults is larger than, smaller than, or equal to the other configuration’s results you can use
the ‘--twosamplet’ transform. The ‘--twosamplet’ operates like the overhead transform
in that the first file on the command line is compared to each subsequent file on the com-
mand line. Before executing the command you should pick your null hypothesis, which is
what you assume to be true (and would like to disprove). For example, if you just spent
time optimizing a function, then you should assume your new software is slower than the
existing software, and seek to prove otherwise. You can also assume that two samples are
equal, and then seek to differentiate them (if you fail, then the results are statistically
indistinguishable).

For a primer on hypothesis testing, I suggest reading any statistics book such as
Ott and Longnecker’s "An Introduction to Statistical Methods and Data Analysis",
MathWorld at http://mathworld.wolfram.com/HypothesisTesting.html or WikiPedia
at http://en.wikipedia.org/wiki/Hypothesis_testing.

Chapter 6: Data Analysis with Getstats 28

For example, to compare ‘grep:reboot.res’ with ‘grep:noreboot.res’, you should run
getstats --twosamplet grep:noreboot.res grep:reboot.res. This command produces
the basic tabular report, and afterwards each quantity is compared as follows:

grep:noreboot.res: High z-score of 2.33972893857958 for elapsed in epoch 7.

grep:noreboot.res: Linear regression slope for sys is: 1.856%.

grep:reboot.res: High z-score of 2.82303417219122 for elapsed in epoch 1.

grep:reboot.res: High z-score of 2.33133550896239 for sys in epoch 3.

grep:reboot.res: High z-score of 2.47125762323635 for io in epoch 1.

grep:noreboot.res

NAME COUNT MEAN MEDIAN LOW HIGH MIN MAX SDEV% HW%

Elapsed 10 38.751 38.699 38.580 38.921 38.465 39.307 0.614 0.439

System 10 1.796 1.790 1.677 1.915 1.580 2.080 9.255 6.620

User 10 23.806 23.730 23.614 23.998 23.430 24.330 1.130 0.808

Wait 10 13.149 13.158 12.912 13.386 12.725 13.797 2.519 1.802

CPU% 10 66.071 66.019 65.556 66.586 64.899 67.075 1.090 0.779

grep:reboot.res

NAME COUNT MEAN MEDIAN LOW HIGH MIN MAX SDEV% HW% O/H

Elapsed 10 40.422 40.661 39.885 40.960 38.301 40.788 1.859 1.330 4.314

System 10 1.693 1.700 1.620 1.766 1.560 1.930 6.005 4.296 -5.735

User 10 23.718 23.745 23.451 23.985 23.180 24.220 1.572 1.124 -0.370

Wait 10 15.011 15.102 14.569 15.454 13.481 15.632 4.124 2.950 14.168

CPU% 10 62.875 62.764 62.166 63.584 61.561 64.802 1.576 1.127 -4.837

Comparing grep:reboot.res (Sample 1) to grep:noreboot.res (Sample 2).

Elapsed: 95%CI for grep:reboot.res - grep:noreboot.res = (1.148, 2.195)

Null Hyp. Alt. Hyp. P-value Result

u1 <= u2 u1 > u2 0.000 REJECT H_0

u1 >= u2 u1 < u2 1.000 ACCEPT H_0

u1 == u2 u1 != u2 0.000 REJECT H_0

System: 95%CI for grep:reboot.res - grep:noreboot.res = (-0.232, 0.026)

Null Hyp. Alt. Hyp. P-value Result

u1 <= u2 u1 > u2 0.944 ACCEPT H_0

u1 >= u2 u1 < u2 0.056 ACCEPT H_0

u1 == u2 u1 != u2 0.112 ACCEPT H_0

User: 95%CI for grep:reboot.res - grep:noreboot.res = (-0.393, 0.217)

Null Hyp. Alt. Hyp. P-value Result

u1 <= u2 u1 > u2 0.724 ACCEPT H_0

u1 >= u2 u1 < u2 0.276 ACCEPT H_0

u1 == u2 u1 != u2 0.552 ACCEPT H_0

Wait: 95%CI for grep:reboot.res - grep:noreboot.res = (1.396, 2.329)

Null Hyp. Alt. Hyp. P-value Result

u1 <= u2 u1 > u2 0.000 REJECT H_0

u1 >= u2 u1 < u2 1.000 ACCEPT H_0

u1 == u2 u1 != u2 0.000 REJECT H_0

CPU%: 95%CI for grep:reboot.res - grep:noreboot.res = (-4.009, -2.382)

Null Hyp. Alt. Hyp. P-value Result

u1 <= u2 u1 > u2 1.000 ACCEPT H_0

u1 >= u2 u1 < u2 0 REJECT H_0

u1 == u2 u1 != u2 0.000 REJECT H_0

Chapter 6: Data Analysis with Getstats 29

From this report, we we can see that grep with an intervening reboot runs for a longer
period of time than without the intervening reboot (because we reject the null hypothesis of
u1 <= u2 for Elapsed time). We also see that System and User times are indistinguishable
for the two tests. Wait and CPU time are however distinguishable (reboot has higher Wait,
and lower CPU utilization).

If you want to have a quieter version of the t-test, pass ‘--set rejectonly=1’ so
that only rejected hypothesis are displayed. For example, getstats --set warn=0 --set

rejectonly=1 --twosamplet produces the following:

grep:noreboot.res

NAME COUNT MEAN MEDIAN LOW HIGH MIN MAX SDEV% HW%

Elapsed 10 38.751 38.699 38.580 38.921 38.465 39.307 0.614 0.439

System 10 1.796 1.790 1.677 1.915 1.580 2.080 9.255 6.620

User 10 23.806 23.730 23.614 23.998 23.430 24.330 1.130 0.808

Wait 10 13.149 13.158 12.912 13.386 12.725 13.797 2.519 1.802

CPU% 10 66.071 66.019 65.556 66.586 64.899 67.075 1.090 0.779

grep:reboot.res

NAME COUNT MEAN MEDIAN LOW HIGH MIN MAX SDEV% HW% O/H

Elapsed 10 40.422 40.661 39.885 40.960 38.301 40.788 1.859 1.330 4.314

System 10 1.693 1.700 1.620 1.766 1.560 1.930 6.005 4.296 -5.735

User 10 23.718 23.745 23.451 23.985 23.180 24.220 1.572 1.124 -0.370

Wait 10 15.011 15.102 14.569 15.454 13.481 15.632 4.124 2.950 14.168

CPU% 10 62.875 62.764 62.166 63.584 61.561 64.802 1.576 1.127 -4.837

Comparing grep:reboot.res (Sample 1) to grep:noreboot.res (Sample 2).

Elapsed: 95%CI for grep:reboot.res - grep:noreboot.res = (1.148, 2.195)

Null Hyp. Alt. Hyp. P-value Result

u1 <= u2 u1 > u2 0.000 REJECT H_0

u1 == u2 u1 != u2 0.000 REJECT H_0

Wait: 95%CI for grep:reboot.res - grep:noreboot.res = (1.396, 2.329)

Null Hyp. Alt. Hyp. P-value Result

u1 <= u2 u1 > u2 0.000 REJECT H_0

u1 == u2 u1 != u2 0.000 REJECT H_0

CPU%: 95%CI for grep:reboot.res - grep:noreboot.res = (-4.009, -2.382)

Null Hyp. Alt. Hyp. P-value Result

u1 >= u2 u1 < u2 0 REJECT H_0

u1 == u2 u1 != u2 0.000 REJECT H_0

There are several other variables that control the test. To replace u1 and
u2 with their test names, (e.g., ‘u1’ would be replaced with ‘grep:reboot.res’,
pass ‘--set verbosettest=1’. The confidence level can be adjusted with ‘--set
confidencelevel’. To determine if two samples are different by a given delta use ‘--set
twosampledelta=delta ’.

Finally, if you want to compare each sample to every other sample in a pair-wise manner
pass ‘--pairwiset’ instead of ‘--twosamplet’.

6.4 Evaluating Predicates for TEST Directives

Auto-pilot can run an arbitrary program to determine if a given benchmark requires more
iterations. If the program returns true (zero), then the benchmark is complete, otherwise
more iterations are required.

Chapter 6: Data Analysis with Getstats 30

Getstats supports a predicate mode specifically designed to evaluate these conditions.
For each quantity (e.g., Elapsed time) that is measured the predicate is evaluated inde-
pendently. If the predicate is false for any of the quantities, then Getstats returns false
(non-zero).

To evaluate a predicate Getstats performs replacement, and then executes Perl’s eval
function on the string. The primary replacements that we use are $name, $mean, and
$delta (i.e., the half-width of a 95% confidence interval). For example, the following
Getstats command ensures that the User, System, and Elapsed have half-widths that
are less than 5% of the mean, and no test may run more than 30 times: getstats

--predicate ’("$name" ne "User" && "$name" ne "System" && "$name" ne "Elapsed")

|| ("$delta" < 0.05 * $mean) || ($count > 30)". See Section 7.3 [Replacements],
page 41, for detailed information about available replacements.

Chapter 7: Getstats Internals 31

7 Getstats Internals

Getstats defines 21 basic transformations, 11 library functions that are composed of these
transformations, and 8 library functions that are Perl snippets. This chapter describes
Getstats internals, and each of the transformations, and functions that Getstats provides.
We assume you have already read Chapter 6 [Getstats], page 23.

