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An organization’s data is often its most valuable asset, but today’s file systems provide
few facilities to ensure its safety. Databases, on the other hand, have long provided safety
mechanisms in the form of transactions. Transactions are useful because they provide
atomicity, consistency, isolation, and durability (ACID). Although many applications could
make use of these semantics, databases have a wide variety of non-standard interfaces. As
a result, applications currently perform elaborate error handling by themselves to ensure
atomicity and consistency, because it is easier than using a DBMS. A transaction-oriented
programming model eliminates such complex error-handling code, because failed oper-
ations can simply be aborted without side effects. We have designed a file system that
exports ACID transactions to user-level applications, while preserving the ubiquitous and
convenient POSIX file-system interface. In our prototype ACID file system, called Amino,
updated applications can group arbitrary sequences of system calls within a transaction.
Unmodified applications operate without any changes, but each system call is protected by
a transaction.

Amino stores all of its meta-data and data in Berkeley DB, a user-level open-source
embedded database. Berkeley DB provides an easy-to-use record-management API, an
efficient B-tree access manager, caching, and ACID transactions. We developed Amino
entirely in user space by intercepting system calls using the standard ptrace API, be-
cause developing Amino in the kernel would have required complex kernel changes. For
example, the kernel’s file system interfaces are intertwined with caches, thus preventing
a DBMS from providing proper locking to ensure isolation. Additionally, user-level de-
velopment proceeds more quickly than kernel development because more debugging and
development tools are available. We show that our ptracemonitor can be used to develop
a variety of user-level file systems with less complexity than other user-level file system ap-
proaches. Our performance evaluation shows that for general purpose benchmarks Amino
has acceptable overheads (22.6–84.7%), and in some cases even exceeds the performance
of Ext3.
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Chapter 1

Introduction

File systems offer a convenient and standard interface for user applications to store data,
which is many organizations’ most valuable asset. Computer hardware and software can
be replaced, but lost or corrupted data can not. Reliability is therefore an important goal
for any file system.

Database systems use transactions to provide strong guarantees for data safety and con-
sistency. Transactions provide four key properties: atomicity, consistency, isolation, and
durability—collectively known as the ACID properties. Despite their importance, most file
systems do not ensure that operations meet all four of these stringent requirements. Our
goal is to combine the database reliability (embodied by the ACID properties) with file
system’s ease of use (embodied by the common POSIX API [32]).

Consider the ACID requirements as they relate to file systems.

Atomicity Atomicity means that a set of operations must complete or fail as a unit. Tra-
ditionally, file systems provide atomicity only for single operations (e.g., renaming
a file either fails or succeeds). Many applications undertake arduous procedures to
attempt to perform atomic operations. For example, if Sendmail [77] fails when at-
tempting to append new mail messages to a mailbox, it then attempts to truncate the
file to erase a partially written message. Yet if the truncation fails, then the mailbox
is corrupted. A file system that allows a sequence of operations to be applied atom-
ically solves this problem providing two key benefits: (1) error handling is easier,
because transactions can simply be aborted, and (2) data corruption cannot occur,
because corrupted data never reaches the file system. Atomic sequences make Send-
mail’s append operations transactional. If they all succeed, then Sendmail commits
the transaction. Otherwise, Sendmail aborts the transaction and the file-system state
remains unchanged.

Consistency In a database system, consistency means the database enforces pre-defined
integrity constraints. Uniqueness of social security numbers or requiring a positive
account balance are examples of integrity constraints. A more complex integrity
constraint is that if a table has an secondary index, then the index must reflect the
values stored in the table. File systems have similar constraints (e.g., inode numbers
are unique and no directory entry points to a non-existent inode). A file system
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can maintain a consistent on-disk state by wrapping related operations in database
transactions
Applications also have consistency requirements. For example, CVS [4] creates lock
files to protect against concurrent access when files are committed.
The corresponding integrity constraint is that lock files exist only while an instance
of CVS is updating the repository. In an unmodified CVS implementation, there
are circumstances in which lock files are not properly deleted (e.g., on unexpected
termination or occasionally when the user presses Control-C). Using transactions
improves error handling—with only four lines of code we were able to prevent CVS
from leaving stale lock files. Additionally, we eliminated the possibility that only
some files were committed, while others were not (e.g., if the process terminates
half-way through a commit). Using transactions from the start from the start from
the start would have eliminated hundreds of lines of code through several source files
in CVS. Moreover, because the transactional interface does not commit data until all
operations succeed, error-handling is more robust than the ad-hoc mechanism that is
currently used.

