
MBT 2006

Runtime Verification for High-Confidence
Systems: A Monte Carlo Approach

Sean Callanan Radu Grosu Abhishek Rai Scott A. Smolka
Mike R. True Erez Zadok

Computer Science Department
Stony Brook University

Appears in the proceedings of the Second Workshop on Model-Based
Testing (MBT 2006)

Abstract

We present a new approach to runtime verification that utilizes classical statisti-
cal techniques such as Monte Carlo simulation, hypothesis testing, and confidence
interval estimation. Our algorithm, MCM, uses sampling-policy automata to vary
its sampling rate dynamically as a function of the current confidence it has in the
correctness of the deployed system. We implemented MCM within the Aristotle tool
environment, an extensible, GCC-based architecture for instrumenting C programs
for the purpose of runtime monitoring. For a case study involving the dynamic
allocation and deallocation of objects in the Linux kernel, our experimental results
show that Aristotle reduces the runtime overhead due to monitoring, which is ini-
tially high when confidence is low, to levels low enough to be acceptable in the long
term as confidence in the monitored system grows.

1 Introduction

In previous work [7], we presented the MC2 algorithm for Monte Carlo Model

Checking. Given a (finite-state) reactive program P , a temporal property ϕ,
and parameters ε and δ, MC2 samples up to M random executions of P , where
M is a function of ε and δ. Should a sample execution reveal a counter-
example, MC2 answers false to the model-checking problem P |= ϕ. Otherwise,
it decides with confidence 1 − δ and error margin ε, that P indeed satisfies
ϕ. Typically the number M of executions that MC2 samples is much smaller
than the actual number of executions of P . Moreover, each execution sampled
starts in an initial state of P , and terminates after a finite number of execution
steps, when a cycle in the state space of P is reached.

In this paper, we show how the technique of Monte Carlo model checking
can be extended to the problem of Monte Carlo monitoring and runtime ver-

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Callanan

ification. Our resulting algorithm, MCM, can be seen as a runtime adaptation
of MC2, one whose dynamic behavior is defined by sampling-policy automata

(SPA). Such automata encode strategies for dynamically varying MCM’s sam-
pling rate as a function of the current confidence in the monitored system’s
correctness. A sampling-policy automaton may specify that when a counterex-
ample is detected at runtime, the sampling rate should be increased since MCM’s
confidence in the monitored system is lower. Conversely, if after M samples
the system is counterexample-free, the sampling rate may be reduced since
MCM’s confidence in the monitored system is greater.

The two key benefits derived from an SPA-based approach to runtime
monitoring are the following:

• As confidence in the deployed system grows, the sampling rate decreases,
thereby mitigating the overhead typically associated with long-term runtime
monitoring.

• Because the sampling rate is automatically increased when the monitored
system begins to exhibit erroneous behavior (due either to internal malfunc-
tion or external malevolence), Monte Carlo monitoring dynamically adapts
to internal mode switches and to changes in the deployed system’s operating
environment.

A key issue addressed in our extension of Monte Carlo model checking to
the runtime setting is: What constitutes an adequate notion of a sample? In
the case of Monte Carlo runtime verification, the monitored program is already
deployed, and restarting it after each sample to return the system to an initial
state is not a practical option. Given that every reactive system is essentially
a sense-process-actuate loop, in this paper we propose weaker notions of initial
state that are sufficient for the purpose of dynamic sampling. One such notion
pertains to the manipulation of instances of dynamic types: Java classes,
dynamic data structures in C, etc. In this setting, a sample commences in
the program state immediately preceding the allocation of an object o and
terminates in the program state immediately following the deallocation of o,
with these two states being considered equivalent with respect to o.

