
Extending ACID Semantics to the File System

CHARLES P. WRIGHT

IBM T. J. Watson Research Center

RICHARD SPILLANE, GOPALAN SIVATHANU, and EREZ ZADOK

Stony Brook University

An organization’s data is often its most valuable asset, but today’s file systems provide few facilities
to ensure its safety. Databases, on the other hand, have long provided transactions. Transactions
are useful because they provide atomicity, consistency, isolation, and durability (ACID). Many
applications could make use of these semantics, but databases have a wide variety of non-standard
interfaces. For example, applications like mail servers currently perform elaborate error handling
to ensure atomicity and consistency, because it is easier than using a DBMS. A transaction-oriented
programming model eliminates complex error-handling code, because failed operations can simply
be aborted without side effects. We have designed a file system that exports ACID transactions
to user-level applications, while preserving the ubiquitous and convenient POSIX interface. In our
prototype ACID file system, called Amino, updated applications can protect arbitrary sequences

of system calls within a transaction. Unmodified applications operate without any changes, but
each system call is transaction protected. We also built a recoverable memory library with support
for nested transactions to allow applications to keep their in-memory data structures consistent
with the file system. Our performance evaluation shows that ACID semantics can be added to
applications with acceptable overheads. When Amino adds atomicity, consistency, and isolation
functionality to an application, it performs close to Ext3. Amino achieves durability up to 46%
faster than Ext3, thanks to improved locality.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—
Error handling and recovery; D.2.5 [Software Engineering]: Testing and Debugging—Tracing;
D.4.3 [Operating Systems]: File Systems Management—Access methods, Directory structures,

File organization; D.4.5 [Operating Systems]: Reliability—Fault-tolerance; H.2 [Database

management]: Database Applications

General Terms: Design, Experimentation, Performance, Reliability

Additional Key Words and Phrases: File system transactions, Recoverable memory, Databases,
File systems, ptrace monitors

1. INTRODUCTION

File systems offer a convenient and standard interface for user applications to store
data, which is many organizations’ most valuable asset. Computer hardware and
software can be replaced, but lost or corrupted data can not. Providing reliable file
system access is therefore an important goal of any operating system.

Database systems provide strong guarantees for the safety and consistency of
data, but each database uses its own interface. Four key requirements define a
transaction: atomicity, consistency, isolation, and durability—collectively known
as the ACID properties. Despite their importance, most file systems have made no
provisions to ensure that operations meet all four of these stringent requirements.
Our goal is to combine the best part of databases, their reliability (embodied by the
ACID properties)—with the best part of file systems, their common and easy-to-use

ACM Transactions on Storage, Vol. 3, No. 2, May 2007, Pages 1–40.

2 · Wright et al.

POSIX API [IEEE/ANSI 1996].
Next, we describe the ACID requirements, and how they relate to file systems.

Atomicity. Atomicity means that operations must complete or fail as a whole
unit. Traditionally, file systems provided only limited atomicity (e.g., renaming a
file either fails or succeeds). Many applications undertake arduous procedures to
try to perform atomic operations. For example, if Sendmail fails when attempt-
ing to append new mail messages to a mailbox, it then attempts to truncate the
file to erase a partially written message [Sendmail Consortium 2004]. Yet if the
truncation fails, then the mailbox is left corrupted. To solve these problems, a file
system should allow a sequence of operations to be encapsulated in a single atomic
transaction. This has two key benefits: (1) error handling becomes easier, because
transactions can simply be aborted, and (2) data corruption cannot occur, because
no corrupted data ever reaches the file system. With this new functionality, Send-
mail’s append operations could be wrapped in a transaction. If they all succeeded,
then Sendmail would commit the transaction. Otherwise, Sendmail would abort
the transaction and the file-system state would not change.

Consistency. In the context of a database system, consistency means that the
database enforces pre-defined integrity constraints. Examples of integrity con-
straints in a database system are that social security numbers must be unique
or that a checking account must have a positive balance. File systems have sim-
ilar constraints (e.g., inode numbers are unique and no directory entry points to
a non-existent inode). By wrapping related operations in database transactions, a
file system can maintain a consistent on-disk state.

Applications also have consistency requirements. For example, when committing
files to CVS [Berliner and Polk 2001], lock files are created to protect against
concurrent accesses. An integrity constraint in this example is that lock files only
exist while an instance of CVS is updating the repository. In an unmodified CVS
implementation, there are circumstances in which lock files are not properly deleted
(e.g., on unexpected termination or occasionally when the user presses Control-C).
Using transactions greatly improves error handling—with only four lines of code we
were able to prevent CVS from leaving stale lock files. Additionally, we eliminated
the possibility of some files being committed, and others not (e.g., if the process is
terminated half-way through a commit). If CVS were to have used a transactional
model from the start, then hundreds of lines of code through several source files
could have been eliminated. Moreover, because the transactional interface does not
commit data until all operations succeed, error-handling is much more robust than
the several ad-hoc functions that are currently in use.

Isolation. Isolation (or serialization) means that one transaction will not affect
the execution of another concurrently running transaction. This is not available
in current file systems. For example, a set-UID program cannot use access to
check whether a user has permission to create a file, because another process could
create a symbolic link to a sensitive file between the access and the creation. This
is known as a time-of-check-time-of-use (TOCTOU) security vulnerability. With
a file system that maintains isolation, for example, access and file creation can
safely be performed in a single transaction so that no other operations could be
interleaved between the access and the creation; to improve performance, however,

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

Extending ACID Semantics to the File System · 3

Table I. File system support for ACID. Current file systems cannot provide all ACID properties
across multiple operations, but many do provide a subset of the ACID properties for a single
operation (i.e., a system call or VFS-level operation). Amino provides all of the ACID properties
for an arbitrary sequence of multiple operations.
∗ FFS-no-SU denotes FFS without SoftUpdates, and FFS+SU denotes FFS with SoftUpdates.

Ext2 and

FFS-no-SU∗

Ext3 FFS+SU∗ Amino

Atomicity No Single op No Multiple ops

Consistency No Multiple ops Multiple ops,
but resources
may leak

Multiple ops

Isolation Single op Single op Single op Multiple ops

Durability Only with Only with Only with Legacy: each op.
O SYNC O SYNC O SYNC Enhanced: on commit.

other operations may be interleaved, but the database management system ensures
that the results are as if there was no interleaving.

Durability. Once a transaction is committed to disk, the data remains intact
even across a software or a hardware crash. This is a desirable property for every
application, but often operating systems (OSes) choose to sacrifice durability for
better performance, because the synchronous I/O required for durability results in
poor performance. Databases employ optimizations such as sequential logs, group
commit, and ordered writes to provide durability more efficiently.

As seen in Table I, current file systems do not support full ACID properties. Tra-
ditional file systems do not provide atomicity. For example, during rename, Ext2
and FFS can both create the file’s new name, and then fail before the old name
is removed. Journaling file systems like Ext3 provide atomicity for a single opera-
tion, so a rename operation cannot fail half-way through, but they do not provide
atomicity for a sequence of multiple operations, which is vital for user applications.
Many file systems do not provide consistency, which has resulted in the need to run
a consistency checker before mounting them (fsck). Journaling file systems and
SoftUpdates ensure that each operation is consistent, so the composition of many
operations is also consistent [McKusick and Ganger 1999]. Current file systems
use VFS-level locking to provide isolation for a single operation. For example, a
directory is locked before it is modified. However, there is no mechanism to iso-
late one sequence of operations from another operation (or sequence). To improve
performance, current file systems do not provide durable writes unless the O SYNC

option is specified.
We believe that the ACID properties are desirable for many applications, espe-

cially applications like email that are expected to be highly reliable, or applications
that require atomicity and isolation for security (e.g., updating a user’s creden-
tials). Therefore, we have designed a file system called Amino that extends ACID
semantics to standard applications that use the POSIX interface. Legacy support
is essential: unmodified applications and file systems continue to work as they have
in the past. To exercise fine-grained control over transactions, existing applications
need only slight modifications, and benefit from improved reliability.

It can be argued that databases are already taking over for the file system when
reliable storage is required. For example, some commercial email systems store

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

4 · Wright et al.

messages in databases instead of the file system [Sendmail, Inc. 2004], and it
is becoming more common for revision-control systems to store information in a
database [CollabNet, Inc. 2004]. However, we believe that writing applications
that use the file system interface has inherent advantages over writing applications
that use the database interface. When an application is written to a database API,
it severely limits its interoperability and adds to the burden of programmers and
administrators. For example, with a mail server using a file system, an individual
user’s mail file can simply be copied to create a backup, or deleted to remove all
of the user’s messages (from personal experience working at an ISP, this is a not
uncommon request). Moreover, any standard text processing package can be used
to edit the file. When data is only accessible through a database interface, these
types of convenient access are no longer possible. Instead, special applications must
be written for each of these functionalities.

We have built Amino on top of the Berkeley Database (BDB) [Seltzer and Yigit
1991]. BDB is an embedded database package that provides efficient transaction-
protected access to key-value pairs in hash tables or balanced trees. BDB provides
the crucial database infrastructure such as logging, locking, and caching. However,
BDB, does not provide or require the use of SQL, stored procedures, a specialized
database server, or other heavyweight components often associated with a DBMS.
This makes it ideal for use by other operating system components. Using BDB
allows us to leverage almost 200,000 lines of time-tested industrial-strength code.

If we were to implement Amino as a traditional file system that interfaces with
the VFS, we would have to use the inode, dentry, and page caches. If a transaction
aborted, then these caches would become stale with respect to the database. There-
fore, we chose to implement Amino as a user-level monitor using the process-tracing
facility (ptrace) provided by Linux. This interface allows us to intercept all system
calls and use only the internal BDB caches. For internal Amino data structures,
we developed a recoverable virtual memory (RVM) system on top of BDB that
provides support for nested transactions and is transparent to applications.

We evaluated our prototype, and show that it can add atomicity, consistency, and
isolation to existing applications with negligible performance overheads. To provide
durability, existing file systems require the O SYNC option. Amino can implicitly
provide durability, and is 46% faster than a traditional file system in synchronous
mode. If a programmer informs Amino when transactions begin and end, durable
performance is 173% better than a traditional file system. Given that Amino is
an unoptimized user-level prototype, we find these results encouraging and expect
that performance can improve with more tuning.

The rest of this article is organized as follows. Section 2 provides an overview of
our design. Section 3 describes our current Amino prototype. Section 4 evaluates
Amino’s performance. Section 5 describes related work. We conclude and discuss
future work in Section 6.

2. DESIGN

The key decision to make when extending ACID semantics to a file system is
whether to graft additional code to provide transactions onto an existing file sys-
tem, or to build a file system on top of a system that already provides transactional

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

Extending ACID Semantics to the File System · 5

semantics. The advantages of adding code to the file system is that you may end
up with less overall code, which is more specialized to the task at hand. However,
adding even a subset of the required code to an existing file system can take years.
For example, Ext3 shares most of its code with Ext2 and only adds atomicity to
single file system operations, but it took more than two years to develop. To get a
rough idea of how large a file system is versus a transactional processing system, we
can compare the number of lines of code in Ext3 to the number of lines in version
4.1 of the open-source MySQL server [MySQL AB 2005] and version 4.2.52 of the
Berkeley Database (BDB) [Seltzer and Yigit 1991; Sleepycat Software, Inc. 2004].
In Linux 2.6.11.12, Ext3 has 21,629 lines of code (including the block journaling
layer, jbd, which is used only for Ext3). BDB has over 16,870 lines of code in
just its transaction-related components, and BDB is a subset of MySQL’s overall
transaction code (MySQL uses BDB to provide transactional tables). Aside from
the transaction-related components, BDB provides efficient data access methods for
key-value pairs (e.g., BDB’s balanced-tree implementation is 16,843 lines of code).
We therefore chose to build our file system on top of BDB, because we can leverage
the already existing transactions infrastructure and efficient access methods.

Once we decided to build the file system on top of a transaction-processing sys-
tem, the next question was what transaction-processing system is an appropriate
host for the file system. One option would have been to use an SQL server such
as MySQL, PostgreSQL, or Oracle. We rejected using a full-fledged SQL server,
because they require significant runtime resources. Moreover, each database up-
date or query requires communication over a socket, thus degrading performance
by adding extra context switches and data copies. We therefore chose to use an
embedded database, which runs directly in the address space of the client—thereby
eliminating context switches and data copies. BDB fits our needs well. It is widely
deployed, and has been thoroughly tested. BDB also scales both up and down: it
can have a small memory footprint of less than 500KB, yet it also can be config-
ured for databases as large as 256TB. BDB’s codebase is still tractable at about
200,000 lines of code. There are two key reasons that BDB’s codebase is man-
ageable. First, BDB does not require or support SQL parsing, query planning, or
other features often associated with a DBMS. As these features are not needed for
a file system, having less code is a distinct advantage. Second, BDB has a modular
design and the application designer can choose which components to use (e.g., the
transaction subsystem can be used with normal files, or the access methods can
be used without logging). Even though BDB is a relatively small DBMS, it still
provides the key infrastructure for full ACID semantics: logging, locking, recovery,
and a full-featured transactions API. It also provides four data access methods: a
sorted balanced search tree, extended linear hashing, a fixed-length record queue,
and access by logical record number.

The rest of this section is organized as follows. Section 2.1 provides an overview
of BDB. Section 2.2 describes our database schema. Section 2.3 describes our
internal use of transactions. Section 2.4 describes our use of transactional memory.
Section 2.5 describes the transactions API that we expose to applications.

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

6 · Wright et al.