There are a few things that you should know to start off:

1. You should read through the whole theory of operation. It is complex, but some of
that complexity is mandated by the flexibility that is inherent in the new version of
Getstats.

The older version was 762 lines long, and had 20 command line parameters, but all
of them were ad-hoc, and extending Getstats for another field was difficult. The new
version is 1805 lines long, but has very little built in.

2. Getstats can be thought of as two separate components. The Getstats transformation
engine that defines a few basic transformations (about 350 of the 1500 lines of code).
Most of the library transformations are actually built using the basic transformations
as a guide.

3. It helps to know Perl, and do not be afraid of using small perl snippets. To make a
table out of a simple 4 thread, 10 run test Getstats evaluates almost 1000 snippets of
perl code.

That being said if you do not know Perl, there are enough predefined things there so
that you do not need to worry.

To get Getstats to do really cool stuff (e.g., more statistical tests) you might need to
know the internals, that is why things like variable names are included in this document.

7.1 Basic Transformations

The basic transformations can be divided into four categories: project, select, control, and
output. The control and output transformations aren’t quite transformations like project
and select, but that is what we’ll call them for consistency.

Throughout this section of the document, transformations are denoted as if they were
functions, but in reality they are Perl arrays. This presentation allows the concepts to be
discussed, without the complication of Perl syntax. See Section 7.4 [TransInt], page 43, for
information on how to manipulate them.

7.1.1 Project Transformations

The project transformations include remove, rename, add, and move. The project trans-
formations operate on the labels and rows individually to produce a new relation. The new
relation replaces the old relation.

remove remove takes a single argument, which is the column name to remove, this
column must exist or remove fails.

Chapter 7: Getstats Internals 32

‘epoch’ ‘thread’ ‘elapsed’ ‘cpu’
1 1 10 4
2 1 12 5
3 1 11 4
4 1 9 3
5 1 10 4

Relation 7.1

If the current relation is Relation 7.1, and the transform remove("thread")
yields Relation 7.2.

‘epoch’ ‘elapsed’ ‘cpu’
1 10 4
2 12 5
3 11 4
4 9 3
5 10 4

Relation 7.2

rename rename takes two arguments. The first is the old name of the column, and the
second is the new name of the column. The old name must exist, and the new
name must not exist. Using Relation 7.1 as a starting point, rename("epoch",
"Test Number") yields Relation 7.3.

‘Test Number’ ‘thread’ ‘elapsed’ ‘cpu’
1 1 10 4
2 1 12 5
3 1 11 4
4 1 9 3
5 1 10 4

Relation 7.3

add add also takes two arguments, the first is the name of the new column and
the second argument is an expression that undergoes row replacement (to be
described later) and is then passed to Perl’s eval function. For example, if we
wanted to add wait time (the amount of time a process spends not running) to
Relation 7.1, we could transform it using add("wait", "$elapsed - $cpu") and
yield Relation 7.4:

‘epoch’ ‘thread’ ‘elapsed’ ‘cpu’ ‘wait’
1 1 10 4 6
2 1 12 5 7
3 1 11 4 7
4 1 9 3 6
5 1 10 4 6

Relation 7.4

Chapter 7: Getstats Internals 33

move move reorders the fields of the tuples. Move takes two arguments, the first is a
column which must exist and the second is the index to move to starting from
zero. This is useful to provide a canonical ordering to important fields in all of
the relations when printing results.

If we use Relation 7.1 as our starting point, move(thread,0) yields Relation 7.5:

‘thread’ ‘epoch’ ‘elapsed’ cpu
1 1 10 4
1 2 12 5
1 3 11 4
1 4 9 3
1 5 10 4

Relation 7.5

update The update transformation takes two arguments, the first is a column name to
update, and the second is an expression. update("foo", expression) is semanti-
cally equivalent to:

add_col("temporary_name", expression)

remove("foo")

rename_col("temporary_name", "foo")

The update operation, however, does not reorder the columns and is done in a
single pass through the relation.

7.1.2 Select Transformations

The select transformations pick items that meet a given condition from a relation. Once
the items are selected, further processing may be done. There are three types of select
transformations: basic, warning, and aggregate.

select The first select transformation is, aptly, named "select". It takes a single ar-
gument, which is the expression to evaluate over each row of the relation. This
expression undergoes row replacement (to be described later) and is then passed
to Perl’s eval function. If the evaluation returns true, then the row is included
in the output relation, otherwise it is not. The output relation replaces the
current relation.

Often, the first run of a test is faster than the other runs because it warms the
cache (e.g., it uses a compiler on the root partition). To throw out this test, you
could select("$epoch > 1"). Performed on Relation 7.1, this yields Relation 7.6.

‘epoch’ ‘thread’ ‘elapsed’ ‘cpu’
2 1 12 5
3 1 11 4
4 1 9 3
5 1 10 4

Relation 7.6

warn Often a particular test will have something go awry, and that fact is lost in the
summary statistics. The "warn" transformation is used to produce warnings if
something is suspicious about the data.

Chapter 7: Getstats Internals 34

"warn" operates much like select, except it takes two arguments. The first is
a predicate that raises the warning, and the second is an error message. If a
warning is raised, then the global variable "wraised" is incremented.

The first argument undergoes replacement, and then is passed to Perl’s eval
function. If it evaluates to true, then the second argument undergoes replace-
ment and is printed on standard error. "warn" is most useful when combined
with "foreachrow" or "foreachcol" (See Section 7.1.3 [Control Transformations],
page 34). There are three library functions that make use of warn in this way:
"warnrow", "warncol", and "warnval."

Aggregate

aggregate

Aggregate selects all rows of a transformation, and replaces them with a single
row. Aggregate takes a single argument which is a perl hash that describes how
to do the aggregate operation for each column. The hash contains keys which
are the field names, and then an expression on which column replacement is
done. The special hash key " " describes what is done to unknown columns.
The special hash value "explode" says to replace a single column with four new
columns. One for the minimum, maximum, mean and sum of the values in that
column.

Aggregate becomes much more useful when combined with the "group" control
transformation (See Section 7.1.3 [Control Transformations], page 34).

7.1.3 Control Transformations

block "block" takes a list of transformations, which are each executed in turn.

ifexist "ifexist" takes two or three arguments. The first is an column name, if this
column exists the second argument (which is a transformation) is executed.
The optional third argument is the transformation to execute if the column
does not exist.
An example of an ifexist transformation is:

ifexist("pdiff", update("pdiff", "$pdiff - $sys - $user"))

This transformation sets pdiff to the CPU time used by everything, except the
test, but does not fail if pdiff doesn’t exist.

if "if" is similar to ifexist, but the first argument is an expression that undergoes
global replacement and is then passed to Perl’s eval function.

eval "eval" takes a single argument, which undergoes global replacement and is then
passed to Perl’s eval. This is useful for embedding tiny snippets of Perl code in
your getstats commands.

noop "noop" does nothing. It can be used as a place holder or to "comment" out a
transformation by inserting "noop".

foreachcol

"foreachcol" takes one argument, which is another transformation. The trans-
formation is then run once for each column in the relation. Replacements in

Chapter 7: Getstats Internals 35

the context of "foreachcol" do column replacement. If "foreachcol" is nested
within "foreachrow", then value replacement is performed. For information
about replacement, See Section 7.3 [Replacements], page 41.

foreachrow

"foreachrow" takes one argument, which is another transformation. The trans-
formation is then run once for each row in the relation. Replacements in the
context of "foreachrow" do row replacement. If "foreachrow" is nested within
"foreachcol", then value replacement is performed.

group "group" is among the most complicated of transformations. It takes two argu-
ments. The first is a field to group on, and the second is a transformation to
run on each of these groups.

The group transformation starts by partitioning the current relation into a set
of new relations, such that each unique value of key produces a new relation
and all the elements in that relation have the same value of key.

For example, grouping Relation 7.7 on epoch creates Relation 7.8, Relation 7.9
and Relation 7.10.

‘epoch’ ‘thread’ ‘elapsed’ ‘cpu’
1 1 10 2
1 2 11 2
2 1 9 2
2 2 11 3
3 1 10 3
3 2 9 2

Relation 7.7

‘epoch’ ‘thread’ ‘elapsed’ ‘cpu’
1 1 10 2
1 2 11 2

Relation 7.8

‘epoch’ ‘thread’ ‘elapsed’ ‘cpu’
2 1 9 2
2 2 11 3

Relation 7.9

‘epoch’ ‘thread’ ‘elapsed’ ‘cpu’
3 1 10 3
3 2 9 2

Relation 7.10

The second argument to group is a transformation that is run on each of the
new relations individually. A typical example of this transformation would be
the aggregate transformation.

Assume we ran remove(thread) on each relation, we would have three new
relations. For example, Relation 7.8 would be come:

Chapter 7: Getstats Internals 36

‘epoch’ ‘elapsed’ ‘cpu’
1 10 2
1 11 2

Relation 7.11

We could then use the following aggregate transformation:

aggregate({

"elapsed" = "$max",

"cpu" = "$sum",

"epoch" = "$mean",

})

Note that because epoch is the key we grouped by we can use mean to get the
single value of epoch.

Running this transformation on Relation 7.11 would yield Relation 7.12.