To illustrate this notion of runtime sampling, we consider the problem of
verifying the safe use of reference counts (RCs) in the Linux virtual file system

(VFS). The VFS is an abstraction layer that permits a variety of separately-
developed file systems to share caches and present a uniform interface to other
kernel subsystems and the user. Shared objects in the VFS have RCs so that
the degree of sharing of a particular object can be measured. Objects are
placed in the reusable pool when their RCs go to zero, objects with low RCs
can be swapped out, but objects with high RCs should remain in main memory.
Proper use of RCs is essential to avoid serious correctness and performance
problems for all file systems.

To apply Monte Carlo runtime monitoring to this problem, we have defined
Real Time Linear Temporal Logic formulas that collectively specify what it

2

Callanan

means for RCs to be correctly manipulated by the VFS. We further imple-
mented the MCM algorithm within the Aristotle environment for Monte Carlo
monitoring. Aristotle provide a highly extensible, GCC-based architecture for
instrumenting C programs for the purposes of runtime monitoring. Aristotle
realizes this architecture via a simple modification of the GNU C compiler
(GCC) that allows one to load an arbitrary number of plug-ins dynamically
and invoke code from those plug-ins at the tree-optimization phase of compi-
lation.

Using a very simple sampling policy, our results show that Aristotle brings
runtime overhead, which is initially very high when confidence is low, down
to long-term acceptable levels. For example, a benchmark designed to high-
light overheads under worst-case conditions exhibited a 10x initial slowdown;
11 minutes into the run, however, we achieved 99.999% confidence that the
error rate for both classes of reference counts was below one in 105. At this
point, monitoring for that class was reduced, leaving an overhead of only 33%
from other monitoring.

In addition to reference counts, Aristotle currently provides Monte Carlo
monitoring support for the correct manipulation of pointer variables (bounds
checking), lock-based synchronization primitives, and memory allocation li-
brary calls. Due to its extensible architecture based on plug-ins, support for
other system features can be easily added.

The rest of the paper is organized as follows. Section 2 describes our system
design. Section 3 presents our Monte Carlo runtime monitoring algorithm.
Section 4 details the Aristotle design and implementation. Section 5 gives
an example application of Aristotle, and Section 6 discusses related work.
Section 7 contains our concluding remarks and directions for future work.

2 Aristotle Design Overview

Figure 1 depicts the various stages of operation for Aristotle as it processes a
system’s source code. A modified version of the GNU C compiler (GCC) parses
the source code, invoking an instrumenting plug-in to process the control flow
graph for each function. The instrumenting plug-in inserts calls to verification
code at each point where an event occurs that could affect the property being
checked. The verification code is part of a runtime monitor, which maintains
auxiliary runtime data used for property verification and is bound into the
software at link time.

The runtime monitor interacts with the confidence engine, which imple-
ments a sampling policy based on our Monte Carlo runtime monitoring algo-
rithm (described in Section 3). The confidence engine maintains a confidence
level for the properties being checked and may implement a sampling policy
automaton to regulate the instrumentation or perform other actions. This
regulation can be based on changes in the confidence level and could respond
to other events in the system, such as the execution of rarely-used code paths.

3

Callanan

source code

GCC tree
optimization

GCC code
emission

Linking Runtime
monitor

Unmodified

ted system

Compile time

Run time
Regulates monitoring based

Monitors
areas

improper use currently
and leaks

flags bad
accesses

allocated;

Monitors

manipulates accesses and
reference allocations
counts

In a bounds
debugger: checker:

objects; flags

Instruments
all code that

Instruments
all memory

sampling policy
on sampled behavior and

In an RC

plug−in
Instrumenting

Instrumen− Confidence
engine

Fig. 1. Architectural overview of the Aristotle system.

3 Monte Carlo Monitoring

In this section, we present our MCM algorithm for Monte Carlo monitoring
and runtime verification. We first present MCM in the context of monitoring
the correct manipulation of reference counts (RCs) in the Linux virtual file
system (VFS). RCs are used throughout the Linux kernel, not only to prevent
premature deallocation of objects, but also to allow different subsystems to
indicate interest in an object without knowing about each other’s internals.
Safe use of reference counts is an important obligation of all kernel subsystems.
We then consider generalizations of the algorithm to arbitrary dynamic types.