2.1 BDB Overview

BDB provides a uniform API to access both hash tables and balanced search trees
in a transactional manner. To open and use BDB databases, a database environ-
ment is opened first. The database environment provides caching, logging, and
locking functionality for one or more databases (or even simple files). Transactions
are associated with the environment, and they have three operations: begin, com-
mit, and abort. Other database operations are protected by the transaction. If a
transaction is committed, then all of the protected operations are applied to stable
storage as a whole. If the transaction is aborted, then it has no effects. A single
transaction can span multiple databases, but the databases must all belong to the
same environment. Before a database is opened, a database handle is created and
associated with an environment. Next, the handle’s parameters are set (e.g., the
page size, sorting or hashing function, etc.). Finally, the database is opened inside
of a transaction using the fully configured handle. After the database or databases
are opened, key-value pairs can be stored using a put operation and retrieved using
a get operation. These primitives take the database handle, a transaction, the key,
and the value (for put) as arguments. Also, BDB provides support for cursors,
which efficiently iterate through items in the database. The primary cursor opera-
tions we are concerned with are DB SET, DB SET RANGE, and DB NEXT, which find a
given key, the first key that is greater than a given key, and the next key, respec-
tively. There are many other BDB operations and parameters, which we omit here
for brevity [Sleepycat Software, Inc. 2004].

2.2 File System Schema

The database schema defines the format of our file system. The schema dictates
the topology of the data, which in turn is directly related to what operations are
possible, and how efficient each operation is. Our primary goal in developing our
schema was to minimize the number of database accesses required for any given
operation, because I/O operations are many orders of magnitude slower than in-
memory operations. An organization that is appropriate for a normal disk-based file
system is not necessarily appropriate for a database. For example, most FFS-like
file systems use simple mappings of integers to disk blocks [McKusick et al. 1984].
For example, to read a block from a file, first the root inode number is mapped
to a disk block. After the root inode is read, the root directory’s data blocks are
scanned to find the inode number of the next pathname component. Reading each
data block essentially maps a logical block in the file to a physical disk block using
the inode’s direct and indirect pointers. This procedure must be repeated for each
pathname component, until the file is found.

BDB, on the other hand, provides more complex and efficient data structures.
In BDB, the schema is defined by the set of databases and their key-value pairs. A
file system can conceptually be divided into two halves: (1) a naming component
and (2) a data storage component. For example, FreeBSD has a separate UFS
component for naming and an FFS component for storage. Our schema, shown
in Table II, has a similar division. We use a Path database to map pathnames
to unique file identifiers, and a Data database to map unique file identifiers to file
data. The Orphan database contains a list of identifiers that are not accessible

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

Extending ACID Semantics to the File System · 7

Table II. Our database schema. Directory-reading and lookup operations use the Path database,
which maps full path names to path-local meta-data. Read, write, truncate, and other data-
oriented operations use the Data database. The Data database has two types of keys: a file
identifier points to its meta-data, and a file identifier concatenated with a page index point to the
page’s data. Files without any names are stored in the Orphan database.

Database Key Value

Path Full Path ID||Path-local meta-data (e.g., stat information for a file
without hardlinks)

Data ID Reference Count || Data-local meta-data (e.g., stat informa-
tion for a hard linked file)

ID || Page index Page’s data

Orphan ID Path-local meta-data (e.g., stat information for a file with-
out hard links)

through the name space, but is otherwise equivalent to the Path database.
In the rest of this section we describe our schema’s design considerations. First

we discuss each database in turn: the Path database, the Data database, and then
the Orphan database. We then describe path-local and data-local meta-data.

The Path Database. The Path database is used for both lookup and directory-
reading operations. Each file has a unique identifier, which is analogous to an
inode number. In the Path database, the key is a full pathname and the value is a
unique identifier. We designed our schema such that a given file can be looked up
using a single database access. For any given path name we can quickly find the
path’s unique identifier, without the need to traverse each component’s directory
separately as is done in most Unix file systems. The Google file system uses a
similar scheme [Ghemawat et al. 2003]. When using a hash function, this yields
constant time lookups. Using a balanced tree with a fan-out of 100 keys per page,
four disk accesses are always sufficient to find any of 108 files.

The Path database is also suitable for the directory-reading operation. As the
access method for the Path database, we selected a balanced tree structure using
a customized sort function. In our database, pathnames are first sorted by depth
(i.e., by an ascending number of pathname components) and then by standard lex-
icographic order. Using this sorting function means that for any given directory,
every name is contiguous within the database. To read a directory, we use BDB’s
DB SET RANGE operator to position a cursor at the first path name within the di-
rectory. To read each subsequent entry we use the cursor’s DB NEXT operator until
we encounter a path name in a different directory.

For the lookup operation, the sort function is not critical, as a name can be
located correctly with any total ordering. However, our sorting function proves
advantageous when reading a directory and performing stat operations on the
entries. Because each path in the directory is located close to one another, fewer
pages must be read in from disk. This type of operation is quite common (e.g, by
ls -l or recursive tree scans), which is why NFSv3 introduced a single protocol
primitive called readdirplus for it [Callaghan et al. 1995].

The Data Database. To store the data pages, we use a balanced tree. If a file’s
unique identifier is stored in the tree, then the given file exists. We assign the
identifier randomly, but as the tree is sorted, it is possible to influence data layout
policies by modifying the identifier assignment and sort function. For each identi-

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

8 · Wright et al.

fier, the database stores the file’s reference counts and meta-data. There are two
reference counts: one for the number of path names that reference it (a.k.a. a link
count), and another for the number of open instances of the file.

The actual data associated with the file is also stored in the Data database. For
a given page of the file, the key is the file’s identifier concatenated with the page
index. We first sort the tree by the file’s identifier and then by the page index. This
means that all of a file’s data pages are allocated contiguously in the tree, thereby
improving locality and allowing the use of database cursors.

Selecting database parameters properly is of the utmost importance for the Data
database. In our experiments we found that there can be a factor of ten difference in
performance based on page size, cursor use, and other database-tuning parameters.
The page size is a particularly important parameter for data-intensive operations.
BDB uses a configurable database page size of powers-of-two between 512 bytes and
64KB. It is often useful to make this page size the native page size of the underlying
file system, so that BDB reads and writes pages that are compatible with the OS’s
native page size. The BDB page size also determines when and how overflow pages

are used. For the Data database, most records are rather large, so they are stored
in overflow pages, which means that they are not stored directly with the key.
We have found that BDB will store only a single record within an overflow page.
Therefore, if the database page size is larger than our file system’s transfer unit
(for the remainder of this paragraph we refer to our file systems page as a transfer
unit to avoid confusion with BDB pages), then the remainder of the database’s
overflow page is wasted, reducing available disk space and imposing unnecessary
I/O overheads. Similarly, if the overflow page size is less than or equal to the file
system transfer unit, then BDB stores a small amount of internal meta-data in
the beginning of the overflow page, and the first part of the actual data in the
remainder of the first overflow page. Another complete overflow page is used for
any remaining data, and the rest of it is wasted.

BDB’s overflow page allocation behavior means that the file system transfer unit
must be carefully selected to avoid performance conflicts with BDB. For example,
with a file system transfer unit of 4,096 bytes and the default BDB page size of
16,384 bytes, only 4,122 bytes on each overflow page are used (4,096 for the data,
and 26 bytes for BDB’s internal meta-data), wasting the remaining 3

4
of the page.

This not only wastes space, but hurts performance because useless data needs to
be sent to and from the disk. With a database page size of 4,096 and an equal
transfer size, 26 bytes of meta-data are stored on the first overflow page and only
4,070 bytes of actual file-system data can be stored. On the second overflow page
only the remaining 26 bytes of file-system data are stored—wasting nearly half of
the space. One possible solution is to use a non-standard transfer unit of 4,070
for our file system. Although, well-behaved applications should execute the fstat

system call to find the optimal transfer unit, poorly-behaved applications do not
and memory-mapped accesses inherently require standard page-sized access. The
solution we have chosen is to use 64KB database pages, which allowed several full
4,096 byte transfer units to fit within the tree nodes (without the need for overflow
pages).

We have also found that using database cursors is essential for good sequential

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

Extending ACID Semantics to the File System · 9

read performance. Simply iterating through the Data database using the get
primitive without cursors can be twice as slow as sequentially reading the file with
a cursor. Therefore, whenever possible we use cursor reads with the more efficient
DB NEXT flag instead of simple get operations. We do not use write cursors as
they are incompatible with transactions, and require locking an entire database
environment.

The Orphan Database. Files that have been unlinked, but are still open, are
stored in the Orphan database. The Orphan database is identical to the Path
database, except that instead of storing the name, only the file’s unique identifier
is stored. In case of a system crash, we can quickly locate and remove all such
orphaned files using a database cursor during the next mount.

Path-local and Data-local Meta-data. The stat system call returns vital informa-
tion about a file, such as its size, owner, and access permissions. The performance
of stat is quite important, as it constitutes a large portion of many workloads.
Ellard’s traces of NFS-mounted home directories show 24.6–72.4% of all calls were
getattr and access, which both require stat information [Ellard and Seltzer
2003]. Because each file has a single set of attributes, the file’s unique identifier de-
termines the stat information even if the file has multiple pathnames. This means
that the stat attributes are a functional dependency of the unique identifier. To
avoid logical redundancy, or having the same data stored in two different places, and
its associated pitfalls in a traditional SQL database, the stat information should be
stored in a database with the unique identifier as the key [Lewis et al. 2002]. In our
schema, logical redundancy would introduce update anomalies in which one copy of
the data could be updated, but the other might not. However, if stat information
could be stored in the Path database, then performance would be improved because
stat would require only one database access.

To solve this problem, we take advantage of the flexibility provided by BDB’s
key-value pair model to develop a more dynamic schema. Meta-data is divided
into two classes: (1) path-local meta-data and (2) data-local meta-data. Path-
local meta-data (PLMD) includes all meta-data that is specific to one path of a
file. Data-local meta-data (DLMD) includes all meta-data that may refer to more
than one path. For example, a newly created file’s stat information is stored as
PLMD, because there is no other path name that references this stat information.
However, if a hard link to the file is created, then the PLMD is promoted to DLMD,
as both names could be used to reference the same underlying file. If one of the
links is removed, then the DLMD could be demoted to PLMD. Dividing meta-data
into path-local and data-local components allows our schema to avoid the pitfalls
associated with logical redundancy. Yet when the data has no logical redundancy,
the stat information is stored right with the pathname to improve performance.

2.3 Internal File System Transactions

It is essential that each operation in an ACID file system be protected by a transac-
tion. This is true even when the application that is executing that operation is not
concerned with ACID semantics, because other applications must access a single
consistent view of the database to ensure the isolation property. Also, to ensure
that the file system is consistent, certain integrity constraints must be maintained.

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

10 · Wright et al.

We define our file system to be consistent, if and only if it meets the following seven
integrity constraints:

UniqId Each file identifier is unique.

RefCount Each file’s link reference count is equal to the number of path names
that reference it.

NoOrphanedFiles Each DLMD data block has a positive link or open instance
count. Files with a link count of zero must exist in the Orphan database.

NoOrphanedBlocks Each data page has an associated DLMD block.

HardLinkUsesDlMd If and only if a file has a link reference count greater than
one, then it uses DLMD.

PagesMatchSize A file has no data pages with an index greater than or equal to
⌈ FileSize

TransferUnit
⌉.

LastPageMatchesSize If there is page at index ⌊ FileSize
TransferUnit

⌋, then it is no
larger than FileSize mod TransferUnit bytes.

Each of these integrity constraints is equivalent to a similar invariant in a stan-
dard file system and is also equivalent to common integrity constraints enforced
by a database system. For example, RefCount is equivalent to a foreign key
constraint, and standard file systems verify the same when performing a fsck. In
traditional file systems, constraints similar to PagesMatchSize and LastPage-
MatchesSize are checked by fsck to ensure that no orphaned blocks exist, and
that stale data does not reappear, respectively.

Our file system does not require a fsck, nor does it explicitly enforce the integrity
constraints. Instead, each file system operation is designed to transition from one
consistent file system state to another consistent file system state. Because each
file system operation is surrounded by a transaction, it is atomically applied or
it has no effect. Therefore, our file system is always consistent (because it meets
the required integrity constraints). This strategy is different from enforcement,
in that enforcement would require validating the constraints before committing
every transaction. To recover the file system after a crash, it is enough to open
the database with BDB’s DB RECOVERY flag, which replays the database log, and
to remove any orphaned files (we efficiently locate these files using the Orphan
database). BDB’s internal support for recovery obviates the need for us to take
complicated recovery steps in our file system code.

2.4 Transactional Memory

One major difficulty with any system that supports transactional semantics is how
to deal with an abort operation. Transactional systems should be able to rewind to
the state they were at just before the transaction began. This is part of supporting
atomic behavior: the effects of a sequence of operations are realized if and only if
the transaction containing that sequence is committed. If a transaction is aborted,
the operations that were already performed must be reversed so that the state
returns to how it was just before the transaction had begun. Of course, this is not
restricted to the file system data: caches and other book-keeping memory regions
that describe the state of the file system also need to be reversible in this manner
(e.g., the process’s open file table).

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

Extending ACID Semantics to the File System · 11

Through the use of BDB’s support for application-specific recovery, we built
a recoverable virtual memory (RVM) library. Our library supports rolling back
allocation, deallocation, and writes to a recoverable region. Because one of our
requirements was to allow applications to use nested transactions, our RVM library
supports nested transactions. By allocating memory regions related to the file
system state with our recoverable memory routines, we can easily rewind our state
to the proper one upon abort. Our library internally uses mmap, mprotect, and
signal handlers to protect memory regions transparently.

After catching the page faults, we log the memory’s content. This allows us
to access recoverable memory transparently using traditional memory references,
without the need for error-prone explicit logging functions. This is especially im-
portant if the library is to be used to retrofit transactional semantics onto existing
applications or infrastructure. It is relatively easy to locate all of the points where
data structures are allocated and deallocated, whereas locating each access to a
data structure can be very difficult.

2.5 Transactions API for Applications

Legacy applications need no changes to enjoy the benefits of a consistent file system,
which uses transactions for each individual operation (as applications do today with
a journaling file system). However, some applications require more stringent atom-
icity, consistency, isolation, and durability properties. For example, a mail server
must append large messages to the end of a mailbox, and a password update system
must consistently update /etc/passwd and /etc/shadow together. Importantly,
both legacy and enhanced applications can coexist and use the same data—without
the need to access a data store using a specialized interface.