‘epoch’ ‘elapsed’ ‘cpu’
1 11 4

Relation 7.12

This transformation is repeated on Relation 7.9 and Relation 7.10, and finally
the results are concatenated, yielding Relation 7.13:

‘epoch’ ‘elapsed’ ‘cpu’
1 11 4
2 11 5
3 10 5

Relation 7.13

Relation 7.13 is the final output of this example group command.

7.1.4 Output Transformations

The output transformations are echo, die, csv, and describe.

echo

die echo and die take an arbitrary number of arguments, perform global replace-
ment on them, and then print the result. Die uses Perl’s die command to print
the result on stderr and execution halts.

csv Produces a CSV file on stdout that represents the current relation. This trans-
form takes no arguments.

describe The describe transformation creates tabular reports, like those in Section 6.1
[Tabular Reports], page 24. The arguments to describe are the names of
columns to print. For example describe(["NAME", "MEAN"]); when applied
to Relation 7.14 prints out the following table:

NAME MEAN

fruzzles 16

widgets 3

Chapter 7: Getstats Internals 37

‘fruzzles’ ‘widgets’
12 3
21 7
15 8

Relation 7.14

The value of each part of the table is determined by performing column replace-
ment on the variable $globals{’colexpr’}->{$colname}. For more informa-
tion on replacement, See Section 7.3 [Replacements], page 41. This gives you
quite a bit of power when deciding what to print.

There are three other global parameters that control the describe output: spac-
ing, delimiter, and precision. spacing determines the number of spaces between
each column. If set to zero, there are no spaces between each column (e.g.,
‘fruzzles16’). If delimiter is set, then it is printed between each column.
For example, if delimiter is ‘,’ and spacing is zero, the first row would be
‘fruzzles,16’. The final value of interest is precision, which specifies how
many digits after the decimal point are printed for floating point values.

The set transformation can be used to set spacing, delimiter, and precision.
To set values in the colexpr hash, you should use "eval" to modify individual
elements or "seteval" to replace the whole hash.

dump Writes a table of the current relation to stdout. This transform takes no argu-
ments, but uses the global variables delimiter, precision, and spacing to control
the output.

7.2 Default Function Library

The default function library can be broken down into several categories: manipulating
global variables, time related functions, warning primitives, built-in warnings, the default
transformations that each relation undergoes, predicate evaluation, and relation renaming.

Manipulating Global Variables

There are several functions that manipulate global replacement variables (which are stored
in %globals).

set(var, val)

setexpr(var, expr)

seteval(var, expr)

Sets the global replacement variable var to val. setexpr performs global re-
placement first, and seteval first runs Perl’s eval function on expr.

unset(var)

Is the equivalent of set("var", 0);

push(var, val)

pusheval(var, expr)

Pushes "val" onto the global replacement variable "var", which must be a Perl
array. With pusheval, "expr" is first passed through Perl’s eval function.

Chapter 7: Getstats Internals 38

pop(var) Pops an element from the global replacement variable var, which must be a perl
array.

Time Related Functions

There are also several transformation functions for creating more useful output from times.

aggthreads

Aggregate multiple threads in an epoch into a single value.

procdiff Transform the procdiff column from the total number of seconds of CPU time
used into the percent of CPU used by non-measured processes.

savestats

Saves the current summary statistics objects in $globals{’stathashes’}, this
is used for computing overheads.

unifycommand

Aggregate multiple commands in a single thread within an epoch into a single
value. This is used for benchmarks like compilations that separately time several
commands (e.g., configure and make).

Warning Primitives

There are three types of warning primitives. Warnings that should be evaluated for each
row ("warnrow"), column ("warncol"), or each cell ("warnval").

warnrow(expression, output)

An example of a row warning is that the exit status of each test should be zero.
If this is false, it means that the test failed, and that particular measurement
is likely bad.
Assuming that the exist status is stored in a column named status, the following
transformation warns when tests fail:

warnrow("$status != 0",

"Failure for epoch $epoch, thread $thread, exit status = $status.")

‘epoch’ ‘thread’ ‘status’
1 1 0
2 1 0
3 1 127
4 1 0
5 1 0

Relation 7.15

When run on Relation 7.15, the output is:
Failure for epoch 3, thread 1, exit status = 127.

warncol(expression, output)

Column warnings are evaluated once for each column in a relation. They have
the same arguments as a row warning—the expression, and the warning text.
The expression undergoes column replacement so summary statistics like the
mean are available, and is then passed to Perl’s eval.
An example column warning would be if the half-width of a confidence interval
is greater than 10% of the mean:

Chapter 7: Getstats Internals 39

warncol("$delta > $mean * 0.05", "$name has a half-width of $delta.")

warnval(expression, output)

Value warnings combine row and column warnings. The expression is run on
each value of each row, and if it is true the warning text is printed on stderr.
Row, column, and value replacement is performed. This is how Getstats imple-
ments z-score checking for each value.

Built-in Warnings

The following transformations use the previously described warning primitives to raise warn-
ings if $warn is set (which it is by default). You can turn these warnings off by setting $warn
to 0.

exitfail Warn if any test failed.

negio Warn if wait time is negative (more CPU time was used than elapsed time).

otherexec

Warn if something else was executing (non-measured processes used more than
5% of the CPU time)

You can control the percentage by setting the global variable otherexec-thresh.

warnregress

Warn if the best fit is not within 5% of a horizontal line. For example, if there
is a memory leak, then things will get consistently slower.

You can control the slope by setting the global variable regress-thresh.

zscore Warn if the zscore of any value is greater than

You can control the zscore by setting the global variable zscore-thresh.

Default Transformations

The following functions define the four default passes that getstats performs over the rela-
tions. Any transformations specified on the command line are executed after readpass, but
before warnpass.

readpass If the elapsed column exists, then warn about failed executions, unify com-
mands, aggregate threads, calculate wait time, CPU utilization, and update
the pdiff column.

warnpass Warn if there another process used significant CPU time, any tests have negative
IO time or a high z-score, or if any quantity has a high linear regression slope.
Remove excess columns, and reorder and rename the "elapsed", "sys", "user",
"io" and "cpu" to "Elapsed", "System", "User", "Wait", and "CPU%".

ohpass Save statistics and baseline for computing overheads.

summary Create the summary table.

Analyzing Data

predicate(expr)

This is used for predicate evaluation from within Auto-pilot. After a cer-
tain number of epochs, Auto-pilot optionally runs an external script to decide

Chapter 7: Getstats Internals 40

whether it should keep on going. If the script exits with a zero status code,
then Auto-Pilot stops the test. If the script exits with a failure (non-zero) code,
then Auto-Pilot continues the test.

Predicate takes a single argument, which is the predicate to evaluate over each
column of data. If the predicate is not true for any of the columns, Getstats
dies. Auto-pilot picks up on this failure and continues to run the tests.

twosamplet

Each input relation is statistically compared with the baseline file (the first file
specified). This option prints a confidence interval for the difference between
each column’s mean in the current file and the baseline.

It also performs a two-sample t-test with a null hypotheses of "current mean -
baseline mean <= twosampledelta", "current mean - baseline mean >= twosam-

pledelta", and "current mean - baseline mean = twosampledelta". The p-value
(the probability of observing this data, assuming the null hypothesis is true).
If the p-value is small, then you can reject the null hypothesis. "REJECT" or
"ACCEPT" is also printed, based on the confidence level you have specified
(95% by default).

The following example compares a one threaded Postmark run (Sample 1)
against a two threaded postmark run (the baseline is Sample 2).

Comparing samples/ext2:2.res (Sample 1) to samples/ext2:1.res (Sample 2).

Elapsed: 95%CI for samples/ext2:2.res - samples/ext2:1.res = (7.945, 8.029)

H_0: u1 - u2 <= 0.000 H_a: u1 - u2 > 0.000 P = 1.000 ACCEPT H_0

H_0: u1 - u2 >= 0.000 H_a: u1 - u2 < 0.000 P = 0.000 REJECT H_0

H_0: u1 - u2 == 0.000 H_a: u1 - u2 != 0.000 P = 0.000 REJECT H_0

As we can see, we must accept the assumption that two threads takes less
time than one thread. We can reject the assumption that two threads takes
longer than one thread, and the assumption that they take the same amount of
time. Remember that Getstats runs all of these tests, but you need to choose
which assumption makes sense for your case. For example, if you have code
that should improve performance, you can’t make the assumption that it does
improve performance. Instead, you must make the assumption that it does not

improve performance, and either accept or reject that conclusion.

Several global variables control the ttest. ttestcolumns is a comma separate
list of columns to compare. twosampledelta controls the delta for the t-test, by
default the delta is zero. This is used to show that two samples are different
by more than some value. rejectonly causes only rejected hypothesis to be
displayed, this can greatly reduce the amount of output when comparing mostly
similar samples. verbosettest prints the relation names instead of u1 and u2.
confidencelevel controls when to reject or accept tests (and the width of the
confidence interval). precision controls how many decimal places are printed.

pairwiset

This function is identical to twosamplet, but each sample is compared with
every other sample (i.e., sample 1 is compared with sample 2–n, sample 2 is
compared with sample 3–n, ..., etc.)