In the case of the Linux VFS, the objects of interest are dentries and
inodes, which the VFS uses to maintain information about file names and
data blocks, respectively. The VFS maintains a static pool of these objects
and uses RCs for allocation and deallocation purposes: a free object has an
RC of zero and may be allocated to a process; an object with a positive RC
is considered in-use and may only be returned to the free pool when the state
of the RC returns to zero. Additionally, an object with a high reference count
is less likely to be swapped out to disk.

To apply Monte Carlo runtime monitoring to this problem, we first define
the properties of interest. These are formally defined in Figure 2.

Each of these properties is formalized using Real-Time Linear Temporal

Logic [2], where G, F and X are unary temporal operators. G requires the
sub-formula over which it operates to be true Globally (in all states of an
execution), F requires it to hold Finally (in some eventual state of an execu-
tion), and X requires it to hold neXt (in the next state of an execution). Also,
an unprimed variable refers to its value in the current state and the primed
version refers to its value in the next state. Each property uses universal

4

Callanan

(stI) ∀o : C. G o.rc ≥ 0 RC values are always non-negative.

(trI) ∀o : C. G |o′.rc−o.rc | ≤ 1 RC values are never incremented or decre-
mented by more than 1.

(lkI) ∀o : C. G o′.rc 6= o.rc ⇒
XF≤T o′.rc ≤ o.rc

A change in the value of an RC is always
followed within time T by a decrement.

Fig. 2. Reference-count correctness properties.

quantification over all instances o of a dynamic type C.

The first property is a state invariant (stI) while the second property
is a transition invariant (trI). The third property is a leak invariant (lkI)
that is intended to capture the requirement that the RC of an actively used
object eventually returns to zero. It is expressed as a time-bounded liveness
constraint, with time bound T .

Since each of these properties can be proved false by examining a finite
execution, they are safety properties, and one can therefore construct a deter-
ministic finite automaton (DFA) A that recognizes violating executions [10,16].
The synchronous composition (product) CA of C with A is constructed by in-
strumenting C with A such that C violates the property in question iff an
object o of type C can synchronize with A so as to lead A to an accepting
state.

We view an object o of type C as executing in a closed system consisting
of the OS and its environment. We assume that the OS is deterministic but
the environment is a (possibly evolving) Markov chain; i.e., its transitions
may have associated probabilities. As a consequence, CA is also a Markov
chain. Formally, a Markov chain M = (X, E, p, p0) consists of a set X of
states; a set E ⊆ X × X of transitions (edges); an assignment of positive
transition probabilities p(x, y) to all transitions (x, y) so that for each state x,
Σy∈Xp(x, y) = 1; and an initial probability distribution p0 on the states such
that Σx∈Xp0(x) = 1. A finite trajectory of M is the finite sequence of states
x = x0, x1, . . . , xn, such that for all i, (xi, xi+1) ∈ E and p(xi, xi+1) > 0. The
probability of a finite trajectory x = x0, x1, . . . , xn is defined as PM(x) =
p0(x0)p(x0, x1) · · ·p(xn−1, xn).

Each trajectory of CA corresponds to an object execution. The more ob-
jects displaying the same execution behavior, the higher the probability of
the associated trajectory. Hence, although the probabilities of CA are not
explicitly given, they can be learned via runtime monitoring.

Assuming that kernel-level objects have finite lifetimes (with the possible
exception of objects such as the root file-system directory entry), and that
state is dependent on the object’s history, CA is actually a Markov tree, since
no object goes backward in time. The leaves of CA fall into two categories:
(i) violation-free executions of objects of type C which are deallocated after
their RCs return to zero, and (ii) executions violating property stI, trI, or lkI.