For these types of applications, our file system exports a transactions API to
user applications. Our primary design goal for the API was to avoid any changes
to existing system calls, which means that we could not add a transaction argument
to each call. To begin a transaction, an application issues a new system call that
associates a current transaction with the process (or thread in multi-threaded ap-
plications). Each file system operation after that point is protected by the current
transaction. The application can then commit or abort the transaction, with the
expected semantics: an aborted transaction has no effect on the file system, and a
committed transaction is safely written to stable storage. Aborting a transaction
can greatly simplify error handling code, but developers still must take care not to
persistently change state during an aborted transaction (e.g., internal application
data structures). One simple way to ensure this property is to exit after an abort
(many programs already exit on unexpected failures). A better option is to use our
RVM facilities to rewind data structures transparently. We believe that one reason
many applications are structured such that error handling consists of shutting down
the current process or thread is that ad-hoc error recovery is so difficult, hard to
debug, and error-prone that fault-tolerant applications, despite their benefits, are
often impractical to develop on current systems. We believe that if transactional
semantics for the file system and data structures were provided, then programmers
may structure their programs to be more robust in the face of failures rather than
coding their programs to exit upon failure.

Using BDB’s support for nested transactions, each of the file system’s internal

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

12 · Wright et al.

transactions is started as a child of the current transaction. This simplifies error
handling in the file system, because a transaction for a failed system call can just be
aborted. If the child transaction is committed, then it is committed to stable storage
only if the parent transaction is committed as well. If a child transaction is aborted,
then its effects are undone, but the parent transaction can continue. Our design
makes use of this, by wrapping each individual system call in a transaction. In this
way, our file system can abort transactions, even if the application is wrapping a
set of system calls into a transaction. This functionality is also exposed to user
applications. If a process already has a current transaction, and a new transaction
is created, then the new transaction is created as a child of the existing transaction,
thus creating a stack of nested transactions associated with the process.

We employ a simple shared-memory like API to allow processes to share trans-
actions, and we support multiple concurrent transactions without changing the
existing system call API. When a transaction begins, it is assigned a unique iden-
tifier that the process can then use to manipulate the transaction. A process with
sufficient permissions can set its current transaction by attaching to the unique
identifier. In this way, two processes can share the same transaction. Similarly,
a process can detach from its current transaction, so that future operations are
not transaction protected. If all processes have detached from a transaction, then
it is automatically aborted (this policy ensures that no transaction-protected data
reaches the file system if it was not explicitly committed). If a process temporarily
wants to stop using a transaction, but not abort it, then it may suspend the trans-
action (e.g., to temporarily switch between transactions). The suspend and detach
primitives allow processes to switch between transactions without adding system
call arguments. For example, a network server may concurrently service many sep-
arate clients. Each client’s data should be protected by separate transactions. On
exit, all uncommitted transactions are automatically detached.

Transactions can be automatically inserted into an existing application’s system
call stream using pre-defined profiles. For example, a profile can protect an entire
application by inserting a begin-transaction call on exec, and a commit-transaction
call on exit. Another profile could use file sessions to insert transactions [Santry
et al. 1999]: on the first open system call, a transaction is begun; on each subsequent
successful open, a counter is incremented; and decremented on close. When the
counter reaches zero, then the transaction is committed. Other transaction profiles
can be designed and developed, either for a general class of applications or even for
the behavior of a specific application.

3. IMPLEMENTATION

We developed a prototype ACID file system on Linux, called Amino. The key
implementation question for our file system is how to intercept calls and direct
them to the database transparently. We evaluated six techniques with respect to
the following two criteria:

—Legacy applications should not be modified. In the best case, unmodified binaries
can run without recompiling or relinking. We also considered techniques in which
the application must be recompiled or relinked, but its source code is unmodified.

—The interception technique must not insert caches between the application’s sys-

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

Extending ACID Semantics to the File System · 13

tem calls and the database. This is because any caches that are not managed by
the database suffer from two problems. First, if a transaction that spans multiple
operations is aborted, then the cache becomes stale. Second, if the caches are
accessed without consulting the database, then the isolation property is violated.

Finally, we considered the implementation effort and attempted to minimize
changes to existing infrastructure. We considered five choices.

In-kernel file system. The most direct approach would be to write a standard in-
kernel file system, which do not require relinking of binaries and into the existing
kernel architecture. They also have the advantage of running in kernel mode, so
they can minimize data copies and context switches.

In-kernel file systems, however, have two key disadvantages. The first is that
standard in-kernel file systems are intimately tied together with caches. This means
that substantial code changes would be required to ensure coherency between the
internal database caches and the external VFS caches. The second disadvantage
is that all of the database code would need to be ported to the kernel, and then
execute within the kernel address space. Although this is not an insurmountable
problem, it would introduce a code base into the kernel that is ten times larger
than most existing file systems.

FUSE. FUSE or Filesystem in Userspace is a hybrid user-kernel approach [Sz-
eredi 2005]. Like a standard kernel-level file system, no application modifications
are required. A standard kernel file system is used to interface with the VFS, but
VFS calls are sent to a user-space demon via a device. The user-space demon exe-
cutes the call and returns the data and status codes to the kernel-level file system,
which in turn passes them on to the user. This means that the database code need
not run within the kernel, eliminating one concern about developing an in-kernel
file system. Unfortunately, this approach still suffers from the same caching prob-
lems as a standard kernel level file system, in that cached accesses do not consult
the DBMS. As FUSE file systems run outside of the kernel, and have less control
over the VFS than a standard file system, these problems would be more difficult
to solve than with a standard kernel-level file system.

User-level NFS server toolkits. A user-level NFS server toolkit, like the SFS-
toolkit [Maziéres 2001], has many of the same advantages and disadvantages as
FUSE: applications need not be modified and the database can run in user level, but
the kernel caches information inside of the NFS client, thereby violating the isolation
property and creating coherence problems with the database caches. Additionally,
user-level NFS servers require additional data copies through the network stack, as
well as context switches.

Library Modifications. Another option is to run our file system directly in the
address space of user processes and intercept system-call wrappers using a modified
C library [Korn and Krell 1990] or the LD PRELOAD runtime-linker mechanism. This
approach has three main advantages. First, as file-system calls are intercepted at
the highest possible level, there are no cache coherency or isolation issues to con-
tend with. Second, the database does not need to run in the kernel. Third, data
copies between the process and the kernel are not required. There are, however,

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

14 · Wright et al.

four disadvantages. First, system calls that do not use the library wrappers are not
intercepted, so not all code would work with this approach. Second, statically linked
binaries must be recompiled to use the LD PRELOAD or C library approach (for the
C library approach all binaries must be recompiled). Third, with the LD PRELOAD

approach the C library itself continues to use the existing calls, so every call of in-
terest must be intercepted (e.g., fprintf must be intercepted because applications
use it to write to the file system). Fourth, a modified C library introduces circular
dependencies with the BDB library. For example, BDB needs the fwrite library
call, but that call in turn would depend on BDB.

ptrace. The final option we considered was using the process-tracing facility,
ptrace [Haardt and Coleman 1999]. The process-tracing facility allows a monitor

to intercept and modify system calls and signals. From the perspective of the
application, the monitor is equivalent to the OS, so no application modifications
are required. As shown in Figure 1, the monitor runs in user-level, so BDB does not
need to execute within the kernel. Unlike the library approach, a single instance of
the monitor can handle multiple processes, so it is simpler to share data, caches,
and other resources.

int 0x80
iret

int 0x80
iret

int 0x80
iret

...

Process 1

Process N

Amino Monitor

Process 2

K
E

R
N

E
L

...
wait
ptrace

wait
ptrace

wait
ptrace

B
D

B

Thread N

Thread 2

Thread 1

Fig. 1. The Amino monitor can trace an arbitrary number of processes. At system call entry,
the kernel signals the monitor via the wait system call, and Amino manipulates the monitored
processes’ state with ptrace primitives.

The major disadvantage of the ptrace approach is that performance may suffer
for system-call–intensive programs, as more context switches are required for each
system call. However, we felt that ease of development and cache consistency
outweighed performance concerns.

In Section 3.1 we describe the process tracing primitives. In Section 3.2 we
describe the structure of the Amino monitor. In Section 3.3 we describe Amino’s
process control blocks, and in Section 3.4 we describe Amino’s path resolution and
mount framework. In Section 3.5 we discuss address space issues.

3.1 Process Tracing Primitives

The ptrace framework provides three primitives to establish tracing: the monitor
can issue PTRACE ATTACH to begin tracing a currently running process, the monitor
can issue PTRACE DETACH to stop tracing, and one of the monitor’s children can
issue PTRACE TRACEME to be traced by the monitor. Our monitor begins by forking a

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

Extending ACID Semantics to the File System · 15

new child, issuing PTRACE TRACEME, and then executing the to-be-traced executable.
From this point onward, the monitor is notified via the wait system call whenever
the child needs attention.

The monitor uses three primitives to control the execution of the child process.
(1) PTRACE SYSCALL continues execution until the next entry or exit from a system
call. If the child is in user-mode, then the child process is stopped before the kernel
enters the system call handler, so that the monitor can change the arguments,
or even the system call to be executed. If the child process is in the midst of
executing a system call, then the kernel completes the routine and the monitor can
examine and change any return values. (2) PTRACE CONT continues execution until
the child receives a signal. (3) PTRACE SINGLESTEP continues execution until the
next instruction.

When the child is in the stopped state, the monitor uses four primitives to
observe and manipulate the child process: PTRACE GETREGS, PTRACE SETREGS,
PTRACE PEEKDATA, and PTRACE POKEDATA.
PTRACE GETREGS retrieves the values of the registers saved during a context switch

from the kernel’s process control block. On the Intel 80x86 architecture, the eip

register contains the program counter, the eax register indicates what system call
the process wants to execute, and the remaining general purpose registers contain
the system call’s arguments. Our current implementation is tied to the 80x86
architecture, because it references these registers, but it would not be difficult to
add support for other architectures as the ABI is similar on all Linux platforms. In
our prototype, only 451 out of 12,187 lines of code reference 80x86 specific registers.

The monitor can also manipulate the registers with the PTRACE SETREGS primi-
tive. Before a system call, the call to execute can be changed by setting eax, and
the arguments can be changed by updating the corresponding registers. After a sys-
tem call is executed, the return value can be set by updating the value of eax. At
any point in time, the execution flow of the program can be changed by modifying
eip. This is required when a single system call must be implemented in terms of
several other system calls. Finally, there are two primitives to examine and update
a word in the child process’s memory: PTRACE PEEKDATA and PTRACE POKEDATA.
These primitives are used when the system call takes pointer arguments (e.g., file
names are passed as strings, and stat fills in a user-supplied buffer).

Figure 2 shows an example of how the Amino monitor handles a read system
call destined for the database file system on behalf of a user process. There are ten
steps involved in this call:

(1) The user process issues a system call using int 0x80. The system call to
execute is stored in eax.

(2) The wait system call in the monitor returns the process ID of the user process.

(3) The monitor issues a PTRACE GETREGS call to retrieve the value of eax. Based
on eax and the call’s arguments, Amino determines whether this call is destined
for the database. If the call is not destined for the database, then Amino allows
the process to continue with no further intervention.

(4) If this call is destined for the database, then Amino changes the registers to
prevent the kernel from handling the call. In the case of read, Amino sets
eax to –1, thus the kernel essentially ignores the call because no handler is

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

16 · Wright et al.

(10) iret (9) syscall

(8) setregs

(4) setregs

(3) getregs

(2) wait(1) int 0x80

A
m

in
o

M
on

ito
r

K
er

ne
l

U
se

r
P

ro
ce

ss

(5) poke

(7) wait

(6) syscall

Fig. 2. ptrace primitives used to handle a read system call. Arrows indicate control transfer.
Double arrows indicate that the function was called and returned immediately.

associated with –1.

(5) Amino performs the database read operation, and uses the PTRACE POKEDATA

primitive to write the returned data into the user process’s address space (we
also have an optimized mechanism described in Section 3.5).

(6) Amino instructs the kernel to continue execution until the end of the call and
calls wait (in this case the call returns immediately without performing any
service, because eax was set to –1 in step 5).

(7) The kernel executes the system call, and returns from wait.

(8) Amino uses the PTRACE SETREGS primitive to store the return value of the
previously executed read in eax.

(9) Amino uses the PTRACE SYSCALL primitive to allow the user process to continue
executing.

(10) The kernel issues an iret instruction to return control to the user process.
The user process reads the return value from eax, and it is as if the system call
were serviced by the kernel.

3.2 Amino Structure

The Amino monitor begins by forking a child process to trace. After the fork,
the child executes the program to be monitored. All of the process’s descendants
are also monitored, and each monitored process is assigned a state. The two most
common states are InUser and InCall, which indicate that the process is exe-
cuting user-level code or that it is executing a system call, respectively. To service
requests, Amino calls the wait system call. When a process requires attention,
usually because it is entering or exiting a system call, the kernel returns its process
ID as the result of the wait system call (wait also returns when a signal is delivered
or a process exits).

After returning from wait, Amino retrieves the current process’s state and per-
forms an appropriate action. There are currently 19 states (including InUser and
InCall). Most of the states indicate that the user process is in the midst of a
specific call, for example clone, exec, chdir, or dup. One of the most important

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

Extending ACID Semantics to the File System · 17

states is InForceRet, which indicates that the return value of the presently exe-
cuting system call should be overridden by a given value. This state is used by most
database calls to pass back status information. In the example in Section 3.1, the
return value of the read is determined in step 5, but is not yet returned. When the
return value is determined in step 5, the monitor sets the state to InForceRet.
After step 7, Amino looks up the state and because it is InForceRet, Amino
sets the value of eax to the proper return value. Two other states of note are
RedoCall which indicates that the current system call should be repeated, and
RestoreRegs which indicates that the process’s registers should be set to their
original values. RedoCall allows us to insert a new system call into the stream
(e.g., to create shared memory regions), and RestoreRegs is used when we need
to change system call arguments (e.g., when rewriting file names).