Chapter 7: Getstats Internals 41

Relation Renaming

rename_relation(expr)

By default, each relation is named after its input file. This transformation allows
you to rename relations to more easily readable names. First, expr undergoes
global replacement (the most useful global replacement variable for this function
is $file, which is the relations current name). Next, the resulting expression is
evaluated using Perl’s eval function. Finally, the relation is renamed to the
result of this evaluation.

basename Basename renames the relations using File::basename, which strips leading di-
rectories and any file extension. For example, "samples/ext2:1.res" is renamed
to "ext2:1". This can make the output easier to read.

7.3 Replacements

Throughout Getstats its behavior is controlled by replacing internal variables with the
actual values that are taken from the current relation and an environment. Depending on
the current context, there are four types of replacement: Global, Row, Column, and Value.

Within a string that undergoes replacement, variables are denoted by $var , where var

is the name of a variable. For example, in the string ‘1 + $val’, if val is defined as 2, the
string becomes ‘1 + 2’. If val is not defined, no replacement occurs.

Because these replacements are often passed to Perl’s eval function, invalid variables are
be caught by Perl. If the string is not evaluated by Perl, then it is output, and the user
sees that no substitution took place.

7.3.1 Global Replacement

Getstats uses a hash, %globals, to maintain a global environment. Any variable that is
defined in %globals is replaced under Global replacement.

When evaluating two related expressions, Getstats declares the Perl hash %ptemp. If
a variable is defined in %ptemp, it is also replaced under Global replacement. For more
information See Section 7.3.5 [Temporary Variables], page 43.

Getstats defines several global variables automatically:

file The name of the current relation.

fileno The order in which this relation was specified on the command line, starting
from zero. This variable is useful in conjunction with "if" to perform actions
only for the first relation, or for the last relation.

filecount

How many relations were specified on the command line.

The following global variables are set or used by Getstats default library:

confidencelevel

The confidence level variable is used by statistical tests to accept or reject
hypothesis, and to generate confidence intervals. The default value is 95, but
this can be changed via transforms, or the command line.

Chapter 7: Getstats Internals 42

delimiter

What should the table delimiter be. The default is none.

spacing How many spaces should appear between columns in tables. The default is 1.

precision

How many decimal places are printed for floating point values. The default is
3.

wraised This contains the count of the number of warnings raised.

The global variables colexpr, stathashes, outcols, agg commands, and agg threads are
complex types. To modify or read them them more knowledge is required, and you should
look in the corresponding manual section.

7.3.2 Row Replacement

Using the current row in the relation as its context, ‘$fieldname ’, is replaced by the value
of the field named fieldname.

Row replacement implies global replacement.

7.3.3 Column Replacement

Column replacement operates on a column of the current relation, and supports three
distinct types of variables: internals, PointEstimation, and LineFit.

The following getstats internal variables are supported:

$name The name of the current column

From Statistics::PointEstimation (perldoc Statistics::PointEstimation):

$mean

$median

$stdev

$variance

$min

$max

$sum

$count

$mode

$delta The half-width of the confidence interval. The confidence level for the CI is
$globals{confidencelevel}.

From Statistics::LineFit (perldoc Statistics::LineFit):

$slope Slope of the fitted line

$intercept

Intercept of the fitted line

Chapter 7: Getstats Internals 43

$lr-rSquared

$lr-durbinWatson

$lr-meanSqError

$lr-sigma

Column replacement implies global replacement.

7.3.4 Value Replacement

Value replacement occurs in the special case that both row and column replacement are
performed simultaneously. Value replacement takes place in the context of a single cell
within a relation.

$val The value of the current field

7.3.5 Temporary Variables

Each pair of evaluated expression in getstats has access to a hash named "ptemp", which
can be used for temporary private variables. When used with warnings, the expression can
set values in ptemp that the warning text uses.

This is used in zscore warnings:

warnval(

"if($stdev) {$ptemp{’zscore’} =

eval \"(abs($mean - $val) / $stdev)\";

return (($globals{’zscore-thresh’} > 0)

&& $ptemp{’zscore’} > $globals{’zscore-thresh’}); }",

"High z-score of \$zscore for \$name in epoch \$epoch."

)

The variable $ptemp{’zscore’} is set to eval of (abs($mean - $val) / $stdev), and if
it is higher than the global variable zscore-thresh, the warning is raised. The warning text
reference $zscore, which is picked up from %ptemp.

Notice that eval is used within the predicate, because the standard deviation may be
zero. Before the string is evaluated, $stdev could be replaced with zero, and if Perl sees a
division by the constant zero it causes an error – even if that part of the expression is never
evaluated. By using nested evals, we delay parsing of that expression until we have checked
that $stdev is not zero.

7.4 Internal Representation of Transformations

Each transformation is represented as a Perl array. The first element is a command that
defines the transformation. For example ["noop"] is a no-op transformation. The remaining
fields of the array are arguments. For example, ["echo", "Hello,", "world."] is an
echo transformation that prints ‘Hello, world.’. The arguments need not be strings, for
example ‘block’ is a list of further transformations:

["block",

["echo", "Mary had a little lamb,"],

["echo", "whose fleece was white as snow."],

["echo", "And everywhere that Mary went,"],

["echo", "the lamb was sure to go."],

]

Other transformations take other types of arguments (e.g., aggregate takes a hash).

Chapter 7: Getstats Internals 44

The command must be one of the 20 basic transformations described in this document,
or a function defined in the %functions hash.

7.5 Function Internals

The functions hash maps commands to either a transformation (most likely a block of
them), or Perl subroutines.

An example of function that is a block of transformations is "pdiff", which converts the
"pdiff" column from the total number of seconds of CPU time used by every process on the
system, into the percentage of CPU time used by non-measured processes.

"procdiff" => ["ifexist", "procdiff",

["block",

["update", "procdiff",

"if (\$procdiff) {

return 100.0 *

eval(\"(\$procdiff - \$user - \$sys) / (\$procdiff)\")

} else {

return 0;

}"],

["otherexec"],

["rename", "procdiff", "Excess CPU%"],

],

["noop"]]

Notice that eval is used within the predicate, because pdiff may be zero. Before the
string is evaluated, $pdiff could be replaced with zero, and if Perl sees a division by the
constant zero it causes an error – even if that part of the expression is never evaluated. By
using nested evals, we delay parsing of that expression until we have checked that $pdiff

is not zero.

An example of a function that is a Perl subroutine is "set", which sets a variable that
can be used for global replacement.

Set is invoked as ‘["set", "warn", "0"]’ (which sets the global replacement variable
$warn to 0).

"set" => sub {

The arguments to the function are the transformation itself

and the current relation that we are operating on.

my ($tref, $aref) = @_;

Make sure that we get the right number of arguments

if ($#$tref > 2 || $#$tref <= 0) {

die "set takes only one or two argument.";

} else {

Then do the bit of perl that we wanted.

if ($#$tref == 1) {

$globals{${$tref}[1]} = 1;

} else {

$globals{${$tref}[1]} = ${$tref}[2];

}

}

},

Because you can use arbitrarily complex functions, Getstats is arbitrarily extensible.

Chapter 7: Getstats Internals 45

7.6 Command line arguments

All Getstats arguments start with a double dash, and a – terminates option processing. All
other arguments are files to parse.

Getstats natively implements the following options:

‘--[no]catfiles’
Whether or not to concatenate input files into one larger relation.

If this option is specified, getstats reads in each individual results file, then
creates a larger relation. To concatenate two (or more) relations they must
have exactly the same columns.

‘--[no]stdtransforms’
Whether or not to use the standard transforms library. The default is yes.

"readpass" is executed before any other transforms on the command line.
"warnpass", "ohpass" and "summary" are executed after other transforms.

The following options are executed before any transforms

‘--set var=val’
Set a global replacement variable, var, to val

‘--seteval var=val’
Set a global replacement variable, var, to eval(val). This can be used to set
variables to complex objects like arrays or hashes.

‘--push var=val’
Push val onto the global replacement variable var.

‘--pusheval var=val’
Like push, but eval val first.

‘--source’
Load in a Perl source file. This can be used to override functions in the functions
hash, push several complex transforms onto @TRANSFORMS, or whatever your
heart desires (and Perl lets you do).

The following options add a transform

‘--transform’
Add a transform between "readpass" and "ohpass". The transform needs to
be a valid Perl representation of a transform.

‘--shiftform’
Add a transform before "readpass". This transformation is the first transforma-
tion executed, so they go in reverse order on the command line. The transform
needs to be a valid Perl representation of a transform.

Any other option that is treated as a getstats transformation (e.g., "–foo") calls the
Getstats transformation foo after "readpass". If you want to run the transformation be-
fore "readpass" specify –shift before the transform (e.g., –shift –select ’"\$command" eq
"./configure"’).

Chapter 7: Getstats Internals 46

Not all built-in transformations are supported, specifically the control transformations
"if", "ifexist", "block", and "group" are not supported (essentially anything that requires
another transformation as its argument).

All library functions, and other built-in transformations are supported.

If you use a function that takes many arguments, like describe then you must terminate
the arguments with – or another option. If you don’t terminate it then Getstats assumes
your file names are input to that transform.

Getstats knows the number of arguments for the following transformations, if you define
your own, then Getstats assumes it has many arguments.