5

Callanan

Thus, a trajectory in CA can be viewed as an object execution from its
birth to its death or to an error state representing a property violation. We
consider such a trajectory to be a Bernoulli random variable Z such that
Z = 0 if the object terminated normally, and Z = 1 otherwise. Further, let pZ

be the probability that Z = 1 and qZ = pZ − 1 be the probability that Z = 0.
The question then becomes: how many random samples of Z must one take

to either find a property violation or to conclude with confidence ratio δ and

error margin ε that no such violation exists?

To answer this question, we rely, as we did in the case of Monte Carlo model
checking, on the techniques of acceptance sampling and confidence interval

estimation. We first define the geometric random variable X, with parameter
pZ, whose value is the number of independent trials required until success,
i.e., until Z = 1. The probability mass function of X is p(N) = P[X = N] =
qN−1
Z pZ, and the cumulative distribution function (CDF) of X is

F (N) = P[X ≤ N] =
∑

n≤N

p(n) = 1 − qN
Z

Requiring that F (N)=1−δ for confidence ratio δ yields:

N =
ln(δ)

ln(1 − pZ)

which provides the number N of attempts needed to find a property violation
with probability 1−δ.

In our case, pZ is unknown. However, given error margin ε and assuming
that pZ ≥ ε, we obtain that

M =
ln(δ)

ln(1 − ε)
≥ N =

ln(δ)

ln(1 − pZ)

and therefore that P[X ≤ M] ≥ P[X ≤ N] = 1 − δ. Summarizing, for

M = ln(δ)
ln(1−ε)

we have:

pZ ≥ ε ⇒ P[X ≤ M] ≥ 1 − δ(1)

Inequality 1 gives us the minimal number of attempts M needed to achieve
success with confidence ratio δ under the assumption that pZ ≥ ε.

The standard way of discharging such an assumption is to use statistical

hypothesis testing [12]. We define the null hypothesis H0 as the assumption
that pZ ≥ ε. Rewriting inequality 1 with respect to H0 we obtain:

P[X ≤ M |H0] ≥ 1 − δ(2)

We now perform M trials. If no counterexample is found, i.e., if X > M ,
then we reject H0. This may introduce a type-I error: H0 may be true even
though we did not find a counterexample. However, the probability of making
this error is bounded by δ; this is shown in inequality 3 which is obtained by
taking the complement of X ≤ M in inequality 2:

P[X > M |H0] < δ(3)

6

Callanan

With the above framework in place, we now present MCM, our Monte Carlo
Monitoring algorithm. MCM, whose pseudo-code is given in Figure 3, utilizes
DFA A to monitor properties stI, trI, and lkI, while keeping track of the
number of samples taken.

input: ε, δ, C, t, d;

global: tn, cn;

tn = cn = ln(δ)/ln(1-ε); set(timeout,d);

when (created(o:C) && flip())

if (tn > 0) { tn--; o.to=t; o.rc=0};

when (destroyed(o:C)){
cn--; if (cn = 0) monitoring stop;}

when (monitored(o:C) && modified(o.rc)){
if (o′.rc < 0 | | |o′.rc-o.rc|> 1) safety stop; /* stI, trI */

if (o.rc-o′.rc == 1) o.to = t;}

when (timeout(d))

for each (monitored(o:C)){
o.to--; if (o.to== 0) leak stop;} /* lkI */

Fig. 3. The MCM algorithm.