3.3 Process Control Blocks

The monitor maintains each process’s state in a private process control block (PCB).
The monitor’s PCB is independent of the OS PCB, and contains the process ID to
use as a search key, a copy of the process’s registers, the current state of the process
(e.g, InForceRet), and all state-specific information (e.g., the return value to be
passed back to the application). Encapsulating all of this information in a single
structure allows the monitor to handle concurrent processes.

Like an OS PCB, the monitor’s PCB contains an open-file table and present
working directory (PWD). The open-file table is a simple array with a slot for each
possible file descriptor. If a given file descriptor is connected to an Amino file, then
its slot contains a pointer to a structure describing the file; otherwise it is empty
(NULL). If a system call uses a file descriptor as an argument, it is looked up in the
open-file table. If the file descriptor’s slot is empty, then the system call proceeds
with no further intervention. Otherwise, Amino extracts the schema data (i.e., the
database and environment handles) and the unique file identifier from the open-file
table and directs the call to BDB.

Amino cannot arbitrarily assign file descriptors to the user-level process, because
the kernel would not know that a given file descriptor is in use. To handle this
situation, Amino uses shadow descriptors. When opening a file in the database,
Amino changes the path name to “/” before letting the system call proceed. The
resulting file descriptor (in the child process) is used as a place holder, and no system
calls are issued against it. The kernel does not assign the resulting descriptor to
any other file, so Amino can correctly identify the calls that it handles.

3.4 Mount Subsystem

The Amino monitor maintains a mount table to associate pathnames with database
schemas. On startup, an Amino configuration file provides a list of paths to manage,
and for each path, the mount type and data (the configuration file is essentially
equivalent to /etc/fstab). Currently, Amino supports BDB mounts that take the
database pathname as an argument. When Amino encounters a system call that
references one of these paths, Amino passes it to the appropriate routine.

Pathnames passed to system calls can be rather complex. If they are relative
path names, then they depend on the process’s context. Any path can use the “..”
operator to move one level up the directory tree. We store paths as stacks, with

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

18 · Wright et al.

the root path represented as an empty stack, and a path such as /usr/local/bin
is represented by a stack containing usr, local, and bin. If a path is managed
by Amino, then it is a child of one of the mount-table entries described in the
configuration file. To rapidly determine if one path is a child of another, the path
structure also contains a depth, and a length for each path component.

Each PCB contains a path stack for the PWD. When a chdir or fchdir system
call is issued, the new PWD is stored as a candidate. If the system call is successful,
then the candidate becomes the PWD. The mount table also uses a path stack to
identify the path for each mount.

To resolve a path that is passed to a system call, first the process’s PWD is copied
to a new stack. If the path begins with a “/,” then the stack is emptied. Each
subsequent component is pushed onto the stack. If the component is “..,” then an
element is popped off the stack (unless of course the stack is already empty). After
converting the string pathname into a path stack, the monitor searches the mount
table for any mount that contains this path. The path structure is optimized for
this purpose: if the path has a lower depth than the mount, then it cannot be
a child; and the length is stored with each component so the component names
only need to be compared if they have equal length. If one is found, then the
path components after the root of the mount are extracted (e.g., if the path is
/usr/local/src/amino and the mount is rooted at /usr/local, then src/amino

is extracted). The mount private data containing the database handles and the
extracted path are then passed to the BDB call. If the path name is not contained
in a mount, then Amino allows the system call to go through without any changes.

3.5 Address Spaces

There are two distinct address spaces involved in executing the Amino monitor: (1)
the address space of the monitor and (2) the address space of the user process. The
ptrace primitives to access the user process’s address space are rather limited—
they can only examine or change one word at a time. Thankfully, Linux provides
a more powerful interface to it through the /proc file system. A process with
permission to ptrace another process may read from the traced process’s memory
using the /proc/pid/mem file, where pid is the PID of the traced process. This
allows the transfer of up to a page (1,024 words on the 80x86) in a single system
call. Linux also has support to write to /proc/pid/mem, but it is disabled by
default. For our prototype, we have enabled a writable /proc/pid/mem to allow
bi-directional bulk transfers. Finally, we also allow regions of the child’s address
space to be memory-mapped into the monitor, thus providing a zero-copy transfer
method. If the /proc/pid/mem interface is not available for reading or writing,
then Amino falls back to PTRACE PEEKDATA and PTRACE POKEDATA.

All system call arguments must be in the user processes’ address space. For
example, the first argument to open is a pointer to a string. If Amino needs to
update these values, then it must manipulate the child’s address space. It is not
always possible to manipulate the file name in place, because the new file name may
be longer than the existing file name, and the memory segment may be read only.
To address this issue, previous ptrace monitors have modified either the stack,
or the first writable segment. In Amino, we establish a System-V shared-memory
region between each user process and the monitor. When the first system call is

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

Extending ACID Semantics to the File System · 19

issued with an argument that needs to be updated, the monitor creates a shared
memory region. Next, the monitor inserts a shared-memory attach operation in
to the child’s system call stream. At this point, Amino writes the new file name
into its own address space, and updates the child’s registers to point to the shared
memory in the child’s address space. After the call, the child’s original registers
are restored. Subsequent arguments can be rewritten by simply updating the local
region, and the child’s registers. This approach has the advantage of requiring no
data copies, and the child’s existing memory is not modified, therefore the child’s
memory does not need to be restored after the call.

3.6 ptrace Enhancements

The standard ptrace interface requires at least six context switches for each system
call: (1) the traced process traps into the kernel; (2) the kernel transfers control
to the monitor; (3) the monitor transfers control to the kernel; (4) after executing
the system call, the kernel transfers control back to the monitor so that the return
value can be manipulated; (5) the monitor transfers control back to the kernel; and
finally, (6) the kernel transfers control back to the traced process. In reality, more
context switches are required as the monitor must retrieve the values of traced
process’s registers, issue system calls to provide OS-like services, etc.

Clearly, reducing the number of times that the monitor is called improves per-
formance. For most calls the monitor needs to be notified only on entry. If the call
is not destined for an Amino file system, the monitor does not need to examine the
return value so the call could execute without further intervention by the monitor.
If the call will be handled by the Amino file system, the return value could be set
and the monitor need not be notified. Unfortunately, these two modes of operations
are not possible under the current ptrace interface.

We created two new ptrace operations: PTRACE CHECKEMU and PTRACE SYSSKIP.
The PTRACE CHECKEMU operation is similar to the PTRACE SYSEMU operation that was
recently introduced to improve the performance of User Mode Linux [Dike 2000].
The primitive PTRACE SYSEMU allows all of a process’s system calls to be emulated,
but it is not suitable for the Amino monitor, because we emulate only a subset of
the system calls. Our PTRACE CHECKEMU interface allows the monitor to determine
whether emulation is required after examining the registers. The UML developers
agree that our more general PTRACE CHECKEMU interface is an improvement over
the existing PTRACE SYSEMU [Giarrusso 2005]. The corollary to PTRACE CHECKEMU is
PTRACE SYSSKIP. When the Amino monitor does not implement a call, then it issues
PTRACE SYSSKIP instead of PTRACE SYSCALL to bypass notification of this system
calls return value and go directly to the start of the next system call. Together, these
primitives reduced traps into the monitor by 30.8% during an OpenSSH compile.

Finally, there are also many non-file-system system calls that the monitor need
not intercept at all (e.g., time or getpid). To reduce the number of extraneous
calls into the monitor, we added an optional bitmap of system calls to the task
structure. By using a new ptrace primitive, PTRACE SELECT, the monitor selects
precisely the set of calls that need to be traced. This method reduced the number
of traps to the monitor by an additional 12.8% during an OpenSSH compilation.
Overall, these techniques reduced the number of traps to the monitor by 43.7%.

These three improvements can benefit a wide variety of ptrace monitors. For

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

20 · Wright et al.

example, the PTRACE CHECKEMU grew out of work for User Mode Linux, but provides
a more flexible interface that can be used by a monitor that emulates a subset of
system calls. Many security-oriented monitors need to examine only which system
calls are being executed and their arguments, but not their return value. For these
types of monitors, PTRACE SYSSKIP would greatly improve their performance. The
strace program provides support for filtering the set of system calls to display (e.g.,
file system, process, or IPC related calls), but this filtering is done in user-space.
By using PTRACE SELECT, strace could have the kernel perform this filtering.

4. EVALUATION

We evaluated the performance of our system by running several general-purpose
workloads and micro-benchmarks. We chose three general-purpose benchmarks:
the Postmark benchmark [Katcher 1997] (Section 4.1), an OpenSSH compile (Sec-
tion 4.2), and a Sendmail benchmark (Section 4.3). We also ran two sets of
micro-benchmarks: meta-data–intensive micro-benchmarks (Section 4.4) and data-
intensive micro-benchmarks (Section 4.5).

For all our benchmarks we used a dual 2.8Ghz Xeon machine running Fedora
Core 4 with all updates as of February 20, 2006. All experiments were located
on a dedicated 147GB 10,000RPM Fujitsu U320 SCSI disk (model MAP3147NC).
The benchmark scripts, system utilities, and results were stored on an identical
disk. We compared Ext3 to Amino using BDB databases stored on Ext2. We
used Ext2 as the underlying file system for Amino, because BDB provides ACID
semantics even without a journaling file system. We chose to use Ext3 as a basis for
comparison, because it provides a limited subset of the ACID properties, whereas
Ext2 does not. To ensure a cold cache, we remounted the file systems between each
iteration of a benchmark. For all tests, we computed the 95% confidence intervals
for the measured quantity the Student-t distribution. Unless otherwise noted, the
half-widths of the intervals were less than 5% of the mean.

We used the following nine configurations for our tests:

vanilla The benchmark is run on Ext3.

vansync The benchmark is run on Ext3, but the file system is mounted with the
sync mount option to provide durability.

strace The benchmark is run on Ext3, but is monitored by strace -cf. This
configuration shows the overhead of the ptrace facilities by counting system
calls, but does not modify any calls or produce any output during execution.

aminotrace The benchmark is run on Ext3, but is monitored by the Amino
monitor. This configuration shows the overhead of ptrace and our path-name
resolution infrastructure.

aminonull The benchmark is run on Ext3, but all operations are emulated by
the Amino monitor. This measures the overhead of ptrace, our path-name
resolution and the operations required to implement a file system using ptrace.

aminoaci The benchmark is run through the Amino monitor with a BDB database
stored on an Ext2 file system. BDB is configured to provide atomicity, consis-
tency, and isolation, but not durability.

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

Extending ACID Semantics to the File System · 21

aminoacid This configuration is the same as aminoaci, but durability is also
provided because BDB flushes the log to disk on each commit.

aminotxn This configuration is the same as aminoaci, but the benchmark is mod-
ified to insert calls to begin and commit Amino transactions. This measures the
overhead of adding transactional code to the applications and the transactional
code in the database, without incurring durable writes.

aminodtxn This configuration is the same as aminotxn, but with durability en-
abled. This configuration improves performance over aminoacid, because data
needs to be flushed to disk only after the transaction is committed, rather than
after every system call.

As you can see, we often use two similar configurations one with and another
without durability to separate the cost of synchronous writes from the cost of other
functionality.

4.1 Postmark

Postmark 1.5 is an I/O-intensive benchmark that stresses the file system by per-
forming a series of file system operations such as directory look ups, creations, and
deletions on small files [Katcher 1997]. Postmark is typically configured by specify-
ing a number of initial files, and a fixed number of transactions (this is Postmark’s
term for an operation, and is distinct from Amino transactions) to run. Postmark
then creates the initial pool of files, performs the fixed number of transactions, and
removes any leftover files. Unfortunately, running a fixed number of transactions
makes it difficult to compare two configurations that have large differences in the
amount of time they take to run (e.g., a durable vs. non-durable configuration),
because a configuration large enough to stress the non-durable configuration takes
too long on the durable configuration, and vice versa. To solve this problem, we
modified Postmark such that it still takes an initial number of files as a parameter,
and in addition a time limit. Our modified Postmark creates the initial pool of files,
performs transactions for the specified time, and then removes any leftover files.
The metric of interest in our modified Postmark is the number of transactions per
second. We also measured the CPU utilization of Postmark and our monitor.

The first Postmark configuration we chose is to create 2,500 files ranging from
512 bytes to 10KB, and perform transactions for three minutes. We used the read

and write system calls (as opposed to Unix buffered I/O), and a transfer size of
4,096 bytes for both Ext3 and Amino.

The Postmark results are shown in Figure 3. The vanilla configuration per-
formed 1,591 transactions/second and had a CPU utilization of 40.3%. The van-
sync configuration synchronously writes data and meta-data to disk to provide
durability. The vansync configuration was slower than vanilla by a factor of
100.2, due to additional synchronous disk writes. The strace and aminonull
perform 37.7% and 23.7% fewer transactions than vanilla, respectively. This
shows the overhead of the process-tracing facilities. Overall, Amino’s CPU uti-
lization is slightly less than strace. The Amino monitor uses 53% less system
time than strace (the monitor in the strace configuration), because it accesses
all process registers using a single system call instead of one system call for each
register. However, Amino uses 60.0% more user time than strace because it has

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

22 · Wright et al.

to resolve each path name. The aminonull configuration performs 30.1% fewer
transactions than vanilla, but is 8.3% worse than aminotrace. This shows the
added overhead of performing the operations within the monitor.

 0

 500

 1000

 1500

 2000

 2500

AMINODTXNAMINOTXNAMINOACIDAMINOACIAMINONULLAMINOTRACESTRACEVANSYNCVANILLA
 0

 20

 40

 60

 80

 100

T
ra

ns
ac

tio
ns

/s
ec

on
d

C
P

U
 U

til
iz

at
io

n
(%

)

1591

40.3%

15 0.3%

990 46.0%
1214

43.7%
1112

44.8%

2101

98.2%

22 2.5%

1663

98.2%

41 4.2%

Transactions/sec
Monitor User CPU

Monitor System CPU
Application User CPU

Application System CPU

Fig. 3. Postmark. The left axis is transactions/second and the right axis is CPU utilization.

aminoaci provides atomicity, consistency, and isolation using BDB. It performs
31.9% more transactions than vanilla, but at a cost of increased CPU utilization—
98.2%. Two factors increased CPU utilization. First, Amino requires more data
copies than vanilla or aminonull, because it copies data from the kernel into
the BDB cache and then from the BDB cache into the user-space process. Sec-
ond, BDB has more complex data structures and thus uses more CPU than Ext3.
However, this is offset by more efficient I/O. aminoaci wrote 86.8% fewer sectors
than vanilla and these I/O operations took 99.8% less time. This shows that
a file system built on a database can provide atomicity, consistency and isolation
with good performance, even for I/O-intensive applications, because we can quickly
access files and directories with our schema and BDB efficiently writes data to the
log.

aminoacid provides all four ACID properties: atomicity, consistency, isolation,
and durability. To provide durability, the database log must be synchronously
written to disk after each transaction. This leads to an expected overhead of a
factor of 72.3 over vanilla, but aminoacid provides semantics closer to vansync.
When compared to vansync, aminoacid improves performance by 46%.