Isolation Isolation (or serialization) means that one transaction does not affect the execu-
tion of another concurrently running transaction. This functionality is not available
in current file systems. For example, a set-UID program cannot use access to
check that a user has permission to create a file, because another process could cre-
ate a symbolic link to a sensitive file between the access and the creation. This
exploitation is called a time-of-check-time-of-use (TOCTOU) security vulnerability.
With a file system that maintains isolation, for example, access and file creation
can be performed safely in a single transaction so no other operations can intervene
between the access and the creation. In practice, operations must be executed con-
currently for good performance. Therefore, other operations may be interleaved, but
the file system ensures that the results are as if there was no interleaving.

Durability Once a transaction is committed to disk, the data remains intact even across a
software or a hardware crash. This is a desirable property for every application, but
often operating systems (OSes) choose to sacrifice durability for better performance.
OSs often make this choice because the synchronous I/O that is often required for
durability can result in poor performance. Databases employ optimizations such as
sequential logs, group commit, and ordered writes to provide durability efficiently.

Table 1.1 presents current file systems summarizing their support or lack thereof for
full ACID properties. Traditional file systems do not provide atomicity. For example,
during rename, Ext2 and FFS can both create the file’s new name, and then fail before
the old name is removed. Journaling file systems like Ext3 provide atomicity for a single
operation, so a rename operation cannot fail half-way through, but they do not provide
atomicity for a sequence of multiple operations, which is vital for user applications. Tra-
ditional file systems like Ext2 and FFS do not provide consistency, resulting in the need to
run a consistency checker before mounting them (fsck). Journaling file systems ensure
that each operation is consistent, so the composition of many operations is also consistent

2



Ext2 and
FFS-no-SU∗

Ext3 FFS+SU∗ Amino

Atomicity No Single op No Multiple ops
Consistency No File system File system,

but resources
may leak

Application level

Isolation Single op Single op Single op Multiple ops
Durability Only with Only with Only with Legacy: each op.

O SYNC O SYNC O SYNC Enhanced: on commit.

Table 1.1: File system support for ACID. Current file systems cannot provide all ACID
properties across multiple operations, but many do provide a subset of the ACID properties
for a single operation (i.e., a system call or VFS-level operation). Amino provides all of
the ACID properties for an arbitrary sequence of multiple operations.
∗ FFS-no-SU denotes FFS without SoftUpdates, and FFS+SU denotes FFS with SoftUpdates.

from the file system’s perspective. SoftUpdates is an interesting point along the consis-
tency spectrum. In SoftUpdates disk writes are carefully ordered such that a pointer never
references an inconsistent object [46]. This means that the file system is consistent, except
for reference leaks. These reference leaks must be corrected to prevent the file system from
slowly losing disk space, therefore a consistency checker is still required; but because the
file system is consistent in other respects it is possible to run it in the background. File
system consistency is a necessary condition for application-level consistency, but applica-
tions require higher level guarantees—the semantics of the data must make sense in that
application’s context. For example, a mail file should not have half-written messages. Be-
cause Amino provides multiple operation atomicity, applications can transition from one
consistent state to another. Current file systems use VFS-level locking to provide isolation
for a single operation. For example, a directory is locked before it is modified. However,
there is no mechanism to isolate one sequence of operations from another operation (or
sequence). To improve performance, current file systems do not provide durable writes
unless the O SYNC option is specified.

ACID properties are desirable for many applications, especially highly reliable appli-
cations like email, or applications that require atomicity and isolation for security (e.g.,
updating a user’s credentials). We designed a file system called Amino that extends ACID
semantics to standard applications that use the POSIX interface. Legacy support is essen-
tial: unmodified applications and file systems continue to work as they have in the past.
Existing applications need only slight modifications to exercise fine-grained control over
transactions and benefit from improved reliability.

The alternative approach has databases take over for the file system when reliable stor-
age is required. For example, some commercial email systems store messages in databases
instead of the file system [78], and it is becoming more common for revision-control sys-
tems to store information in a database [10]. However, writing applications that use the file
system interface has inherent advantages over writing applications that use the database
interface. Writing to a database API severely limits interoperability and burdens program-
mers and administrators. For example, with a mail server using a file system, an individual
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user’s mail file can simply be copied to create a backup, or deleted to remove all of the
user’s messages (from personal experience working at an ISP, this is a not an uncommon
request). Moreover, any standard text processing package can be used to edit the file. When
data is accessible only through a database interface, these types of convenient access are
impossible. Instead, special applications must be written for each of these functionalities.