MCM consists of an initialization part, which sets the target (tn) and current
(cn) number of samples, and a monitoring part, derived from the properties to
be verified. The latter is a state machine whose transitions (when statements)
are triggered either by actions taken by objects of type C or by a kernel timer
thread. The timer thread wakes up every d time units, and the time window
used to sample object executions is t ∗ d, where t and d are inputs to the
algorithm. When an object o:C is created and the random boolean variable
flip() is true, the target number of samples is decremented. The random
variable flip() represents one throw of a multi-sided, unweighted coin with
one labeled side, and returns true precisely when the labeled side comes up.
If enough objects have been sampled (tn=0), no further object is monitored.
For a monitored object, its reference count rc and timeout interval to are
appropriately initialized. When an object is destroyed, cn is decremented.
If the target number of samples was reached (cn=0), the required level of
confidence is achieved and monitoring can be disabled. When the RC of a
monitored object is altered, we check for a violation of safety properties stI or
trI, stopping execution if one has occurred. If an object’s RC is decremented,
we reset its timeout interval; moreover, should its RC reach zero, the object
is destroyed or reclaimed. When the timer thread awakens, we adjust the
timeout interval of all monitored objects. If an object’s timeout interval has
expired, leak invariant lkI has been violated and the algorithm halts.

Due to the random variable flip(), MCM does not monitor every instance o

of type C. Rather, it uses a sampling-policy automaton to determine the rate
at which instances of C are sampled. For example, consider the n-state policy
automaton PAn that, in state k, 1 ≤ k ≤ n, MCM will only sample o if flip()

7

Callanan

returns true for a 2k-sided coin. Moreover, PAn makes a transition from state
k to k + 1 mod n after exactly M samples. Hence, after M samples (without
detecting an error) the algorithm uses a 4-sided coin, after 2M samples an
8-sided coin, etc. For a given error margin ε, the associated confidence ratio
δ will then be (1 − ε)M , (1 − ε)2M , (1 − ε)3M and so on. PAn also makes a
transition from state k to j, where j < k, when an undesirable event occurs,
such as a counterexample, or perhaps an execution of as yet unexecuted code.
Sampling policies such as the one encoded by PAn assure that MCM can adapt
to environmental changes, and that the samples taken by MCM are mutually
independent (as n tends toward infinity).

MCM is very efficient in both time and space. For each random sample,
it suffices to store two values (old and new) of the object’s RC. Moreover,
the number of samples taken is bounded by M . That M is optimal follows
from inequality 3, which provides a tight lower bound on the number of trials
needed to achieve success with confidence ratio δ and lower bound ε on pZ.

Our kernel-level implementation of MCM is such that if a violating trajectory
is observed during monitoring, it is usually the case that a sufficient amount of
diagnostic information can be gleaned from the instrumentation to pinpoint
the root cause of the error. For example, if an object’s RC becomes nega-
tive, the application that executed the method that led to this event can be
determined.

In another example, if the object’s RC fails to return to zero and a leak is
suspected, diagnostic information can be attained by identifying the object’s
containing type. Suppose the object is an inode; we can use this information to
locate the corresponding file name and link it back to the offending application.

The MCM algorithm of Figure 3 can be extended by expanding the class of
correctness properties supported by the algorithm. The third and fourth when

branches of the algorithm correspond to safety or bounded-liveness checks,
respectively. Hence, the MCM algorithm can be generalized in the obvious way,
to allow the treatment of arbitrary safety and bounded-liveness properties for
any reactive program involving dynamic types. For example, in addition to
reference counts, Aristotle currently provides Monte Carlo monitoring sup-
port for the correct manipulation of pointer variables (bounds checking), lock
synchronization primitives, and memory allocation library calls. Due to its ex-
tensible, plug-in-oriented architecture, support for other properties can easily
be added.

4 Implementation

In Aristotle, we instrument a program with monitoring code using a modified
version of the GNU C compiler (GCC), version 4. We modified the compiler
to load an arbitrary number of plug-ins and invoke code from those plug-
ins at the tree-optimization phase of a compilation. At that point in the
compilation, the abstract syntax tree has been translated into the GIMPLE

8

Callanan

intermediate representation [6], which includes syntactic, control-flow, and
type information. A plug-in is invoked that can use the GCC APIs to inspect
each function body in turn and add or remove statements. The plug-in can
even invoke other GCC passes to extract information; for example, one plug-in
we developed for bounds checking uses the reference-analysis pass to obtain a
list of all variables used by a function.