In aminoaci, each individual system is protected by a transaction. In aminotxn,
we modified Postmark to begin and end Amino transactions before each high-level
operation (i.e., create, remove, read, or write a file) that Postmark refers to as a
transaction. In this configuration, Amino provides application-level consistency, so
there are never any partially written files. This decreases the transactions per sec-
ond that Amino can sustain by 20.8%, because more CPU is required to manage the
transactions and the CPU was already saturated at 98.2%. The final configuration
we used was aminodtxn, which combines the consistency properties of aminotxn
with the durability of aminoacid. The aminodtxn configuration is 81.6% faster
than the aminoacid configuration and 2.6 times faster than the vansync configu-
ration. Moreover, the aminodtxn configuration provides application-level consis-
tency, whereas the vansync and aminoaci configurations do not.

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

Extending ACID Semantics to the File System · 23

In sum, we show that Amino can provide performance as good as Ext3, but has a
higher CPU utilization. Moreover, with only small modifications, applications can
improve durable performance and benefit from full ACID semantics.

Alternate Configurations. We also ran two alternate Postmark configurations
that are slight modifications of the first configuration. The first alternative config-
uration has ten times larger files: from 5,120–102,400 bytes. The second configura-
tion has ten times more files: we increased the number of initial files to 25,000; for
this configuration we introduced 250 subdirectories, so that Ext3 would not have
to perform linear scans over 25,000 files for some operations.

Larger Files. The results for vanilla, strace, aminotrace, and aminonull
were similar to the original configuration. vanilla performed 495 transactions per
second, and strace, aminotrace, and aminonull performed 44.6%, 26.1%, and
35.1% fewer transactions per second, respectively. The aminoaci and vanilla
configurations performed a statistically indistinguishable number of transactions.
However, the aminoaci configuration used significantly more CPU: 93% vs. 27.6%.
This shows that Amino loses some of its performance advantage for this benchmark
as the benchmark shifts from a more meta-data–intensive benchmark to a more
data-intensive benchmark. The aminotxn configuration performed 18.6% fewer
transactions than the aminoaci configuration.

The vansync, aminoacid, and aminodtxn configurations performed 147.6,
91.2, and 21.9 times fewer transactions than vanilla, respectively. These results
are similar to the original Postmark configuration: aminoacid was 61.8% better
than vansync and aminodtxn was 4.0 times better than aminoacid. The major
difference is that aminodtxn performed 4.0 times better than aminoacid rather
than 81.6% better. The reason that aminodtxn outperformed aminoacid more
than in the previous configuration is that more individual write operations were
required for each transaction, so a larger number of writes could be coalesced into
a single synchronous log write.

More Files. vanilla performed 346 transactions per seconds, and was outper-
formed by aminoaci by a factor of 4.3. The reason is that vanilla spreads the files
through many cylinder groups, but aminoaci stores them together in a balanced
tree, improving locality thereby reducing wait time. However, this comes at a cost
of increased CPU utilization, aminoaci used 94.1% of the CPU and vanilla only
used 9.3%. The strace, aminotrace, and aminonull configurations performed
as expected: 32.3%, 26.9%, and 32.0% slower than vanilla, respectively.

As expected, the synchronous configurations were slower: vansync and
aminoacid had a 24.7 and 17.5 times slowdown, respectively. Again, aminodtxn
was the most efficient synchronous configuration with only a 10.2 times slowdown
over vanilla. This demonstrates that explicitly marking transactions, combined
with BDB’s highly-tuned logging infrastructure, improves durable performance.

4.2 OpenSSH Compile

To simulate a more CPU-intensive typical user workload, we adapted the SSH build
workload [Seltzer et al. 2000], but used OpenSSH 4.2p1 as it builds cleanly on our
systems whereas SSH 1.2.26 did not. This workload stresses the Amino monitor,

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

24 · Wright et al.

as it requires significant amounts of additional CPU time in order to intercept sys-
tem calls. The compile benchmark is divided into three phases: (1) unpack, (2)
configuration, and (3) build. We measured the elapsed, system, and user time of
each of the phases separately to isolate their different characteristics. In contrast to
our previous benchmarks, lower values are better than higher values. In the unpack
phase, the package is uncompressed and new files are created by tar. In the system-
call-intensive configuration phase, the configure shell script preforms many small
configuration tests, which involve a fair mix of file-system operations. The build
phase is more CPU-intensive and builds 157 object files, two libraries, eleven exe-
cutables, and sixteen man pages. In the unpack and build phase, aminotxn and
aminodtxn use transactionally-modified versions of GNU Make and tar, which
transactionally protect each operation (in Make we define an operation as a build
command and in tar each file extraction is an operation). In the other config-
urations, we use the standard GNU Make and tar. In the configuration phase,
aminotxn is identical to aminoaci and aminodtxn is identical to aminoacid.

 0

 5

 10

 15

 20

 25

 30

 35

 40

AMINODTXNAMINOACIDAMINOTXNAMINOACIAMINONULLAMINOTRACESTRACEVANSYNCVANILLA

T
im

e
(s

ec
)

0.09 0.11

30.26

0.10 0.16 0.21 0.14 0.19 0.16 0.22 0.66 0.42 0.66 0.43

17.48

0.64

6.14

0.57

Elapsed
Monitor User Time

Monitor System Time
Application User Time

Application System Time

(a) Unpack results.

 0

 100

 200

 300

 400

 500

AMINOACIDAMINOACIAMINONULLAMINOTRACESTRACEVANSYNCVANILLA

T
im

e
(s

ec
)

26.6 27.0

487.5

26.4
52.8 52.7 45.1 46.8 45.8 47.7 49.2 51.1

212.3

54.3

Elapsed
Monitor User Time

Monitor System Time
Application User Time

Application System Time

(b) Configuration results.

 0

 50

 100

 150

 200

 250

 300

AMINODTXNAMINOACIDAMINOTXNAMINOACIAMINONULLAMINOTRACESTRACEVANSYNCVANILLA

T
im

e
(s

ec
)

35.3 35.1

225.3

35.2
46.4 46.1 46.2 48.2 46.1 48.2 49.2 51.0 49.6 51.5

186.6

54.7 54.7 53.4

Elapsed
Monitor User Time

Monitor System Time
Application User Time

Application System Time

(c) Build results.

Fig. 4. Each configuration has two bars grouped together. The left bar is for elapsed time; the
right bar consists of each of the CPU time components. Configurations with lower CPU and
elapsed time perform better than configurations with higher CPU and elapsed time. In some
instances, the CPU time components may be larger than the elapsed time, because processes
occasionally execute concurrently during compilation.

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

Extending ACID Semantics to the File System · 25

Figures 4(a), 4(b), and 4(c) show the results of each phase of the OpenSSH com-
pile benchmark. The unpack phase, shown in Figure 4(a), took 0.09 seconds on
vanilla. The strace configuration added an overhead of 84.4%, aminotrace had
an overhead of 59.9%, and aminonull had an overhead of 84.8%. For all three of
these Ext3 configurations, the benchmark completed quickly, because no disk writes
were performed during program execution due to the buffer cache. The aminoaci
configuration took 0.66 seconds to complete, which is a factor of 7.4 slower than
Ext3. The reason that aminoaci is slower than Ext3 is that the CPU time used
increased by 0.31 seconds from 0.11 seconds to 0.42 seconds. The aminotxn con-
figuration is similarly 7.5 times slower than vanilla, because of an increase in CPU
time; however, it provides application-level consistency (i.e., no partially written
files). The last three configurations we tested were vansync, aminoacid, and
aminodtxn. The vansync configuration is 340 times slower than vanilla, be-
cause changes are written to the disk synchronously. The aminoacid configuration
provides the same functionality; it is only 194 times slower than vanilla, because
BDB is optimized for durable performance. aminodtxn is only 69 times slower
than vanilla, but provides application-level consistency and durability.

The second phase of the benchmark, configuration, is shown in Figure 4(b). On
vanilla, this phase took 26.6 seconds. This phase of the benchmark is CPU and
system-call intensive, so the strace and aminotrace configurations had over-
heads over vanilla of 98.2% and 69.6%, respectively. The aminonull configura-
tion had an overhead of 72.1%. The aminoaci configuration has an overhead over
vanilla of 84.7%. When compared with aminotrace, the overhead of aminoaci
is only 9.0%. This demonstrates that our file system is relatively efficient, though
the CPU intensive nature of this workload causes the context switches and data-
copying induced by the monitoring infrastructure to degrade performance. Of note,
our ptracemonitoring infrastructure including the file system is faster than strace
alone. When durability is added, vansync is 18.3 times slower than vanilla, and
aminoacid is 7.9 times slower than vanilla. Again, this demonstrates that Amino
efficiently provides durable performance.

The build phase, shown in Figure 4(c), took 35.3 seconds on vanilla. Even
though this phase is the most CPU intensive phase of all, it is the least system
call intensive. Therefore, the monitoring infrastructure has a lower overhead than
in the configuration phase: 31.5% for strace and 31.1% for aminotrace. The
elapsed times for the strace and aminotrace configurations were statistically
indistinguishable, but aminotrace used 4.5% more CPU time. The aminonull
configuration had an overhead of 30.9%, which is statistically indistinguishable from
aminotrace. The aminoaci configuration had an overhead of 39.5%. Most of this
was due to a 45.2% increase in CPU time from 35.1 seconds to 51.0 seconds, caused
by BDB operations, additional data copying, and context switches. The aminotxn
configuration had an overhead of 40.8%, which is 0.9% higher than aminoaci. The
additional overhead is caused by a 1% increase in CPU utilization for tracking
transactions. The vansync configuration was 6.4 times slower than vanilla, and
aminoacid was 5.3 times slower than vanilla. The aminodtxn configuration
performed much better, with an overhead of only 55.1% over vanilla, just 15.6%
more than aminoaci. This demonstrates that although durability degrades perfor-

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

26 · Wright et al.

mance, much of the loss can be made up for by inserting explicit transactions.

4.3 Sendmail

We ran a Sendmail 8.13.4 server and varied the backing store for the /var/mail

directory which contains user mailboxes. We used a 2.8Ghz Xeon with 2GB as the
client and a 1.7Ghz Pentium 4 with 1GB of RAM as the server. The /var/mail

directory was stored on a dedicated 7200RPM Maxtor 40GB IDE disk. We did not
run Sendmail through our monitor, because it does not access the mail files. Instead,
it delegates that task to the local mailer. For the vanilla configuration, we used
the default local mailer. To provide isolation and an approximation of atomicity,
the local mailer performs locking and complex checks (e.g., repeatedly calling stat

to ensure that the file does not change). To ensure that mail is not lost (i.e.,
provide durability), the local mailer calls fsync after writing the message. These
checks are unnecessary under Amino, as our file system transparently provides
isolation to applications, without the need for explicit locking calls or repeated
checks. We wrote a simple mailer replacement that uses an Amino transaction to
provide ACID properties for the aminotxn configuration. Moreover, thanks to the
use of transactions, our delivery agent is six times shorter than the default local
mailer (72 lines vs. 441 lines); yet ours provides stronger consistency guarantees.
The strace and aminotrace configurations monitored the mail.local program.
The devnull configuration discarded the message.

We developed a Perl script that stress tests the mail server by continuously
sending mail using 32 concurrent threads. We created a pool of 100 users to receive
the mail, and each message had a randomly selected recipient. The messages sizes
were normally distributed with a mean of 5,993 bytes and a standard deviation of
4,166. We chose the size parameters based a 2.5%-trimmed mean of our non-spam
email for the past year. The test begins with a 60 second warmup period, in which
the test runs without measurement to avoid startup effects. After the warmup,
messages are sent for five minutes, and we record the mean achieved rate.

 0

 5

 10

 15

 20

 0 5 10 15 20

A
ch

ie
ve

d
ra

te
 (

m
sg

/s
ec

)

Requested rate (msg/sec)

IDEAL
DEVNULL
VANILLA
STRACE

AMINOTRACE
AMINOTXN

Fig. 5. Local mailer: requested vs. achieved load.

We ran the test for requested rates of 5–20 messages per second (MPS), and
plotted the requested rate against the achieved rate in Figure 5. Ideally, the server
would process exactly the same number of messages as were requested, but in
practice the network, CPU, and disk act as bottlenecks.