Transforms with no arguments csv, savestats, exitfail, aggthreads,

unifycommand, negio, otherexec, warnregress,

pdiff, zscore, ohpass, readpass, summary,

warnpass
Transforms with 1 argument remove, select, eval, pop, predicate

Transforms with 2 arguments add, warnrow, warncol, warnval, update,

rename, move
Transforms with many arguments describe, noop, echo, die

7.7 Adding Parsers to Getstats

Getstats itself does not include any parsers, instead it searches the Perl @INC array which
contains possible include paths for files of the pattern ‘gs_parser_*’, and includes them.
Getstats includes three parsers by default, one for Auto-pilot results files, one for CSV files,
and one for a sequence of GNU time outputs. To add your own parser, you should simply
copy one of these parsers and modify it to suit your needs.

Each parser defines two functions, and three parameters:

Detection Function
The detection function takes a list argument. The first item is the filename.
The next items are the file’s lines. The filename should not be used exclusively
(because Getstats can read from stdin, which has a filename of "-"). For
example, the CSV detection makes sure each line is a valid CSV line. If the file
is of the correct type the detection function returns true, otherwise it returns
false. If the file name does not exist, the detection function is called with the
name, but not lines. This is so that parsers expecting filename globs will still
be executed. If no detection function returns true, then an error is reported.
If a detection function does return true, the corresponding parsing function is
called.

Parsing Function
The parsing function takes the same arguments as the detection function, but
now the file is assumed to be of that correct type (because the corresponding
detection function has already returned true). The parsing function returns a
two dimensional array containing the relation represented by the input file. The
first element of the array is a "label" row that has a short description of each
column (e.g., "elapsed" for Elapsed time). Each additional row of the array is
a test result.

Chapter 7: Getstats Internals 47

Description
A short description of the file type this parser supports (e.g., "Comma separated
values.").

Extension The default file extension (e.g., ".csv" is used for the CSV parser). This is not
used by Auto-pilot internally, except to derive the basename of an input file.

Priority The priority controls what order detection and parsing is performed. Lower-
numbered priorities are tried first. Auto-pilot results files have a priority of 64,
GNU time files have a priority of 96, and CSV files have a priority of 128. If
there is a chance that a parser detects an invalid file as input, it should have a
high-numbered priority. For example, the CSV parser accepts more input than
it probably should , because a single column CSV file without any columns is
valid. This means that the Auto-pilot results and GNU time should have a
crack at reading the file first.

Chapter 8: Graphing with Graphit 48

8 Graphing with Graphit

Graphit is a Perl script that generates both line and bar graphs using Gnuplot 3.8j or higher.
Graphit automatically processes Getstats output, results files (by executing Getstats), and
CSV files. Each input file is treated as a series, and has several components. To properly
read this section, you should use the Postscript viewer (or HTML), as infomay not correctly
display images.

In a bar graph, each series creates a group of bars. In Figure 8.1, the series are Ext2,
Ext3, and Reiserfs. Each component becomes a bar in each series. In Figure 8.1, the
components are Elapsed, System, and User.

 0

 10

 20

 30

 40

 50

 60

 70

 80

ReiserfsExt3Ext2

T
im

e
(s

ec
on

ds
)

6.055

77.861

67.719

Elapsed
User

System

Figure 8.1: A bar graph with three series (Ext2, Ext3, and Reiserfs) and three compo-
nents (Elapsed, System, and User).

In a line graph, a line is created for the cross product of the series and components. In
Figure 8.2, there are two components and series. The components are Elapsed and System,
and the series are Ext3 and Reiserfs. Of special note is that this line graph actually has more
points than the corresponding bar graph even though it has fewer series and components.
This is because each series-component combination in a line graph can have any number of
points (in this case six), but a series-component combination only has a single point in a
bar graph. Another important distinction between line and bar graphs is that bar graphs
use an artificial x-axis, but a line graph uses an x-axis based on an actual quantity (for
example, the number of threads).

Chapter 8: Graphing with Graphit 49

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

T
im

e
(s

ec
on

ds
)

Threads

Reiserfs (Elapsed)
Reiserfs (System)

Ext3 (Elapsed)
Ext3 (System)

Figure 8.2: A line graph with two components (Elapsed and System) and two series
(Ext3 and Reiserfs). Each series-component combination has six points.

Graphit has three required options as follows:

‘--mode’ bar|line
Whether a bar or line graph should be produced.

‘--components’ name(,name)*
What components should be graphed. If the input file has other components,
then they are ignored.

‘--graphfile’ file

What the name of the output graph file is. This also indirectly determines the
format of the output.

After the options, Graphit takes an even number of arguments, which are pairs that
define the graph’s series. The first element of the pair is the series name (e.g., Ext2). The
second element is the input that defines the series. The input specification is parser specific.

To create a bar graph using Getstats output the input specification is a file name. The
file can either be a the output from a single run of Getstats (the tabular report, without the
warnings), or an Auto-pilot results file. If an Auto-pilot results file is specified, then Getstats
is executed using the command getstats --set warn=0 file, to create a corresponding
tabular report.

When you specify the output of Getstats, Auto-pilot only handles files that contain a
single result. To handle files with more than one result, then you must use the syntax
‘file@index’, where ‘file’ is the name of the file and ‘index’ is the name of the sample
within the file. For example in the following file named ‘summary’:

samples/ext2:1.res

NAME COUNT MEAN MEDIAN LOW HIGH MIN MAX SDEV% HW%

Elapsed 10 8.168 8.154 8.131 8.205 8.112 8.271 0.633 0.453

System 10 0.140 0.135 0.119 0.161 0.100 0.190 20.757 14.849

User 10 0.021 0.020 0.011 0.031 0 0.040 65.253 46.680

Wait 10 8.007 7.987 7.967 8.047 7.957 8.131 0.697 0.498

Chapter 8: Graphing with Graphit 50

CPU% 10 1.971 1.786 1.669 2.272 1.466 2.690 21.413 15.318

samples/ext2:2.res

NAME COUNT MEAN MEDIAN LOW HIGH MIN MAX SDEV% HW% O/H

Elapsed 10 16.155 16.142 16.129 16.182 16.131 16.252 0.229 0.164 97.780

System 10 0.292 0.280 0.238 0.346 0.170 0.430 25.770 18.435 108.571

User 10 0.029 0.030 0.019 0.039 0.010 0.050 47.252 33.803 38.095

Wait 10 15.834 15.846 15.779 15.890 15.709 15.936 0.489 0.350 97.747

CPU% 10 1.987 1.891 1.644 2.330 1.301 2.905 24.142 17.271 0.820

There are two possible index values: ‘samples/ext2:1.res’ and ‘samples/ext2:2.res’.
To specify the first set, you would use ‘summary@samples/ext2:1.res’. Correspondingly
the second set is ‘summary@samples/ext2:2.res’.

To create a line graph using Getstats output the input specification is a set of files using
a shell globbing pattern. By default, the files’ common prefix and suffix are removed to
determine the x-axis position for a given file. For example, ‘ext2:1.res’ and ‘ext2:2.res’
have a common prefix of ‘ext2:’ and a common suffix of ‘.res’, therefore ‘ext2:1.res’ is
located at 1 on the x-axis and ‘ext2:2.res’ is located at position 2 on the x-axis. You
must specify the globbing pattern, not the files on the Graphit command line, so it must be
quoted (e.g., graphit [options] Ext2 ’ext2:*.res’), so that the shell does not expand
the glob. Sometimes the common prefix is too large. For example, test:100.res and
test:1000.res have a common prefix of test:100, and a common prefix of .res. In these
cases you must manually specify the prefix and suffix. To pass arguments to a parser use
the ‘--Xparser’ option. For example, graphit [options] --Xparser=’--prefix=test:’

--Xparser=’--suffix=.res’ Test ’test:*.res’. If you specify incorrect ‘--Xparser’
options, the parsers do not issue warnings or errors, because each parser has access to all
parser options, and the valid options are different for different parsers.

To specify files with multiple results, the syntax is similar to bar graphs, but you can use
file globs both for the summary and index. If an index is used, then the index is computed
before globbing is applied. Therefore, ‘*’ matches all files, but no indexes. The pattern
‘*@*’, matches all files and all indexes.

A single CSV files can represent multiple series and components. For a bar graph, the
columns are the components, and each row (line) is a series. The input specification is a
single CSV file, but the series specification is special: it is a regular expression that matches
the x-value in the CSV file. For bar graphs, each x-value becomes a set of bars. For example,
if you have a CSV file with the x-value column "Filesystem", you use the regular expression
Ext. to graph only Ext2 and Ext3. If not all components in the CSV file are being graphed,
it is not clear what the x-value should be (if all of the other components are being graphed,
the only remaining one is used as an x-value). To specify the column for the x-value, use the
‘--xcol’ parser argument as follows graphit [options] --Xparser=’--xcol=Column’.

For a line graph, the CSV uses a normal series specification (not a regular expression),
and the input specification is a single file. Each column is a component (or used to determine
the x-value). If all columns except one are used for the components, then the remaining
column is automatically selected for the x-value. The ‘--xcol’ parser option is used to
select the column for the x-value, which must be numeric. Each row represents a single
position along the x-axis.