Our use of GCC as the basis for Aristotle offers several advantages. First, it
can be used to instrument any software that compiles with GCC. Prior static-
checking and meta-compilation projects have used lightweight compilers [4,8]
that do not support all of the language extensions and features of GCC. Many
of these extensions are used by open-source software, particularly the Linux
kernel. Second, the modular architecture of Aristotle allows programmers to
instrument source-code without actually changing it. Third, Aristotle users
can take advantage of GCC’s library of optimizations and ability to generate
code for many architectures. Adding GCC support for plug-ins is very simple;
we added a command-line option to load a plug-in and changed the way GCC
is built to expose GCC’s internal APIs to plug-ins.

The information collected at the instrumented locations in the system’s
source code is used by runtime monitors. A runtime monitor is a static li-
brary, linked with the system at compile time. The runtime monitor contains
checking code which verifies that each detected event satisfies all safety prop-
erties; furthermore, it may spawn threads that periodically verify that all
bounded liveness properties hold. The monitor interfaces with the confidence
engine, reporting rule violations and regulating its operation according to the
confidence engine’s instructions, which reflect the operation of a sampling-
policy automaton. Finally, it may also perform other operations, like verbose
logging and network-based error reporting, which vary from application to
application.

5 Case Study: The Linux VFS

The Linux Virtual File System (VFS) is an interface layer that manages in-
stalled file systems and storage media. Its function is to provide a uniform
interface to the user and to other kernel subsystems, so that data on mass
storage devices can be accessed in a consistent manner. To accomplish this,
the VFS maintains unified caches of information about file names and data
blocks: the dentry and inode caches, respectively. The entries in these caches
are shared by all file systems. The VFS and file systems use reference counts
to ensure that entries are not reused without a file system’s knowledge and to
prioritize highly-referenced objects for retention in main memory as opposed
to being swapped out.

The fact that these caches are shared by different file systems, implemented
by different authors and of varying degrees of maturity, introduces the poten-
tial for system resource leaks and faults arising from misuse of cached objects.

9

Callanan

For example, a misbehaving file system may prevent a storage device from
being safely removed because the reference count for an object stored to that
device was not safely reduced to zero. Worse, a misbehaving file system could
hamper the performance of other file systems by failing to decrement the ref-
erence counts of cache data structures.

Using the Aristotle framework, we developed a tool that monitors reference
counts in the Linux VFS. As described in Section 3, we enforced a state
invariant (stI), a transition invariant (trI), and a leak invariant (lkI).

The plug-in for this case study instruments every point in the source code
at which a reference count was modified. Because we had access to type infor-
mation, we were able to classify reference counts for dentry and inode objects.
Whenever it is invoked, the runtime monitor checks the operation to ensure
that the safety properties hold. Additionally, if the operation is a decrement,
the monitor updates a timestamp for that reference count, which is main-
tained in an auxiliary data structure. A separate thread periodically traverses
the data structure to verify that all reference counts have been decremented
more recently than time interval T . Additionally, all checked operations are
optionally logged to disk.

The confidence engine maintains separate confidence levels for dentry and
inode reference counts using our Monte Carlo model checking algorithm. For
clarity, we demonstrate the system with a sampling policy automaton that
disables checking when a 99.999% confidence level has been reached that the
error rate for that reference counter category is less than 1 in 105 samples.
As discussed in Section 3, a sample is defined as the lifetime of a cached
object, that is, the period when the object’s reference counter is nonzero.
Other sampling policies, such as flipping an n-sided coin where n increases
as confidence increases to determine whether to sample a given object, allow
more fine-grained trade-offs of performance vs. confidence; additionally, it may
be advisable to increase the sampling rate as the environment changes.