All configurations handled 5 MPS well, achieving the requested rate. The de-
vnull configuration achieved 10.1, 11.4, and 11.5 MPS for request rates of 10, 15,

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

Extending ACID Semantics to the File System · 27

and 20 MPS, respectively. This shows how many messages the machine could han-
dle if the disk was not a bottleneck. The vanilla configuration achieved 8.7, 9.3,
and 10.4 MPS for request rates of 10, 15, and 20 MPS, respectively. This represents
a decline of 13.9%, 18.4%, and 9.6% from the devnull configuration, respectively.
The strace configuration achieved 8.8–8.9 MPS for requested rates of 5–20 MPS,
and aminotrace achieved 8.7 MPS for a requested rate of 5–20 MPS. At 15 MPS,
this represents an overhead of 5.3% and 7.0% for strace and aminotrace, re-
spectively. At 20 MPS, this overhead increases to 16.6% and 15.0%, respectively.
aminotxn had degraded performance compared to the other configurations. It was
only able to handle 8.0–8.2 MPS for a requested rate of 5–20 MPS. Compared to
vanilla, this is a reduction of 7.2% for a requested rate of 10 MPS, 12.4% for a
requested rate of 15 MPS, and 22.6% for a requested rate of 15 MPS. Compared
to aminotrace, the overheads are between 5.7–7.7%. The aminotxn overheads
are clearly coming from two sources: (1) ptrace monitoring and (2) the Amino file
system itself. The Amino performance is poorer than Ext3, because Sendmail uses
multiple processes to deliver mail, thus causing increased lock contention to pro-
vide the isolation. BDB uses page-level locking for the Path and Data databases,
thus falsely limiting concurrency compared to Ext3 (which uses per-file locking).
One possibility for improving performance is to investigate alternative schema de-
signs that may yield a higher degree of concurrency (e.g., moving the data-local
meta-data to the end of the file would improve append performance, at the possi-
ble expense of sequentially reading the file). Even though aminotxn is slower, the
code is significantly smaller and simpler, which means that fewer bugs and security
flaws are possible, and the system is more reliable. Moreover, our local mailer pro-
vides improved guarantees. If the Sendmail local mailer exits successfully, then the
message has reached stable storage, but if the local mailer does not exit success-
fully (e.g., due to power failure or an operating system error), then the mailbox can
be corrupted. With our local mailer, the mailbox always remains in a consistent
state—regardless of whether the mailer exits successfully or not.

4.4 Meta-data Micro-benchmarks

We ran several micro-benchmarks on Amino to evaluate the overheads of primitive
file system functions. We broadly classify our micro-benchmarks into metadata
(described in this section) and data benchmarks (described in Section 4.5). The
meta-data operations we evaluated are create (and mkdir), unlink (and rmdir),
stat, and readdir. We chose these meta-data operations because they are a broad
cross-section of file system operations, and together with data operations account
for the vast majority of operations [Ellard and Seltzer 2003].

To generate metadata operations, we developed a C program that operates on
several directories each containing a fixed number of files. We used this method
rather than a generic data set (e.g., the source of a package), because when eval-
uating one specific method we did not want to use directory-reading operations
or lookups to determine which files must be operated upon. For all the metadata
workloads, we disabled atime updates on both in Ext3 and in Amino to isolate the
overheads of the metadata operation to be tested.

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

28 · Wright et al.

Create. To evaluate the create and mkdir operations, we used our C program
to create 1,000,000 files evenly spread across 5,000 directories (i.e., 200 files per
directory). We spread the files among the directories, to avoid unfairly penalizing
Ext3 for its linear lookup operation. For the durable configurations, which take sig-
nificantly longer than the non-durable configurations, we created only 100,000 files
evenly spread across 500 directories. configurations. To account for this difference,
we normalize the elapsed time to operations per second and CPU utilization.

0

10000

20000

30000

40000

50000

AMINOACID

AMINOACI

AMINONULL

AMINOTRACE

STRACE

VANSYNC

VANILLA

 0

 20

 40

 60

 80

 100

 120

 140

O
pe

ra
tio

ns
/s

ec

C
P

U
 U

til
iz

at
io

n
(%

)

34117

76.3%

73 0.3%

9970

91.2%

12875

87.7%

10719

89.1%

6298

95.2%

76 1.9%

Op/s
Monitor User CPU

Monitor System CPU
Application User CPU

Application System CPU

(a) Creation micro-benchmark.

0

5000

10000

15000

20000

25000

30000

AMINOACID

AMINOACI

AMINONULL

AMINOTRACE

STRACE

VANSYNC

VANILLA

 0

 20

 40

 60

 80

 100

O
pe

ra
tio

ns
/s

ec

C
P

U
 U

til
iz

at
io

n
(%

)

19296

38.0%

37 0.2%

11218

62.7%

11061

62.5%

12729

59.1%

7221

86.3%

144 2.6%

Op/s
Monitor User CPU

Monitor System CPU
Application User CPU

Application System CPU

(b) Deletion micro-benchmark.

Fig. 6. Creation and deletion micro-benchmark results.

As seen in Figure 6(a), vanilla created 34,117 files per second. The strace con-
figuration created 9,970 files per second, or a reduction of 70.8%. The aminotrace
configuration had a slightly lower reduction of 62.3% compared with vanilla. The
aminonull configuration had a 68.6% reduction compared with vanilla. Much of
this overhead derives from the context switches required for tracing, as evidenced
by strace, aminotrace, and aminonull using an additional 4.1, 3.0, and 3.7
times more CPU time, respectively.

aminoaci created 5.4 times fewer files per second than vanilla. There was a 6.7
times increase in CPU time as well. The application CPU time decreased by 18.6%,
because the application did not perform any creates in the kernel. However, the
monitor used an additional 6.0 times as much CPU time as the original process.
23.1% of this increase is attributable to the monitoring, the remaining 76.9% is
caused by setting registers, context switches, comparisons traversing B-trees, and
locking overheads. The aminoacid configuration ran 4.4% faster than vansync.

Unlink. To evaluate the performance of unlink and rmdir, we removed the files
and directories created by the create workload described above. We unmounted
and remounted the file system to ensure cold cache between the create and unlink

workloads. Figure 6(b) shows that the strace configuration performed 41.9%
fewer deletions per second than vanilla, mostly because of the context switches of
ptrace. aminotrace performed 42.7% fewer deletions per second than vanilla,
and aminonull performed 34.0% fewer deletions than vanilla. aminoaci ran
2.67 times slower than vanilla. The break up of the overhead is similar to that
of the create workload. aminoacid ran 3.9 times faster than vansync, because
of a 51.3% decrease in the wait time, as a result of 74.0% fewer sectors being
written. aminoacid writes fewer sectors, because Ext3 must update the inode

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

Extending ACID Semantics to the File System · 29

bitmap, directory block, and deleted inode which are stored in different locations
on disk, whereas Amino only needs to update a leaf node of the B-tree.

Stat. Directory lookups are one of the most common operations, because they
are a precursor for almost every meta-data operation (e.g., opening a file, creating
an entry, etc.). To evaluate the lookup operation, we ran stat on 5,000 directories
with 200 files each. After unmounting and remounting the file system, we performed
a stat system call on each of the files. Figure 7(a) shows the results for this
workload. The strace configuration performed 65.8% fewer lookups per second
than vanilla and used 6.4 times as much CPU time. The aminotrace and
aminonull configurations performed 56.2% and 57.3% fewer lookups than vanilla
and used 4.5 and 4.8 times more CPU time, respectively. The overhead for this
workload is caused by two factors. First, the monitor context switches contribute to
the increased system time. Second, the increase in user time is caused by resolving
each path to determine if it is destined for a BDB mount in the monitor.

0

5000

10000

15000

20000

25000

30000

35000

40000

AMINOACIAMINONULLAMINOTRACESTRACEVANILLA
 0

 20

 40

 60

 80

 100

O
pe

ra
tio

ns
/s

ec

C
P

U
 U

til
iz

at
io

n
(%

)

26625

33.6%

9118

74.0%

11656

68.7%

11354

69.5%

11558

86.3%

Op/s
Monitor User CPU

Monitor System CPU
Application User CPU

Application System CPU

(a) stat micro-benchmark.

0

20000

40000

60000

80000

100000

AMINOACIAMINONULLAMINOTRACESTRACEVANILLA
 0

 20

 40

 60

 80

 100
E

nt
rie

s/
se

c

C
P

U
 U

til
iz

at
io

n
(%

)

41761

1.8%

40242

7.5%

41106

4.5%

41177

6.1%

95296

48.9%

Op/s
Monitor User CPU

Monitor System CPU
Application User CPU

Application System CPU

(b) readdir micro-benchmark.

Fig. 7. Directory operation micro-benchmark results.

The aminoaci configuration performed 56.8% fewer lookups per second than
vanilla. This is statistically indistinguishable from tracing alone (aminotrace),
but aminoaci uses 26.7% more CPU time than aminotrace. The increased CPU
time over aminotrace is attributable to two factors: a 25.1% increase in monitor
system time (for reading pages from the database), and a 4.0 times increase in the
monitor’s user time to perform B-tree traversal. This is slightly offset by a 73.2%
decrease in application system time, because the kernel does not perform directory
searches on behalf of the process. Wait time is reduced by 54.9%, because 77%
fewer read I/O operations are required (even though 48.4% more sectors are read).

Readdir. We used the same working set as in the stat micro-benchmark to eval-
uate the performance of the readdir operation. We performed a readdir on
each of the 5,000 directories in sequence. The results are shown in Figure 7(b).
The strace, aminotrace, and aminonull configurations are all within 5% of
vanilla. The reason is that the directory reading is I/O-bound on Ext3, and
reading directory entries in sequence takes advantage of read-ahead. This allows
the slight increase in CPU time of at most 5.7% to overlap with I/O operations.
Additionally, as Linux provides the getdents call to read directory entries, the
total number of operations performed in the readdir workload is smaller than the
lookup workload, thus the monitor incurs fewer context switches.

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

30 · Wright et al.

The aminoaci configuration ran 2.3 faster than vanilla Ext3 for this workload.
The improvement is mainly due to a 77.8% decrease in wait time. Wait time is
reduced because Ext3 requires seeks to read each directory, as it does not place
directories close to each other on the disk. This is evidenced by Amino’s read
requests taking 46.8% less time even though 3.3 times as many sectors are read.
aminoaci stores the path names in a B-tree and hence has better spatial locality.
Therefore it requires fewer and shorter seeks to read directories. The use of B-trees
to store metadata and data makes Amino suitable for metadata-intensive workloads
which benefit from this locality.

4.5 Data Micro-benchmarks

To evaluate the performance of data operations we ran random read, random write,
sequential read, and sequential write micro-benchmarks. For each benchmark we
created an 8GB file, which is twice the size of the machine’s memory. This reduces
the effects that caches have on the workload, because the workloads cycle through
their list of blocks before rereading a block. For sequential operations, we operated
(read or write) on consecutive pages of the file in sequence. For random operations,
we generated a pre-populated pattern by randomly shuffling a sequential list of
page numbers, and operated on the file using the shuffled list. This method ensures
that there are no repeated pages so that caching does not affect the results.

For random and sequential reads we ran the workload for a 30 second warmup
period followed by a 150 second measurement period. The warmup period allows
the system to reach a steady state before measurement. For the sequential write
workloads, we used a warmup period of 120 seconds, ran the benchmark for ten
minutes and rebooted the machine between iterations. We used a longer write
warmup period, because writes are very fast until the cache is filled, at which point
the number of operations drops dramatically. We also used a longer measurement
period, because the synchronization phase (to clear dirty cached pages) takes several
minutes. The read benchmarks reached a steady state faster, so this additional
time was not required. For all benchmarks, we report the number of operations
performed per second and the percent of CPU utilization.

Sequential Read. The overheads of Amino under the sequential read workload are
shown in Figure 8(a). The vanilla configuration achieved 23,955 operations per
second and used 17.1% of the CPU. The strace configuration performed 53.9%
fewer reads and used 4.9 times as much CPU. The aminotrace and aminonull
configurations performed better, with 20.3% and 22.2% fewer operations, respec-
tively. The aminotrace and aminonull configurations also used less CPU time
than strace, with an increase of 149.9% and 159.0% over vanilla, respectively.

The aminoaci configuration performed 79.8% fewer operations than vanilla.
The small increase in user and system time is because of data copies and B-tree
comparison overheads. The increase in wait time is due to two factors: (1) sequen-
tial reads require more sector reads and fewer requests are merged in Amino than
in Ext3 as the data layout in Amino is a B-tree, and (2) Amino does not provide
any explicit read-ahead. The lack of read-ahead for Amino is exacerbated by the
Linux read-ahead policy. As soon as a non-sequential access to a file is made, read-
ahead is turned off. As BDB periodically accesses the database out-of-order, this

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

Extending ACID Semantics to the File System · 31

results in Linux performing I/O operations that are on average 2.9 times larger for
vanilla than for aminoaci. As part of our future research, we plan to investigate
more efficient data layouts, possibly including a hybrid model that combines a flat
file and a database structure.

 0

 5000

 10000

 15000

 20000

 25000

 30000

AMINOACIAMINONULLAMINOTRACESTRACEVANILLA
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

O
pe

ra
tio

ns
/s

ec
on

d

C
P

U
 U

til
iz

at
io

n
(%

)23955

17.1%

11048

84.2%

19104

42.7%

18640

44.2%

4837

23.0%

Op/s
Monitor User CPU

Monitor System CPU
Application User CPU

Application System CPU

(a) Sequential read.

 0

 50

 100

 150

 200

 250

 300

AMINOACIAMINONULLAMINOTRACESTRACEVANILLA
 0

 1

 2

 3

 4

 5

 6

 7

O
pe

ra
tio

ns
/s

ec
on

d

C
P

U
 U

til
iz

at
io

n
(%

)

203

0.7%

201

2.1%

203

1.0%

203

1.0%

182
3.7%

Op/s
Monitor User CPU

Monitor System CPU
Application User CPU

Application System CPU

(b) Random read.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

AMINOACID

AMINOACI

AMINONULL

AMINOTRACE

STRACE

VANSYNC

VANILLA

 0

 10

 20

 30

 40

 50

 60

O
pe

ra
tio

ns
/s

ec
on

d

C
P

U
 U

til
iz

at
io

n
(%

)
9584

13.6%

74 0.3%

7344

59.7%

8871

26.9%

8819

27.9%

2638

25.3%

143 2.2%

Op/s
Monitor User CPU

Monitor System CPU
Application User CPU

Application System CPU

(c) Sequential write.

 0

 100

 200

 300

 400

 500

 600

 700

 800

AMINOACID

AMINOACI

AMINONULL

AMINOTRACE

STRACE

VANSYNC

VANILLA

 0

 2

 4

 6

 8

 10

O
pe

ra
tio

ns
/s

ec
on

d

C
P

U
 U

til
iz

at
io

n
(%

)

501

0.9% 63
0.3%

494

3.8%

493

1.6%

480

1.7%
203

5.2%

68

2.9%

Op/s
Monitor User CPU

Monitor System CPU
Application User CPU

Application System CPU

(d) Random write.