Chapter 8: Graphing with Graphit 51

8.1 Graphit Usage Examples

8.1.1 Bar Graph Examples

Bar Graphs from Results Files

Figure 8.1 shows a simple bar graph with three components and three series (sets of bars).
To create this graph, the following command was used:

graphit --mode=bar --graphfile=pm.eps \

--components=Elapsed,User,System \

-f 20 \

--ylabel "Time (seconds)" \

’Ext2’ ext2/ext2:1.res \

’Ext3’ ext3/ext3:1.res \

’Reiserfs’ reiserfs/reiserfs:1.res

The first line informs graphit that we are creating a bar graph that should be output to
‘pm.eps’. The second line indicates that each set of bars, should have Elapsed, User, and
System time components. The third line increases the font size to 20 points. The fourth
line sets the y-axis label to ‘Time (seconds)’. Lines 5–7 define the series. Ext2 is taken
directly from the results file ‘ext2/ext2:1.res’, Ext3 is taken from ‘ext3/ext3:1.res’,
etc.

Bar Graphs from CSV Files

Bar graphs can also be generated from CSV files. Figure 8.3 is a bar graph generated from
the following CSV file containing revenue (in Millions of US dollars) for AMD and Intel:

Year,AMD,Intel

1995,2468,16202

1996,1953,20847

1997,2356,25070

1998,2542,26273

1999,2857,29389

2000,4644,33726

2001,3891,26539

2002,2697,26764

2003,3519,30141

2004,5001,34209

Chapter 8: Graphing with Graphit 52

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

2004200320022001200019991998199719961995

R
ev

en
ue

 (
M

ill
io

ns
 U

S
D

)
16202

20847

25070
26273

29389

33726

2653926764

30141

34209Intel
AMD

Figure 8.3: A bar graph generated from a CSV file.

The command line to generate this graph was:

graphit --mode=bar --graphfile=revenue.eps \

--ylabel "Revenue (Millions USD)" -f 20 \

--components=AMD,Intel \

’[0-9]*’ revenue.csv

The components map to the columns in the CSV file, and Year was automatically selected
for the Series names because there were no other columns. All of the values in the CSV file
were selected, because the regular expression ’[0-9]*’ matches all of the years. To graph the
only revenue for 1999-2004, you could use regular expression (1999|2.*) instead.

Stacked Bars

Stacked bars are displayed such that the bottom of bar starts at the top of another bar. In
Figure 8.1, User time is stacked on System time. By default User is stacked over System,
but no other bars are stacked. To disable stacking you can use the ‘--nostack’ option. To
stack two components specify --stack Top/Bottom on the Graphit command line.

For example, lets assume we did not want to stack the values in Figure 8.1. We could
use a command line like the following:

graphit --mode=bar --graphfile=pm.eps \

--components=Elapsed,User,System \

-f 20 --ylabel "Time (seconds)" \

--nostack --bargap 0.25 \

’Ext2’ ext2-1/ext2:1.res \

’Ext3’ ext3-2/ext3:1.res \

’Reiserfs’ reiserfs-1/reiserfs:1.res

The only differences with the previous graph are the addition of the ‘--nostack’ option,
and the ‘--bargap 0.25’ option. The ‘--bargap’ option is used to spread the individual
bars out. If we did not spread out the bars, then it would be possible for System time
to completely cover User time (or vice versa). We specified 0.25 as the gap between bars,
because each bar is 0.25 artificial x-units large by default (the default spacing is 0, so

Chapter 8: Graphing with Graphit 53

each bar in the group lines up precisely with the other bars). The graph produced by this
command is shown in Figure 8.4.

 0

 10

 20

 30

 40

 50

 60

 70

 80

ReiserfsExt3Ext2

T
im

e
(s

ec
on

ds
)

6.055
2.758 1.675

77.861

4.272
1.825

67.719

12.788

1.997

Elapsed
System

User

Figure 8.4: A bar graph with unstacked User and System time. Each bar is also next to
the other bars in its group, rather than being layered on top of existing bars without a gap.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

2004200320022001200019991998199719961995

R
ev

en
ue

 (
M

ill
io

ns
 U

S
D

)

18670

22800

27426
28815

32246

38370

3043029461

33660

39210AMD
Intel

Figure 8.5: In this bar graph, AMD’s revenue is stacked over Intel’s.

Figure 8.5 is the same graph as Figure 8.3, but AMD’s revenue is stacked on top of
Intel’s. This type of graph is a better depiction about the total revenue for both companies,
because we can visually see the revenue changes, without needing to add them in our head.
The labels above each bar on this graph are the total revenue for both AMD and Intel.

8.1.5 Line Graph Examples

The simplest way to create a line graph is to create one based on several results files, like
Figure 8.2. To generate this graph, the following command was used:

graphit --mode=line --graphfile=pm-line.eps \

--components=Elapsed,System -f 20 \

--ylabel "Time (seconds)" \

Chapter 8: Graphing with Graphit 54

--xlabel "Threads" \

Reiserfs ’reiserfs/reiserfs:*.res’\

Ext3 ’ext3/ext3:*.res’

This is rather similar to the command to generate line graphs, but the ‘--mode’ option is
set to line, and instead of a single input file, the input specification specifies a shell globbing
pattern. In this case the Reiserfs glob is expanded to ‘reiserfs/reiserfs:1.res’,
‘reiserfs/reiserfs:2.res’, ‘reiserfs/reiserfs:4.res’, ‘reiserfs/reiserfs:8.res’,
‘reiserfs/reiserfs:16.res’, and ‘reiserfs/reiserfs:32.res’. Because
‘reiserfs/reiserfs:’ is a common prefix, and ‘.res’ is a common suffix, they are
stripped and the x-values are 1, 2, 4, 8, 16, and 32 for each file, respectively.

Line graphs can also be generated from a CSV file. Assume that you have a program
that gets faster or slower as it runs. A natural way to show this progression is using a line
graph. If you have run the program through Auto-pilot you have a ‘.res’ file that contains
the time for each execution, but you can not directly use it for graphing because Graphit
produces one point for a standard results file.

We can use getstats to convert a results file into a CSV file using the following com-
mand:

getstats --nostdtransforms --readpass \

--rename elapsed Elapsed \

--rename user User \

--rename sys System \

--csv find.res >find.csv

This command skips the standard transformations, performs the readpass transforma-
tion, renames the columns, and produces a CSV file on stdout, which is redirected to
‘find.csv’. ‘find.csv’ contains lines like the following

"epoch","Elapsed","User","System","io","cpu"

"1","8.231657","0.917859","7.313887","-8.90000000000057e-05","100.001081191794"

"2","8.647","0.968851","7.264894","0.413255","95.2208280328438"

...

Using ‘find.csv’, we can generate a graph using the following command:

graphit --mode=line --graphfile find.eps \

--components=Elapsed,User,System

--xlabel "Run number" --ylabel "Time (seconds)" \

-Y 10 \

--Xparser=--xcol=epoch \

’Find’ find.csv

In this example, there are two new options that we used: ‘-Y’ and ‘--Xparser’. Adding
-Y 10 increases the maximum value on the y-axis to 10, so that the key does not overlap
the lines. The ‘--Xparser=--xcol=epoch’ option is used to select the column within the
CSV file that is used for X values. We must specify the ‘--xcol’ parser option, because
there are three possible candidates (‘epoch’, ‘io’, and ‘cpu’).

8.2 Graphit Command Line Options

‘--bargap value ’
Place each bar within a group value X-units to the left of the previous bar. The
default is 0, which means bars will be stacked.

Chapter 8: Graphing with Graphit 55

‘-w value ’
‘--barwidth value ’

Each bar is value X-units.

‘--bufferwidth value ’
How much space (in X-units) should be left on both sides of the graph.

‘-c value ’
Place caps (text label for each value) value Y-units higher than the errorbar.

‘-C format ’
Use format for sprintf when generating the caps (text label for each value).

‘--components=component(,component)*’
Which components should be graphed. Each component turns into a stack
within a group of bars or a line for each input (e.g., Elapsed, System, User are
the components you can choose from for Getstats output).

‘--datfile name ’
The file name of the GNUplot-friendly data file. If datfile is not specified, then
a temporary file is used.

‘--[no]errorbars’
Turn error bars on or off. By default errorbars are on if the parser supports it
(e.g., getstats). Not all parsers support error bars (e.g., the CSV parser does
not).

‘--filetype (‘eps’|‘ps’|‘txt’|‘png’)’
What type of file should we generate. By default this is guessed based on
–graphfile.

‘-f’

‘--font (face,size|size|face)’
What font to use for the graph. The default is Helvetica 14.

‘--gpfile name ’
The file name of the GNUplot script. If ‘gpfile’ is not specified, then a tem-
porary file is used.

‘--graphfile’
The file name of the final output. The type of output (eps, png, txt) is guessed
based on this filename.

‘-g’
‘--groupgap value ’

Each group of bars is value X-units to the left of the previous group.

‘-h’

‘--help’

Print graphit usage.

‘-k’
‘--key’

Chapter 8: Graphing with Graphit 56

Where should the key go. This string is passed to GNUplot directly. Some
possible values are "off", "top right", "outside", and more. Read the gnuplot
help for more information

‘--mode (bar|line)’
If bar is specified, then produce a bar graph, each series produces one stacked
bar If line is specified, then produce a line graph, each series produces exactly
one line

‘-n’

Do not actually run GNUplot, but perform all other operations. This can
be used to create GNUplot scripts and then hand-edit them before running
GNUplot.

‘--offsets argument ’
Use argument as the offsets command within GNUplot.

‘-P’
‘--patterns’

What patterns to use for GNUplot lines and bars as a comma separated list.
The default is "0,4,3".

‘--startoffset value ’
Starting X value for the first bar (after the symmetric buffer).