Figure 4(a) shows the performance overhead of the system with logging and
checking enabled, logging disabled but checking enabled, and no instrumen-
tation, under a micro-benchmark designed to exercise the file system caches.
In each run, the micro-benchmark creates a tree of directories, does a depth-
first traversal of that tree, and deletes the tree. Because directories are being
created and deleted, on-disk data is being manipulated, causing creation and
deletion of objects in the inode cache. Additionally, the directory traversal
stress-tests the dentry cache. We observe an initial 10x overhead as both
dentry and inode reference counts are being monitored and all accesses are
being logged. After five runs, which take six minutes in total, dentry con-
fidence reaches the target, and overhead falls to a factor of three. Finally,
five minutes later, after eleven runs, overhead drops to 33% when inode con-
fidence reaches the target. The remaining overhead is a characteristic of our
prototype; we expect optimization to reduce it significantly.

10

Callanan

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25

Ti
m

e
(s

ec
on

ds
)

Run number

Events inhibited
Events checked

Events logged

(a) directory-tree microbenchmark

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60

Ti
m

e
(s

ec
on

ds
)

Run number

Events inhibited
Events logged

(b) compilation of GNU tar

Fig. 4. Overhead reduction as confidence increases.

Figure 4(b) shows the effects under a benchmark that puts less stress on
the file system. Compiling the GNU tar utility involves less cache activity
than the micro-benchmark described above, so the overheads from monitoring
are lower; however, it also takes longer for confidence to reach the target.
Initial overhead with logging was 46%. After ten runs, or eleven minutes,
this overhead dropped to 14% as dentry confidence reached the target. Forty
minutes later, at the 55th run, overheads dropped to 11% as inode confidence
reached its target as well.

6 Related Work

Runtime verification is the subject of much recent research [3,14,15]. Our
work combines and takes these concepts one step further, detecting instru-
mentation points at compile time and managing itself autonomously at run-
time using statistically-driven sampling policies. Other related work includes
metacompilation [8] and ESP [11], which extend compilers with static checkers
to find violations of system-specific properties; and the model-checking efforts
directed at network protocols [5,13], file systems [17], and device drivers [1].

Chilimbi and Hauswirth [9] have implemented a sampling-based technique
for detecting memory leaks in programs. They maintain a timestamp with
each memory object and a sampling rate with each basic block of code. Each
time a basic block b makes a reference to an object o, o’s timestamp is up-
dated and b’s sampling rate is decreased. No attempt is made to quantify the
confidence level and error margin introduced by this technique.

7 Conclusions

We have presented the MCM algorithm for Monte Carlo monitoring and runtime
verification, which uses sampling-policy automata to vary its sampling rate dy-
namically as a function of the current confidence in the monitored system’s

11

Callanan

correctness. We implemented MCM within the Aristotle tool environment, an
extensible, GCC-based architecture for instrumenting C programs for the pur-
poses of runtime monitoring. Aristotle realizes this architecture via a simple
modification of GCC that allows one to load an arbitrary number of plug-
ins dynamically and invoke code from those plug-ins at the tree-optimization
phase of compilation. Our experimental results show that Aristotle reduces
the runtime overhead due to monitoring, which is initially high when con-
fidence is low, to long-term acceptable levels as confidence in the deployed
system grows.

As future work, we are developing an instrumentation-specification lan-
guage to facilitate plug-in construction and insertion into GCC. Additionally,
we are investigating the integration of auxiliary information, such as code cov-
erage, into sampling policies. This would allow, for example, instrumentation
to be increased when a rarely-used section of code is executed.

8 Acknowledgments

Yanhong A. Liu and Scott D. Stoller provided valuable feedback to the ar-
chitectural model described in Section 2 and are collaborating with us on the
future work described in Section 7. We are also grateful to the anonymous
reviewers who provided invaluable feedback that helped us present our work
in as clear a manner as possible.

This work was partially made possible thanks to a Computer Systems
Research NSF award (CNS-0509230) and an NSF CAREER award in the
Next Generation Software program (EIA-0133589).