Fig. 8. Data micro-benchmark results.

Random Read. The results of the random read benchmark are shown in
Figure 8(b). The vanilla configuration performed 203.5 operations per second.
The strace, aminotrace, and aminonull configurations were all within 1%
of vanilla. The CPU utilization for all of these configurations was low, with
strace being the highest at 2.1%. The aminoaci configuration had an overhead
of 10.0%, and CPU utilization increased to 3.7%. Amino performed 0.99 disk read
operations per pread system that was issued, whereas Ext3 performed 1.19 disk
read operations per pread. However, Amino read 120.0 sectors for each pread

request, whereas Ext3 read only 9.6. These differences can be attributed to the
fact that Ext3 was configured to use 4KB blocks, but Amino’s Data database had
a page size of 64KB. The 21% decrease in disk read operations is caused by Amino
finding some of the blocks it needs to read in the cache. The 12.5 times increase in
the number of sectors read is caused by Amino reading the 14 adjacent file pages
from the database each time it reads a page.

Sequential Write. Figure 8(c) shows the sequential write workload results. The
vanilla configuration performed 9,584 write operations per second. The strace
configuration had an overhead of 23.4% over vanilla due to a 4.3 times increase
in CPU utilization. The aminotrace and aminonull configurations were 7.4%
and 8.4% slower than vanilla, respectively. However, they used 93.1% and
100.7% more CPU, respectively. The aminoaci configuration performed 72.5%
fewer writes, and used 112.6% more CPU than vanilla. Amino in its aminoacid
configuration ran 92.3% faster than Ext3 in its synchronous mode of operation.

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

32 · Wright et al.

The difference is primarily due to an increase in merged disk write requests because
Ext3 requires non-contiguous changes to blocks and block bitmaps, whereas Amino
just needs to commit changes to the B-tree leaf nodes.

Random Write. The random write workload does not produce normally dis-
tributed, results, because the Linux dirty buffer flushing daemon is quite sensitive
to various cut-offs [Wright et al. 2003]. Figure 9 shows a time line of the number
of operations per second performed during the benchmark (sampled at one second
intervals). It is clear that there are large spikes (thousands of times larger than the
mean), which cause a high variance. The initially high numbers of operations per
second occur before the memory has many dirty buffers. Once a given number of
the buffers are dirty (e.g., 10%), Linux begins to write them out in the background.
This does not greatly affect the measured application, because it can still dirty
buffers without penalty. The precipitous drop is caused when the number of dirty
buffers exceeds a specified threshold (e.g., 40%). At that point, the application
must write out a number of buffers (e.g., 48) for every buffer that it writes. When
the combination of this throttling and the background flushing daemon bring the
total number of dirty buffers below 40%, this synchronous behavior is removed. If
the synchronous threshold were always 40%, then we would not expect this behav-
ior, but Linux dynamically changes the threshold, thus causing oscillations. Aside
from the large spikes, if we examine the values in the range from 100–1,000, we can
see that there is still significant variation. If we were to use longer measurement
periods, we would smooth some of the variation, but the large spikes are so much
larger (and unpredictable) that achieving a stable result is exceedingly difficult.

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900O
pe

ra
tio

ns
/s

ec
on

d
(lo

g
sc

al
e)

Time (s)

Fig. 9. Random write: operations/second (log scale) vs. time for vanilla. The Linux dirty buffer
flushing is very sensitive to certain thresholds, so the data is both periodic and highly erratic.

Other configurations also suffer from the same periodic and erratic behavior.
For example, strace has periods of fast writes approximately every three to four
minutes (strace has more of these periodic increases than vanilla, because it
writes buffers at a slower rate therefore the cache can drain more often). Including
a warmup period does not eliminate these kind of startup effects. Instead we ran
the random write benchmark for 15 minutes and measured the total number of
operations per second. The results of the benchmark are shown in Figure 8(d).
Figure 10 shows a box plot of the one second samples showing the first quartile,
median, third quartile, and outliers (i.e., points that are more than 1.5 times the
interquartile range (Q3 − Q1) from the median) for each configuration. Note that
although aminoaci and aminoacid show outlying points near zero, the vanilla,

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

Extending ACID Semantics to the File System · 33

strace, aminotrace, and aminonull also have points in this range, but they are
not shown because the interquartile range for these configurations includes zero.

 0

 200

 400

 600

 800

 1000

AMINOACIDAMINOACIAMINONULLAMINOTRACESTRACEVANSYNCVANILLA

O
pe

ra
tio

ns
/s

ec
on

d

Op/s

Fig. 10. Random write box plot: Each box represents 50% of the data points, the horizontal bar
through the box is the median data point. The vertical lines extend 1.5 times the interquartile
range (Q3 − Q1) from the median. Outlying points above 1,000 are not shown to conserve space.

Figure 8(d) shows the overheads associated with Amino for the random write
workload. The vanilla configuration performed 501 operations per second and
utilized 0.9% of the CPU. When we consider each second of the benchmark in-
dependently, the interquartile range for this benchmark was 14–92 operations per
second (i.e., 25% of the samples were less than 14 operations per second, 50% of
the samples were between 14–92 operations per second, and 25% of the samples
were greater than 92 operations per second). The highest number of operations
achieved in one second was 68,864. The strace, aminotrace, and aminonull
performed 1.2%, 1.5%, and 4.0% fewer operations per second than vanilla. Most
of the one second samples were faster than vanilla for these configurations, with
interquartile ranges of 39–213, 19–113, and 23–125 for strace, aminotrace, and
aminonull, respectively. However, the maximum achieved values were lower at
13,619, 36,854, and 34,614 operations per second, respectively. These two effects
balanced out, with the mean value for vanilla, strace, and aminotrace being
statistically indistinguishable and the aminonull having a slight 4.0% overhead
due to an increase in CPU usage. The aminoaci configuration performed 59.3%
fewer writes than vanilla. This can be attributed to Amino writing 7.5 times as
many sectors per write operation, because the Data database uses a 64KB page
size, whereas vanilla can write data in 4KB units.

As expected, the durable configurations performed worse than the non-durable
configurations: vansync was 7.9 times slower than vanilla, and aminoacid was
7.9% faster than vansync.

5. RELATED WORK

In this section we discuss four classes of related work. In Section 5.1 we describe
systems that integrate databases with the file system. In Section 5.2, we discuss log-
structured and journaling file systems. We discuss transactional memory systems in
Section 5.3, and in Section 5.4 we describe various system-call interception methods.

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

34 · Wright et al.

5.1 Databases and File Systems

Previous simulations of transactions embedded in the file system showed that file
system transactions can perform as well as a DBMS in disk-bound configura-
tions [Seltzer and Stonebraker 1990]. The same simulations showed that for CPU-
bound configurations, file system transactions usually have an overhead caused by
system call costs of less than 20%.

The Inversion File System [Olson 1993] is a user-level wrapper library with file-
system–like functions that stores files in a POSTGRES database. Inversion uses
POSTGRES to support transactions and fast crash recovery. Unfortunately, Inver-
sion operates in its own namespace, separate from that of other file systems, and
uses different functions from the traditional Unix API, making it unsuitable for
integrating legacy and transactional applications.

OdeFS [Gehani et al. 1994], Oracle’s iFS [Oracle Corporation 2000], and
DBFS [Murphy et al. 2002] are user-level NFS servers that use databases as a
backing store. This approach allows unmodified applications to use the file system,
but ACID properties cannot be extended to the application because the NFS
client cache can serve requests without consulting the database system. Also
performance suffers due to data copies and context switches related to the network
stack. OdeFS is a file-system interface to objects already in the Ode object-oriented
database. For each type of Ode object, new methods must be defined for read,
write, and other file-system operations. DBFS is a block-structured file system
developed using BDB. DBFS exceeds FFS’s performance for meta-data operations.
However, for page-sized data operations it is 5 to 40 times slower.

WinFS is part of an upcoming version of Microsoft Windows [Microsoft Cor-
poration 2004] (originally WinFS was slated for Longhorn, but has been delayed
to “some future date”). WinFS will integrate a full-fledged SQL DBMS into the
OS. Using a heavyweight DBMS with SQL enables powerful queries, but could add
significant code complexity. Additionally, overheads may be significant depending
on schema design and query processing. WinFS uses the database as well as an
NTFS file system as a backing store for all files. WinFS changes the basic unit of
data storage from a file to an item (an object with attributes). The WinFS API
supports explicit transactions for items, but since the API is so radically different,
applications must change to take advantage of its new features.

QuickSilver is a distributed operating system developed by IBM research that
makes use of transactional IPC [Schmuck and Wylie 1991]. QuickSilver was de-
signed from the ground up using a microkernel architecture and IPC. Every IPC
request has a transaction ID, and servers must be able to rollback requests on abort
and write them to non-volatile storage on commit. All resource management and
notification in QuickSilver is handled by transactions. For example, on process
termination (commit or abort) the window manager destroys all windows. Amino
integrates transactions into the file system using simpler and more widely-used OS
primitives than QuickSilver. Unlike Quicksilver, in which each OS component must
provide specific transaction support for rollback and commit, Amino leverages BDB
so that each OS component or application can use simple begin, commit, and abort
calls, without managing its own rollback or commit.

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

Extending ACID Semantics to the File System · 35

5.2 Log-structured and Journaling File Systems

Log-structured and journaling file systems borrowed the technique of write-ahead
logging from databases [Rosenblum and Ousterhout 1991; Hagmann 1987]. The
key difference between a log-structured file system and a journaling file system is
that in a log-structured file system the log is the permanent home of the data,
whereas in a journaling file system the log is a temporary location until the data
is checkpointed to a permanent location on disk. In this respect, BDB, and hence
Amino, is more similar to a journaling file system than a log-structured file system.
When updates are made, they are first written to the database log file and then
written to their permanent locations within the database file. In log-structured
file systems, journaling file systems, and Amino, synchronous writes have improved
performance because they are written sequentially to the log, obviating the need to
seek to many locations of the disk for a single update.

Log-structured and journaling file systems write “transactions” to their log, but
these transactions are completely controlled by the file system software—user ap-
plications cannot surround multiple file system operations in a single atomic trans-
action. Additionally, the transactions in a log-structured or journaling file system
do not provide all of the elements of ACID. Instead, they provide atomicity and
consistency for well-defined operations within the file system, and durability can be
provided by flushing the log to disk. Notably, log-structured and journaling file sys-
tems do not include provisions for isolation apart from other facilities provided by
the OS (e.g., directory-level semaphores). Amino provides atomicity, consistency,
isolation, and durability for arbitrary sequences of file system operations.

5.3 Memory Transactions

Lightweight Recoverable Virtual Memory (LRVM) was developed to simplify Coda
servers [Satyanarayanan et al. 1994]. LRVM is designed to handle transactionally
protected memory-mapping of a file into a process’s address space. To simplify
LRVM’s design, the file should be a small portion of the total storage: the undo log
was stored in memory. Durability was provided by writing a redo log to disk. This
type of functionality is closer to Amino’s support for memory-mapped files than our
in-memory transactions, as our memory-mapping essentially provides recoverable
virtual memory. Our in-memory transactions, however, are designed to provide
more efficient volatile transactions (i.e., without the need for any redo logging).
LRVM was developed as a user-library and requires explicit calls to indicate that a
given region of memory will be written to. We believe that our page fault handling
mechanism for identifying writes is more convenient and robust. Indeed, the LRVM
authors point out that the most common types of bugs were missing calls before
manipulating a region, and suggest that language support for LRVM calls would
be a good solution to these missing calls.

The Rio, or RAM I/O, project sought to bring persistence to standard mem-
ory [Chen et al. 1996]. If memory is persistent, then file systems can avoid writing
data indefinitely, thereby improving performance by an order of magnitude. The
key observation is that most data in memory is lost because of either power failures
(which can be solved with a UPS) or software errors. To cope with software er-
rors, Rio uses page protection and checksums to prevent an errant instruction from

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

36 · Wright et al.

writing to memory. To update a page, it must be made writable, then the update
is performed, and finally the page is made read-only again. Checksums are stored
along with the data so that errors can be detected. This raises the bar for updating
memory, so that an errant instruction is unlikely to corrupt Rio memory.

The authors implemented a file cache with Rio, and showed that it can be as
reliable as a traditional disk-based file system under a variety of software faults.
However, the two major problems with the Rio architecture are that not all archi-
tectures support warm reboot (e.g., an x86 cannot be rebooted without destroying
RAM contents), and Rio also assumes that hardware and power failures are so rare
as to be ignored. Unfortunately, hardware is becoming an increasingly large source
of faults, as hardware components increase in number and complexity, and cost
pressures force the use of less reliable components [Ghemawat et al. 2003].

Vista is a transactional RVM built on top of Rio [Lowell and Chen 1997]. Vista
greatly improves the performance of an RVM system, because memory is assumed
to survive a system crash—avoiding synchronous writes. Because Vista is built on
top of Rio, it does not require a redo log, and the code complexity is much simpler
than that of previous RVM systems, at around 700 lines. In our system, we provide
a more rich transactional interface that includes nested transactions. Rather than
implementing redo logging and its associated complexities, we leverage existing
BDB code. Our completed transactional memory library is only 625 lines of code.

5.4 System Call Interception

The Ufo Global File system uses a similar interposition technique as our moni-
tor [Alexandrov et al. 1997]. Ufo provides transparent access to remote files via
FTP or HTTP. Ufo’s monitor uses the Solaris /proc file system. The monitor op-
erates on system calls such as open, close, and stat. When an access to a remote
file is detected, the file is transparently fetched, and the system call is changed
to open the local copy. Ufo does not implement other calls such as read, write,
getdents, or stat internally, because the file’s local copy can be used without
modifying the application. To implement getdents and stat properly, however,
sparse files are used to create stubs for files that are not yet locally cached. Creat-
ing this hierarchy of stub files hurts performance. The ptrace interface was used
by the Janus framework to sandbox untrusted applications [Goldberg et al. 1996].
Janus monitors file-system and network-related system call invocations, and applies
configurable policies to allow or deny system call execution.