We built Amino on top of Berkeley DB (BDB) [74]. BDB is an embedded database
package that provides efficient transaction-protected access to key-value pairs in hash ta-
bles or balanced trees. BDB provides the crucial database infrastructure such as logging,
locking, and caching. However, BDB, neither provides nor requires SQL, stored proce-
dures, a specialized database server, or other heavyweight components often associated
with a DBMS. This makes it ideal for use by other operating system components. Using
BDB allows us to leverage almost 200,000 lines of time-tested industrial-strength code.

If we were to implement Amino as a traditional file system that interfaces with the
VFS, we would be required to use the inode, dentry, and page caches. If a transaction
aborted, then these caches would become stale with respect to the database. Therefore, we
implemented Amino as a user-level monitor using the process-tracing facility (ptrace)
provided by Linux. This interface allows us to intercept all system calls and use only the
internal BDB caches. We have also developed small and generic modifications to the kernel
ptrace that improve the performance of ptracemonitors. We developed three other file
systems using our monitor framework and show that they have a low complexity compared
to other methods of developing user-level file systems.

Our prototype evaluation shows that although ptrace significantly increases the CPU
utilization, resulting in reduced micro-benchmark performance, Amino can provide atom-
icity, consistency, and isolation to existing user-level applications with a small performance
impact (and in some cases even exceeds the performance of Ext3). Additionally, in many
cases, our ptracemonitor provides file-system functionality with better performance than
the standard strace tool, which only traces system calls without adding additional func-
tionality. Amino implicitly provides durability, matching or exceeding the performance of
Ext3 with durability. Moreover, If a programmer informs Amino when transactions be-
gin and end, durable performance can be several times better than a traditional file system.
Given that Amino is an unoptimized user-level prototype, we find these results encouraging
and expect that performance can improve with more tuning.

The rest of this dissertation is organized as follows. Chapter 2 provides an overview
of our transactional file system’s design, including several sample applications. Chap-
ter 3 describes our ptrace-based Amino prototype. Chapter 4 describes three simple
ptrace-based file systems and evaluates their complexity. Chapter 5 evaluates Amino’s
performance. Chapter 6 describes related work. We conclude and discuss future work in
Chapter 7.
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Chapter 2

Amino Design

The key decision to make when providing ACID semantics to the POSIX file system inter-
face is whether to graft additional code to provide transactions onto an existing file system,
or to build a file system on top of a system that already provides transactional semantics.
The advantages of adding code to the file system is that you may end up with less overall
code, which is more specialized to the task at hand. However, adding even a subset of the
required code to an existing file system can take years. For example, Ext3 shares most
of its code with Ext2 and only adds atomicity to single file system operations, but it took
more than two years to develop. To get a rough idea of how large a file system is versus a
transactional processing system, we can compare the number of lines of code in Ext3 to the
number of lines in version 4.1 of the open-source MySQL server [53] and version 4.3.28
of the Berkeley Database (BDB) [55, 74, 82]. In Linux 2.6.11.12, Ext3 has 21,629 lines
of code (including the block journaling layer, jbd, which is used only for Ext3). BDB has
over 19,776 lines of code in just its transaction-related components,1 and BDB is a subset
of MySQL’s overall transaction code (BDB is one of MySQL’s engines for transactional ta-
bles). Aside from the transaction-related components, BDB provides efficient data access
methods for key-value pairs (e.g., BDB’s balanced-tree implementation is 17,312 lines of
code). We therefore chose to build our file system on top of BDB, because we can leverage
the already existing transactions infrastructure and efficient access methods.

Once we decided to build the file system on top of a transaction-processing system,
the next question was what transaction-processing system is an appropriate host for the file
system. One option would have been to use a SQL server such as MySQL, PostgreSQL,
or Oracle. We rejected using a full-fledged SQL server, because they require significant
runtime resources. Moreover, each database update or query requires communication over
a socket, adding extra context switches and data copies. These context switches and espe-
cially data copies could hurt file system performance. We therefore chose to use an em-
bedded database, running directly in the address space of the client—thereby eliminating
context switches and data copies. There are several embedded databases available including
BDB, MySQL in embedded mode, and SQLite [31]. All three options provide transactions,
but MySQL and SQLite require SQL, whereas BDB provides lower-level primitives. We