References

[1] Ball, T. and S. K. Rajamani, The SLAM toolkit, in: CAV ’01: Proceedings of
the 13th International Conference on Computer Aided Verification (2001), pp.
260–264.

[2] Bernstein, A. and J. P. K. Harter, Proving real-time properties of programs
with temporal logic, in: SOSP ’81: Proceedings of the eighth ACM symposium
on Operating systems principles (1981), pp. 1–11.

[3] Bodden, E., A lightweight LTL runtime verification tool for Java, in: Companion
to the 19th annual ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications (2004), pp. 306–307.

[4] C. W. Fraser and D. R. Hanson, “A Retargetable C Compiler: Design and
Implementation,” Addison-Wesley Longman Publishing Co., Inc., 1995.

[5] Dong, Y., X. Du, G. Holzmann and S. A. Smolka, Fighting Livelock in the i-
Protocol: A Case Study in Explicit-State Model Checking, Software Tools for
Technology Transfer 4 (2003).

12

Callanan

[6] GCC team, T., “GCC online documentation,” (2005),
http://gcc.gnu.org/onlinedocs/.

[7] Grosu, R. and S. A. Smolka, Monte carlo model checking (extended version),
in: LNCS 3440 on SpringerLink (2004), pp. 271–286.

[8] Hallem, S., B. Chelf, Y. Xie and D. Engler, A System and Language for
Building System-Specific, Static Analyses, in: ACM Conference on Programming
Language Design and Implementation, Berlin, Germany, 2002, pp. 69–82.

[9] Hauswirth, M. and T. M. Chilimbi, Low-overhead memory leak detection using
adaptive statistical profiling, SIGARCH Comput. Archit. News 32 (2004),
pp. 156–164.

[10] Kupferman, O. and M. Y. Vardi, Model Checking of Safety Properties, Formal
Methods in System Design 19 (2001), pp. 291–314.

[11] M. Das and S. Lerner and M. Seigle, ESP: Path-Sensitive Program Verification
in Polynomial Time, in: Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2002, pp. 57–68.

[12] Mood, A. M., F. Graybill and D. Boes, “Introduction to the Theory of
Statistics,” McGraw-Hill Series in Probability and Statistics, 1974.

[13] Musuvathi, M., D. Y. W. Park, A. Chou, D. R. Engler and D. L. Dill, CMC:
A Pragmatic Approach to Model Checking Real Code, in: Proceedings of the
Fifth Symposium on Operating System Design and Implementation (OSDI ’02)
(2002), pp. 75–88.

[14] Rosu, G. and K. Sen, An Instrumentation Technique for Online Analysis
of Multithreaded Programs, in: 18th International Parallel and Distributed
Processing Symposium, 2004, p. 268b.

[15] Sammapun, U., A. Easwaran, I. Lee and O. Sokolsky, Simulation of
Simultaneous Events in Regular Expressions for Run-Time Verification, in:
Proceeding of Runtime Verification Workshop (RV’04), Barcelona, Spain, 2004,
pp. 123–143.

[16] Vardi, M. Y. and P. Wolper, An Automata-Theoretic Approach to Automatic
Program Verification, in: Proceedings of the Symposium on Logic in Computer
Science (LICS), Cambridge, MA, 1986, pp. 332–344.

[17] Yang, J., P. Twohey, D. R. Engler and M. Musuvathi, Using Model Checking
to Find Serious File System Errors, in: Proceedings of the 6th Symposium on
Operating Systems Design and Implementation (OSDI 2004), San Francisco,
CA, 2004, pp. 273–288.

13

http://gcc.gnu.org/onlinedocs/

	Introduction
	Aristotle Design Overview
	Monte Carlo Monitoring
	Implementation
	Case Study: The Linux VFS
	Related Work
	Conclusions
	Acknowledgments
	References