‘--rotate argument ’
Rotate X-axis labels by argument. This is useful when they are rather long,
and would otherwise overlap.

‘-S’
‘--size’

What size ratio to use. Default 1:1.

‘--nostack’
Clear list of bars to stack.

‘--stack top/bottom ’
Stack top over bottom. This option is for bar graphs only. By default User is
stacked over System.

‘--style argument ’
Use argument as the plotstyle within GNUplot.

‘--title argument ’
Set the graph’s title to title.

‘-x argument ’
Set the minimum X-axis value.

‘-X argument ’
Set the maximum X-axis value.

‘-l argument ’
‘--xlabel argument ’

Use argument as the X-axis label.

Chapter 8: Graphing with Graphit 57

‘--xlogscale argument ’
Change the X-axis to use a logarithmic instead of linear scale. Argument is
used as the base.

‘--Xparser argument ’
Pass argument to the parsers.

‘-y argument ’
Set the minimum y-axis value to argument.

‘-Y argument ’
Set the maximum Y-axis value to argument.

‘-L argument ’
‘--ylabel argument ’

Use argument as the Y-axis label.

‘--ylogscale argument ’
Change the Y-axis to use a logarithmic instead of linear scale. Argument is
used as the base.

8.3 Adding Parsers to Graphit

Graphit parsers work much like the Getstats parsers described in Section 7.7 [Getstats
Parsers], page 46.

Graphit itself does not include any parsers, instead it searches the Perl @INC array which
contains possible include paths for files of the pattern ‘gi_parser_*’, and includes them.
Graphit two parsers by default, one for Getstats output and Auto-pilot results files, and
another for CSV files. To add your own parser, you should simply copy one of these parsers
and modify it to suit your needs.

Each parser defines two functions, and three parameters:

Detection Function
The detection function takes one argument, which is the input specification.
If no detection function returns true, then an error is reported. If a detection
function does return true, the corresponding parsing function is called.

Parsing Function
The parsing function takes four arguments. The first is the Graphit mode (i.e.,
‘bar’ or ‘line’). The second is a reference to the @seriesdata array. The
third is the name of the series, and the fourth is the input specification. The
parsing function can assume that the input specification is correct, because the
detection function has already returned true.

The series data array contains references to hashes that define a series. To
see the value of the @seriesdata array after parsing, pass the ‘-d’ option to
Graphit. Each hash contains a "name" key that is the name of the series. The
rest of the keys in the top-level hash are a position along the x-axis for line
graphs. For bar graphs, the only other key is "0". Each of these keys contains
a sub-hash, that is indexed by each component. These sub-hashes, in turn
contain a sub-sub-hash that has three keys: high, low, and mean. These keys

Chapter 8: Graphing with Graphit 58

map to integers for the top and bottom value of the error bar and the y-value
for that x position (or bar).

The @seriesdata array for Figure 8.1, is as follows:

@seriesdata = [

{

’0’ => {

’System’ => {

’high’ => ’2.807’,

’low’ => ’2.709’,

’mean’ => ’2.758’

},

’User’ => {

’high’ => ’1.735’,

’low’ => ’1.615’,

’mean’ => ’1.675’

},

’Elapsed’ => {

’high’ => ’6.120’,

’low’ => ’5.991’,

’mean’ => ’6.055’

}

},

’name’ => ’Ext2’

},

{

’0’ => {

’System’ => {

’high’ => ’4.327’,

’low’ => ’4.217’,

’mean’ => ’4.272’

},

’User’ => {

’high’ => ’1.877’,

’low’ => ’1.773’,

’mean’ => ’1.825’

},

’Elapsed’ => {

’high’ => ’81.567’,

’low’ => ’74.156’,

’mean’ => ’77.861’

}

},

’name’ => ’Ext3’

},

{

’0’ => {

Chapter 8: Graphing with Graphit 59

’System’ => {

’high’ => ’12.944’,

’low’ => ’12.632’,

’mean’ => ’12.788’

},

’User’ => {

’high’ => ’2.087’,

’low’ => ’1.907’,

’mean’ => ’1.997’

},

’Elapsed’ => {

’high’ => ’69.842’,

’low’ => ’65.597’,

’mean’ => ’67.719’

}

},

’name’ => ’Reiserfs’

}

];

Description
A short description of the file type this parser supports (e.g., "Comma separated
values.").

Extension The default file extension (e.g., ".csv" is used for the CSV parser). This is not
used by Auto-pilot internally.

Priority The priority controls what order detection and parsing is performed. Lower-
numbered priorities are tried first. Getstats output and Auto-pilot results files
have a priority of 64, and CSV files have a priority of 128. If there is a chance
that a parser detects an invalid file as input, it should have a high-numbered
priority. For example, the CSV parser accepts more input than it probably
should, because a single column CSV file without any columns is valid. This
means that the Auto-pilot results and Getstats output parser should have a
crack at reading the file first.

Parsers may need to process command line arguments, which are specified with the
‘--Xparser’ command line option. To access the arguments, a parser can access @PARSER-

ARGV, but should not modify it. Also, if an argument is unknown the parser should not
fail or exit the program, because the argument could be for another parser.

Chapter 9: Acknowledgments 60

9 Acknowledgments

Joseph Spadavecchia developed the first simple version of our benchmarking Perl script that
has since morphed into the current Auto-pilot.

Yevgeniy Miretskiy wrote the bar graphing tool that our unified bar/line graphing tool
is based on. His Perl expertise was also invaluable when designing and implementing the
rest of the system.

Amit Purohit, Kiran-Kumar Muniswamy-Reddy, Michael Martino, Akshat Aranya,
Nikolai Joukov, Devaki Kulkarni, and others in our lab have provided valuable feedback
when using the system to benchmark their projects. Avishay Traeger is the King of finding
Auto-pilot bugs, and stretching the system to its limit, without him it would be in much
worse shape.

This work was partially made possible by an NSF CAREER award EIA-0133589, NSF
Trusted Computing Award CCR-0310493, and HP/Intel gifts numbers 87128 and 88415.1.

Chapter 9: Function Index 61

Function Index

A
add . 32
aggregate . 34
aggthreads . 38
ap_action . 12
ap_hook . 12
ap_initfs . 14
ap_log . 12
ap_logexec . 12
ap_measure . 12
ap_requirehook . 12
ap_snap . 13
ap_unmount . 13, 14

B
bar graph layout . 54
basename. 41
block . 34
bufferwidth . 55

C
catfiles. 45
CHECKPOINT . 4
CLEANUP . 5
components . 55
csv . 27, 36, 54

D
datfile . 55
describe. 36
die . 36
dump . 26, 37

E
echo . 36
ECHO . 2
ELSE . 3
ELSE IF . 3
ENV . 2
ENVEX . 2
errorbars . 55
eval . 34
EVAL . 5
EXEC . 5
exitfail. 39

F
FASTFAIL . 5
filetype. 55

FOR . 2
FOREACH . 2
foreachcol . 34
foreachrow . 35

G
gpfile . 55
graphfile . 55
group . 35
groupgap. 55

I
if . 34
IF . 3
ifexist . 34
INCLUDE . 2
INCLUDEPATH . 2

K
key . 55

L
LOGS . 3

M
mode . 56
move . 33

N
negio . 39
nocatfiles . 45
noerrorbars . 55
noop . 34
nostack . 56
nostdtransforms . 45

O
offsets . 56
ohpass . 39
OPTINCLUDE . 2
otherexec . 39

P
pairwiset . 29, 40
pop . 37
POSTCLEANUP . 5

Chapter 9: Function Index 62

PRESETUP . 5
procdiff. 38
push . 37
pusheval. 37

Q
QUIET . 5

R
readpass . 39, 54
remove . 31
rename . 32, 54
rename_relation . 41
RESULTS . 3
rotate . 56

S
savestats . 38
select . 33
set. 25, 37
seteval . 37
setexpr . 37
SETUP . 5
shiftform . 45
size . 56
stack . 56
startoffset . 56
stdtransforms . 45
STOP . 5
style . 56
summary . 39, 41
SYSTEM . 5

T
TEST . 4

TEST, predicates . 29
THREADS . 3
title . 56
twosamplet . 27, 40

U
unifycommand . 38
unset . 37
update . 33

V
VAR . 2
VAREX . 2

W
warn . 33
warncol . 38
warnpass. 39
warnregress . 39
warnrow . 38
warnval . 39, 43
WHILE . 3

X
xlabel . 56
Xparser . 57, 59

Y
ylabel . 57

Z
zscore . 39

Chapter 9: Variable Index 63

Variable Index

@
@seriesdata . 57

A
APEPOCH . 11
APIPCKEY . 4, 16
APLOG . 11
APMODE . 11
APTHREAD . 3, 11
APTIMER . 11, 12

B
BLOCKSIZE . 11, 17
BUFFERING . 15

C
COMPILE . 17
COMPILECMD . 16
confidencelevel . 25, 29, 41
count . 42
CREATEBIAS . 15

D
DATADIR . 16
DELETE . 17
delimiter . 41
delta . 42
DOMOUNT . 14

F
FAILADDR . 8
file . 41
filecount . 41
fileno . 41
FORMAT . 8, 13
FSSIZE . 13, 17

H
HTREE . 17

I
INITFILES . 15
intercept . 42

L
LOWERFS . 19

LOWERROOT . 19
lr-durbinWatson . 43
lr-meanSqError . 43
lr-rSquared . 42
lr-sigma. 43