Several other interposition techniques operate at the same logical system-call
level as Amino, but use a customized interface. SLIC [Ghormley et al. 1998] is an
OS extensibility system that allows kernel-level extensions or user-level servers to
register handlers for system calls, signals, and other OS entry points. SLIC has
been used to patch security holes, encrypt files, and provide a restricted execution
environment. SLIC extensions that run as user-level servers are quite similar to the
ptrace interface. Interposition agents provide higher-level abstractions for system
call interception [Jones 1993]. The key insight for interposition agents is that system
calls can be divided into classes that operate on independent sets of objects (e.g.,
path names or file descriptors).

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

Extending ACID Semantics to the File System · 37

6. CONCLUSIONS

Applications use an easy-to-use and standard POSIX API to access file systems,
but file systems do not provide transactional semantics. Databases provide trans-
actions, yet have differing and difficult-to-use APIs. Many applications can benefit
from transactions, which can greatly improve error handling and provide atomic
operations. For example, atomicity obviates the need for complex error handling,
because a transaction can simply be aborted without any ill-effects. Atomicity can
be used as a tool to ensure consistency, so that specialized and complex recovery
code is not required. Isolation allows applications to provide race-free updates.
Finally, durability ensures that data that was written actually reaches the persis-
tent storage. Because transactions are so useful and the file system interface is
convenient and ubiquitous, we therefore believe that file systems should provide
transactional semantics to applications. Furthermore, we contend that the combi-
nation of file system transactions and recoverable memory will enable developers to
use more robust and elegant error recovery methods than simply “giving up” and
terminating an application upon a failure.

We have designed and developed Amino, a prototype file system with ACID se-
mantics. Amino uses the Berkeley Database (BDB) as a backing store, with an
efficient file system schema. Using BDB’s flexible key-value pair access model,
meta-data properly migrates between the Path and Data databases—improving
performance for common operations while avoiding the pitfalls of logical redun-
dancy. Amino exports an easy-to-use, yet powerful, nested-transactions API to
user space. Applications can begin, commit, and abort transactions. We designed
a simple API to enable cooperating processes to share transactions. Using the same
API, a single application can support multiple concurrent transactions. To provide
powerful transactions to application data structures, we developed an RVM library
with support for nested transactions and transparent logging.

We have evaluated our prototype, and have shown that it has acceptable per-
formance. Amino configured for atomicity, consistency, and isolation is only 15.4%
slower than Ext3 even though it runs in user space and has additional overheads
due to ptrace. When durability is required, performance inevitably suffers because
of synchronous disk writes. Whereas providing durability for unmodified applica-
tions on Ext3 degrades performance by a factor of 25, Amino provides modified
applications durable performance with a slowdown of only 10 times. Moreover,
Amino provides applications with the additional benefits of atomicity, consistency,
and isolation. This validates our decision to build Amino on top of a database
rather than an existing file system.

6.1 Future work

Applications are currently responsible for handling their own data structures during
a transaction. If the application has internal state, and a transaction is aborted,
then its state and the file system state are not coherent. We plan to create an API
that will let applications use file system transactions to protect in-memory updates.
This way, applications can safely update their in-memory structures together with
an associated file. If the transaction aborts, then both the application’s memory
and the file are restored.

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

38 · Wright et al.

In our present design, the performance aspects of the ACID properties and build-
ing a file system on a database are conflated into a single metric. We are currently
exploring the alternative approach described in Section 2 of adding additional ACID
semantics to an existing file system. By adding simple kernel primitives (e.g., more
flexible mandatory locking), we can provide isolation. In concert with a standard-
ized and portable kernel-level undo and redo logging facility, we believe that we can
provide full ACID semantics to those applications that require it, with little or no
modification to existing applications.

We plan to improve the Amino’s performance by improving our data schema and
the ptrace monitoring interface. Currently our Data database uses a balanced
tree. We plan to create a custom access method that will give us control over
data placement by write pages to a file or disk directly, thus allowing us to align
data properly with the native OS page size and improve performance for data
operations, which suffer compared to a standard disk based file system. We also
plan to investigate changes to the Path database that would improve concurrent
access. Because the database schema is so flexible compared to a file system layout,
we also plan to explore application specific schemas (e.g., changing B-trees to hash
tables, adding fields, or introducing indices).

To further improve the ptrace interface, we believe that we should reduce both
the number of context switches and data copies between the kernel and the monitor.
We believe that two key ways to do this are: (1) the kernel should use a shared-
memory segment to manipulate the user process’s registers so that data copies and
context switches are reduced; and (2) several ptrace operations could be bundled
into a single system call (e.g., waiting for notification could be combined with
retrieving registers) to reduce context switches [Purohit et al. 2003].

To obtain copies of the micro-benchmark programs used in this article go to
www.fsl.cs.sunysb.edu/~cwright/benchmarks/.

Acknowledgments

Gaurav Poothia, Nagesh Chetan, and Sandhya Menon developed the initial kernel-
level memory-mapping interface for /proc/pid/mem. Tzi-cker Chiueh, Alex Mohr,
and Margo Seltzer, were generous of their time and provided significant helpful
input and comments on the work. Rob Johnson, R. C. Sekar, and the anonymous
TOS reviewers also provided useful feedback. This work was partially made possi-
ble thanks to NSF CAREER award CNS-0133589, NSF awards CCR-0310493 and
CNS-0614784, and HP/Intel gifts numbers 87128 and 88415.1.

REFERENCES

Alexandrov, A. D., Ibel, M., Schauser, K. E., and Scheiman, C. J. 1997. Extending
the Operating System at the User Level: the Ufo Global File System. In Proceedings of
the Annual USENIX Technical Conference. USENIX Association, Anaheim, CA, 77–90.

Berliner, B. and Polk, J. 2001. Concurrent Versions System (CVS). www.cvshome.org.
Callaghan, B., Pawlowski, B., and Staubach, P. 1995. NFS Version 3 Protocol

Specification. Tech. Rep. RFC 1813, Network Working Group. June.
Chen, P. M., Ng, W. T., Chandra, S., Aycock, C., Rajmani, G., and Lowell, D.

1996. The Rio File Cache: Surviving Operating System Crashes. In Proceedings of the

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

Extending ACID Semantics to the File System · 39

Seventh International Conference on Architectural Support for Programming Langauges
and Operating Systems (ASPLOS-VII). ACM, Cambridge, MA, 74–83.

CollabNet, Inc. 2004. Subversion. http://subversion.tigris.org.
Dike, J. 2000. A user-mode port of the Linux kernel. In Proceedings of the 4th Annual

Linux Showcase and Conference. USENIX Association, Atlanta, GA, 63–72.
Ellard, D. and Seltzer, M. 2003. New NFS tracing tools and techniques for sys-

tem analysis. In Proceedings of the Annual USENIX Conference on Large Installation
Systems Administration. USENIX Association, San Diego, CA.

Gehani, N. H., Jagadish, H. V., and Roome, W. D. 1994. OdeFS: A File System
Interface to an Object-Oriented Database. In Proceedings of the Twentieth International
Conference on Very Large Databases. Springer-Verlag Heidelberg, Santiago, Chile, 249–
260.

Ghemawat, S., Gobioff, H., and Leung, S. T. 2003. The Google file system. In
Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP ’03).
ACM SIGOPS, Bolton Landing, NY, 29–43.

Ghormley, D. P., Petrou, D., Rodrigues, S. H., and Anderson, T. E. 1998. SLIC:
An Extensibility System for Commodity Operating Systems. In Proceedings of the
Annual USENIX Technical Conference. ACM, Berkeley, CA, 39–52.

Giarrusso, P. 2005. Fwd: Re: [patch 1/4] UML Support - Ptrace: adds the host SYSEMU
support, for UML and general usage. www.uwsg.iu.edu/hypermail/linux/kernel/

0507.3/1992.html.
Goldberg, I., Wagner, D., Thomas, R., and Brewer, E. 1996. A Secure Environment

for Untrusted Helper Applications (Confining the Wily Hacker). In Proceedings of the
Sixth USENIX UNIX Security Symposium. USENIX Association, San Jose, CA, 1–13.

Haardt, M. and Coleman, M. 1999. ptrace(2). Linux Programmer’s Manual, Section
2.

Hagmann, R. 1987. Reimplementing the Cedar file system using logging and group
commit. In Proceedings of the 11th ACM Symposium on Operating Systems Principles
(SOSP ’87). ACM Press, Austin, TX, 155–162.

IEEE/ANSI. 1996. Information Technology–Portable Operating System Interface
(POSIX)–Part 1: System Application: Program Interface (API) [C Language]. Tech.
Rep. STD-1003.1, ISO/IEC.

Jones, M. B. 1993. Interposition Agents: Transparently Interposing User Code at the
System Interface. In Proceedings of the 14th Symposium on Operating Systems Princi-
ples (SOSP ’93). ACM, Asheville, NC, 80–93.

Katcher, J. 1997. PostMark: A new filesystem benchmark. Tech. Rep. TR3022, Network
Appliance. www.netapp.com/tech_library/3022.html.

Korn, D. G. and Krell, E. 1990. A New Dimension for the Unix File System. Software-
Practice and Experience 20, S1 (June), 19–34.

Lewis, P., Bernstein, A., and Kifer, M. 2002. Databases and Transaction Processing:
An Application-Oriented Approach. Addison Wesley, Boston, MA, Chapter 8: Database
Design II: Relational Normalization Theory, 211–260.

Lowell, D. E. and Chen, P. M. 1997. Free transactions with Rio Vista. In Proceedings
of the 16th Symposium on Operating Systems Principles (SOSP ’97). ACM, Saint Malo,
France, 92–101.

Maziéres, D. 2001. A toolkit for user-level file systems. In Proceedings of the Annual
USENIX Technical Conference. USENIX Association, Boston, MA, 261–274.

McKusick, M. K. and Ganger, G. R. 1999. Soft Updates: A Technique for Eliminating
Most Synchronous Writes in the Fast Filesystem. In Proceedings of the Annual USENIX
Technical Conference, FREENIX Track. USENIX Association, Monterey, CA, 1–18.

McKusick, M. K., Joy, W. N., Leffler, S. J., and Fabry, R. S. 1984. A fast file
system for UNIX. ACM Transactions on Computer Systems 2, 3 (August), 181–197.

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

40 · Wright et al.

Microsoft Corporation. 2004. Microsoft MSDN WinFS Documentation. http://

msdn.microsoft.com/data/winfs/.
Murphy, N., Tonkelowitz, M., and Vernal, M. 2002. The Design and Implemen-

tation of the Database File System. www.eecs.harvard.edu/~vernal/learn/cs261r/

index.shtml.
MySQL AB. 2005. MySQL: The World’s Most Popular Open Source Database. www.

mysql.org.
Olson, M. A. 1993. The Design and Implementation of the Inversion File System. In

Proceedings of the Winter 1993 USENIX Technical Conference. USENIX, San Diego,
CA, 205–217.

Oracle Corporation. 2000. Oracle Internet File System Archive Documentation. http:
//otn.oracle.com/documentation/ifs_arch.html.

Purohit, A., Wright, C., Spadavecchia, J., and Zadok, E. 2003. Develop in User-
Land, Run in Kernel Mode. In Proceedings of the 2003 ACM Workshop on Hot Topics
in Operating Systems (HotOS IX). USENIX Association, Lihue, Hawaii, 109–114.

Rosenblum, M. and Ousterhout, J. K. October 1991. The design and implementation
of a log-structured file system. In Proceedings of 13th ACM Symposium on Operating
Systems Principles. Association for Computing Machinery SIGOPS, Asilomar Confer-
ence Center, Pacific Grove, CA, 1–15.

Santry, D. S., Feeley, M. J., Hutchinson, N. C., Veitch, A. C., Carton, R. W.,
and Ofir, J. 1999. Deciding when to forget in the Elephant file system. In Proceedings
of the 17th ACM Symposium on Operating Systems Principles. ACM, Charleston, SC,
110–123.

Satyanarayanan, M., Mashburn, H. H., Kumar, P., Steere, D. C., and Kistler,
J. J. 1994. Lightweight recoverable virtual memory. ACM Transactions on Computer
Systems 12, 1, 33–57.

Schmuck, F. and Wylie, J. 1991. Experience with transactions in QuickSilver. In
Proceedings of the 13th ACM Symposium on Operating Systems Principles (SOSP ’91).
ACM Press, Pacific Grove, CA, 239–253.

Seltzer, M. and Stonebraker, M. 1990. Transaction Support in Read Optimized and
Write Optimized File Systems. In Proceedings of the Sixteenth International Conference
on Very Large Databases. Morgan Kaufmann, Brisbane, Australia, 174–185.

Seltzer, M. and Yigit, O. 1991. A new hashing package for UNIX. In Proceedings of
the Winter USENIX Technical Conference. USENIX Association, Dallas, TX, 173–184.

Seltzer, M. I., Ganger, G. R., McKusick, M. K., Smith, K. A., Soules, C. A. N.,
and Stein, C. A. 2000. Journaling versus soft updates: Asynchronous meta-data pro-
tection in file systems. In Proc. of the Annual USENIX Technical Conference. USENIX
Association, San Diego, CA, 71–84.

Sendmail Consortium. 2004. Sendmail home page. www.sendmail.org.
Sendmail, Inc. 2004. Sendmail Advanced Message Server. www.sendmail.com/products/
mailcenter/sams/.

Sleepycat Software, Inc. 2004. Berkeley DB Reference Guide, 4.3.27 ed. www.oracle.
com/technology/documentation/berkeley-db/db/api_c/frame.html.

Szeredi, M. 2005. Filesystem in Userspace. http://fuse.sourceforge.net.
Wright, C. P., Dave, J., and Zadok, E. 2003. Cryptographic File Systems Perfor-

mance: What You Don’t Know Can Hurt You. In Proceedings of the Second IEEE
International Security In Storage Workshop (SISW 2003). IEEE Computer Society,
Washington, DC, 47–61.

Received December 2005; revised December 2006; accepted Month Year

ACM Transactions on Storage, Vol. 3, No. 2, May 2007.