1It should be noted that other BDB components make extensive use of the transactional components
counted here, so the number 19,776 is a minimum and not a maximum for the number of transaction-related
lines of code.
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chose BDB for two reasons. First, bypassing the SQL interface improves performance be-
cause SQL parsing, query optimization, and other features often associated with a DBMS
are not required. As these features are not needed for a file system, having less code is a
distinct advantage. More importantly bypassing SQL allows us to control our data layout
more precisely, producing more opportunities for performance optimization and tuning.
Second, BDB has a highly modular design and the application designer can choose which
components are required (e.g., the transaction subsystem can be used with normal files, or
the access methods can be used without logging). In addition, BDB is widely deployed,
has been thoroughly tested, and scales both up and down: it can have a small memory
footprint of less than 500KB, yet it also can be configured for databases as large as 256TB.
Even though BDB is a relatively small DBMS, it still provides the key infrastructure for
full ACID semantics: logging, locking, recovery, and a full-featured transactions API. It
also provides four data access methods: a B-tree2, extended linear hashing, a fixed-length
record queue, and access by logical record number.

The rest of this section is organized as follows. Section 2.1 provides an overview of
BDB and its supported operations. Section 2.2 describes our database schema. Section 2.3
describes our internal use of transactions. Section 2.4 describes the transaction API that we
expose to applications. Section 2.5 describes three example applications to which we have
added transactional semantics.

2.1 BDB Overview
BDB provides a uniform API to access hash tables, B-trees, queues, and record-number
keyed collections in a transactional manner. For a file system, hash tables and B-trees
are the most appropriate underlying data structure, because file systems map names (keys)
to files (values) and positions in a file (keys) to the file’s data (values). We selected B-
trees, because they are sorted, allowing us to control locality and iterate easily through
records. The first step to use a BDB database is to open a database environment. The
database environment provides caching, logging, and locking functionality for one or more
databases (or even simple files). One or more databases can then be opened in the context
of that environment. Transactions are associated with an environment, and they have five
operations: begin, prepare, commit, abort, and discard. The prepare and discard operations
are used only for distributed transactions, so we do not discuss them further. Transactions
are used to protect other database operations. If a transaction is committed, then all of the
protected operations are applied to stable storage as a whole. If the transaction is aborted,
then it has no effects. A single transaction can span multiple databases, but the databases
must all belong to the same environment.

Before a database is opened, a database handle is created and associated with an envi-
ronment. Next, the handle’s parameters are set (e.g., the page size, sorting or hashing func-
tion, etc.). Finally, the database is opened inside of a transaction using the fully configured
handle. After the database or databases are opened, key-value pairs can be stored using
a PUT operation and retrieved using a GET operation. These primitives take the database

2Specifically, a B+ linked tree [11].
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Database Key Value
Path3 Full Path ID||Path-local meta-data (e.g., stat information for a

file without hardlinks)
Data ID Reference Count || Data-local meta-data (e.g., stat in-

formation for a hard linked file)
ID || Page index Page’s data

Orphan ID Path-local meta-data (e.g., stat information for a file
without hard links)

Table 2.1: Our database schema. Directory-reading and lookup operations use the Path
database, which maps full path names to path-local meta-data. Read, write, truncate, and
other data-oriented operations use the Data database. The Data database has two types of
keys: a file identifier points to its meta-data, and a file identifier concatenated with a page
index point to the page’s data. Files without any names are stored in the Orphan database.

handle, a transaction, the key, and the value (for PUT) as arguments. Also, BDB provides
support for cursors, which efficiently iterate through items in the database. The primary
cursor operations we use are DB SET, DB SET RANGE, and DB NEXT, which find a given
key, the first key that is greater than a given key, and the next key, respectively. There are
many other BDB operations and parameters, which we omit here for brevity [82].

2.2 File System Schema
The database schema defines the format of our file system. The schema dictates the lay-
out of the data, which in turn is directly related to what operations are possible, and the
efficiency of each operation. Our primary goal in developing our schema was to minimize
the number of database accesses required for any given operation. This is important for
two reasons: (1) uncached database operations result in I/O operations, which are many
orders of magnitude slower than in-memory operations; and (2) even for cached accesses
each database operation requires additional function calls, locking, logging, and B-tree
traversal. An organization that is appropriate for a normal disk-based file system is not
necessarily appropriate for a database. For example, most FFS-like file systems use sim-
ple mappings of integers to disk blocks [47]. When an FFS-like file system reads a block
from a file, first the root inode number is mapped to a disk block. After the root inode
is read, the root directory’s data blocks are scanned to find the inode number of the next
pathname component. Reading each data block essentially maps a logical block in the file
to a physical disk block using the inode’s direct and indirect pointers. This procedure must
be repeated for each pathname component, until the file is found.