M
max . 42
MAXSIZE . 15
mean . 42
MEASURE_MEMINFO . 17
MEASURE_PARTDIFF . 17
MEASURE_PROCDIFF . 18
median . 42
min . 42
MINSIZE . 15
MODDIR . 19
mode . 42
MYINITFILES . 15
MYSUBDIRS . 15
MYTRANSACTIONS . 15

N
NETUTILIF . 17

O
OKADDR . 8

P
PACKAGE . 16
PAGEADDR . 8
PARTDIFF_LIST . 17
PKGFILE . 16
POSTMARKDIR . 15
precision . 42
PROCDIFF_PROCS . 18
PROCDIFF_THRESHOLD . 18

R
READBIAS. 15
READSIZE. 15
rejectonly . 29
REMOTEPROCDIFF . 18
RESTORE . 4
RPDIFFSERVER . 18
RPDIFFUSER . 18

Chapter 9: Variable Index 64

S
SEED . 15
slope . 42
spacing . 42
STACKFS . 19
stdev . 42
sum . 42

T
TESTDEV . 8, 14
TESTDIR . 11, 14
TESTROOT . 8, 11, 14
THREADS . 3, 11, 15
TRANSACTIONS . 16

U
UNTAR . 17

V
val . 43
variance. 42
verbosettest . 29

W
warn . 29
wraised . 42
WRITESIZE . 16

Chapter 9: Index 65

Index

A
aborting after failures . 5
Acknowledgments . 60
aggregating commands . 38
aggregating rows . 34
aggregating threads . 38
am-utils compile benchmark 16
apremote hook . 18, 20
apremote.sh . 18
aptime . 12
aptime.sh . 20
Aranya, Akshat . 60
aspect ratio, graphs . 56
Auto-pilot variables . 2

B
bar graph . 48, 51
bar graph caps format. 55
bar graph caps position . 55
bar graph error bars . 55
bar graph example . 51
bar graph font . 55
bar graph layout . 54, 55, 56
bar graph patterns . 56
bar graph series . 49, 50
bar graph, CSV. 51
bar graph, gap . 52, 54
bar graph, group gap. 55
bar graph, stacked . 52, 56
bar graph, width. 54
bargap . 52, 54
barwidth . 54
benchmark domains, new . 22
benchmark iterations . 4
benchmark settings, customizing 8
benchmark status, paging/email 8
benchmarks, defining . 4
block size . 11

C
checkpointing . 4
cleanup scripts. 5
column replacement . 42
commands, aggregating . 38
comments . 2
common.inc . 7
commonfunctions . 11
commonsettings . 11
compile benchmarks . 16
compile command hook 16, 20
compile.sh. 16
components . 48, 55

conditionals . 3
confidence interval . 25
confidence level . 25, 41
configuration example . 6
configuration syntax . 2
configurations, including. 2
converting results to CSV 26, 54
CPU time hook . 18
CSV . 26
CSV bar graph . 51
CSV line graph . 54
custom benchmarks . 20

D
default transformations. 39
defining benchmarks . 4
directory indexes hook . 17

E
effective user . 11
email benchmark status . 8
environment variables . 2
error bars . 55, 57
error handling . 5
evaluating predicates 4, 7, 29, 39
example, bar graph . 51
example, line graph . 53
example, tabular report . 24
excess CPU time hook . 18
excess CPU utilization . 38, 39
executing programs . 5

F
failure handling . 5
file system block size . 11
file systems, unmounting . 13
FiST file systems hook . 19
font. 55
for each loops . 2
for loops . 2
fs-cleanup.sh . 14
fs-setup.sh . 13
functions, internals. 44

G
gap between bar groups . 55
gap between bars . 52, 54
gcc compile benchmark . 16
getstats . 23, 54
Getstats arguments . 45

Chapter 9: Index 66

Getstats parsers . 46
Getstats replacements . 41
Getstats warnings 33, 38, 39, 42
global replacement . 41
Gnuplot . 48
Gnuplot script . 55
graph aspect ratio . 56
graph size . 56
Graphing . 48
graphit . 48
Graphit arguments . 49, 54
Graphit modes . 56
Graphit parsers . 57

H
hash tree hook. 17
hook, apremote . 18, 20
hook, compile command 16, 20
hook, CPU time . 18
hook, directory indexes . 17
hook, excess CPU time . 18
hook, hash tree . 17
hook, I/O operations . 17
hook, measurement . 12, 20
hook, memory usage . 17
hook, mkfs . 14, 21
hook, mkfs options . 14, 21
hook, mount . 14, 21
hook, net utilization . 17
hook, partdiff. 17
hook, postmount . 14, 21
hook, procdiff . 18
hook, remote CPU time . 18
hook, remoteprocdiff . 18
hook, SCSI commands . 19
hook, stackable file systems 19
hook, tunefs . 14, 21
hook, unmount . 13, 14, 21
hooks . 12
hypothesis testing . 27, 40

I
I/O operations hook . 17
I/O time . 39
if statements . 3
include path . 2
including files in configurations 2
internal representation of functions 44
internal representation of transformations 43
iterations. 4

J
jfs, mounting . 17
Joukov, Nikolai . 60

K
key . 55
Kulkarni, Devaki. 60

L
label, x-axis . 56
label, y-axis . 57
labels, rotating . 56
legend . 55
line graph . 48
line graph example . 53
line graph patterns. 56
line graph series . 50
line graph, CSV . 54
linear regression . 39, 42
local benchmark settings . 8
local.inc . 8
log path . 3
log scale . 56, 57
loops, for . 2
loops, for each . 2
loops, while . 3

M
Martino, Michael . 60
maximum, x-axis . 56
maximum, y-axis . 57
measurement block . 12, 23
measurement hook . 12, 20
measuring benchmarks . 12
memory usage hook . 17
minimum, x-axis . 56
minimum, y-axis . 57
Miretskiy, Yevgeniy . 60
mkfs hook . 14, 21
mkfs options hook . 14, 21
mount hook . 14, 21
mounting jfs . 17
mounting xfs . 19
multi-threaded benchmarks 3, 6, 14
multi-threaded synchronization 4, 16
multiple program benchmarks 38
Muniswamy-Reddy, Kiran-Kumar 60

N
net utilization hook . 17
new benchmark domains . 22
new workloads . 21

O
openssl compile benchmark 16
overhead . 39

Chapter 9: Index 67

P
page on benchmark failure . 8
parser arguments . 57, 59
parsers, Getstats . 46
parsers, Graphit . 57
partdiff hook . 17
path, benchmark working directory. 11
path, include . 2
path, logs . 3
path, results . 3
paths, defining . 8
patterns, Graphit . 56
Perl code . 5
postcleanup scripts. 5
Postmark . 6, 14
postmark.sh . 14
postmount hook . 14, 21
predicate evaluation . 29, 39
predicates, evaluating . 4, 7
presetup scripts . 5
procdiff . 38, 39, 44
procdiff hook . 18
programs, executing . 5
ptemp . 43
Purohit, Amit . 60

R
range, x-axis . 56
range, y-axis . 57
reboot between tests . 4
remote CPU time hook . 18
remoteprocdiff hook . 18
replacement, column . 42
replacement, global . 41
replacement, row . 42
replacement, value . 43
replacements . 41
required hooks . 12
results files format . 23
results files, writing to . 12
results path . 3
resuming benchmarks . 4
root privileges . 11
rotating x-axis labels . 56
row replacement . 42
running benchmarks . 4

S
scripts, cleanup . 5
scripts, custom . 20
scripts, postcleanup . 5
scripts, presetup . 5
scripts, setup . 5
SCSI commands hook . 19
semdec . 4, 16
series . 48

series, bar graph . 49, 50
series, CSV . 50
series, getstats . 49, 50
series, line graph . 50
setting Getstats variables . 25
setup scripts. 5
size, graphs . 56
Spadavecchia, Joseph . 60
stackable file systems hook 19
stacked bar graph . 52, 56
statistical tests . 27, 40
Statistics::Linefit. 42
Statistics::PointEstimation 42
stdout/stderr logs . 3
stopping after failures . 5
storing logs . 3
storing results . 3
suppressing output . 5
synchronizing multi-threaded benchmarks . . . 4, 16
syntax, configuration . 2

T
t-test . 27, 40
t-test output . 29
tabular report . 24, 36, 39, 41
temporary variables . 43
threads . 3
threads, aggregating . 38
timing benchmarks . 11
title of graphs . 56
Traeger, Avishay . 60
transformations, default . 39
transformations, internals . 43
tunefs hook . 14, 21

U
uid . 11
unifying commands . 38
unmount hook . 13, 14, 21
unmounting file systems . 13
user ID . 11

V
value replacement . 43
variables, Auto-pilot . 2
variables, environment . 2
variables, temporary . 43

W
wait time . 39
warnings in Getstats 33, 38, 39, 42
while loops . 3
width of bars . 54
workloads, new . 21

Chapter 9: Index 68

X
x-axis label . 56
x-axis labels, rotating . 56
x-axis log scale . 56
x-axis maximum . 56
x-axis minimum . 56
x-axis range . 56
xfs, mounting. 19

Y
y-axis label . 57
y-axis log scale . 57
y-axis maximum . 57
y-axis minimum . 57
y-axis range . 57

Z
z-score. 39, 43