BDB, on the other hand, provides more complex and efficient data structures. In BDB,
the schema is defined by the set of databases and their key-value pairs. A file system can
conceptually be divided into two halves: (1) a naming component and (2) a data storage
component. For example, FreeBSD has a separate UFS component for naming and an FFS

3To provide shorter prefixes the Path database key is actually Depth||Path, which can be derived from
path. This is discussed more thoroughly in the text.
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component for storage. Our schema, shown in Table 2.1, has a similar division. All of
our meta-data and data is stored in three BDB databases. We use a Path database to map
pathnames to unique file identifiers, and a Data database to map unique file identifiers to the
file’s data blocks. The Orphan database contains a list of identifiers that are not accessible
through the name space, but is otherwise equivalent to the Path database.

In the rest of this section we describe the design considerations when developing our
schema. First we discuss each database in turn: the Path database, the Data database, and
then the Orphan database. We then describe path-local and data-local meta-data.

2.2.1 The Path Database
The Path database is used for both lookup and directory-reading operations. Each file has
a unique identifier, which is analogous to an inode number. In the Path database, the key
is a full pathname and the value is a unique identifier. We designed our schema such that
lookup requires a single database access. For any given path name we can quickly find the
path’s unique identifier, without the need to traverse each component’s directory separately
as is done in most Unix file systems. The Google file system uses a similar scheme [18].
When using a hash function, this yields constant time lookups. Using a balanced tree with a
fan-out of 100 keys per page, four disk accesses are always sufficient to find any of 108 files.
Essentially, this makes a trade-off between traditional path-name lookup which depends on
the user-determined depth of a path and traversing B-tree nodes which is dependent on the
number of files in the file system. Additionally, renaming a directory requires updating all
of the directory’s children.

The Path database is also suitable for the directory-reading operation. As the access
method for the Path database, we selected a balanced tree structure using a customized
sort function. In our database, pathnames are first sorted by depth (i.e., by an ascending
number of pathname components) and then by standard lexicographic order. Using this
sorting function means that for any given directory, every name is contiguous within the
database. To read a directory, we use BDB’s DB SET RANGE operator to position a cursor
at the first path name within the directory. To read each subsequent entry we use the cursor’s
DB NEXT operator until we encounter a path name in a different directory. Theoretically,
the key (i.e., the full path name) is sufficient for this sort function, because the depth can be
derived from the full path name. However, storing only the full path name greatly increases
the length of the prefix that is required to distinguish two keys, because the depth cannot
be determined until the final slash is encountered. Ideally, most keys would have a short
common prefix to take advantage of BDB’s prefix compression within internal nodes of the
B-tree. To solve this problem, we explicitly include the depth of the path name as the first
four bytes of the key. This allows us to simply compare the depth, followed by a simple
string comparison of the remainder of the key. For keys with different depth, the prefix
length is four bytes. For keys with the same depth, the prefix length is four bytes plus the
length of the path’s common prefix. For example the prefix length for /usr/bin and
/usr/lib is 4 + 5 = 9, because the common prefix is /usr/.

For the lookup operation, the sort function is not critical, as a name can be located
correctly with any total ordering. However, our sorting function proves advantageous when
reading a directory and performing stat operations on the entries. Because each path in
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the directory is located close to one another, fewer pages must be read in from disk. This
type of operation is quite common (e.g, by ls -l or recursive tree scans), which is why
NFSv3 introduced a single protocol primitive called READDIRPLUS [7].

2.2.2 The Data Database
To store data pages, we use a balanced tree. If a file’s unique identifier is stored in the
tree, then a file with that identifier exists4. We assign the identifier randomly, but as the
tree is sorted, it is possible to influence data layout policies by modifying the identifier
assignment and sort function. For each identifier, the database stores the file’s reference
counts and meta-data. There are two reference counts: one for the number of path names
that reference it (a.k.a. a link count), and another for the number of open instances of the
file. We store the number of open instances for the file in the database, because open
files can be unlinked. Unfortunately, this introduces additional updates when opening and
closing the file. However, it obviates one design problem and another problem that is
an artifact of our implementation. First, storing this counter in memory would result in
inconsistencies on transaction abort. Second, in our implementation independent processes
can access the same file system (without any shared resources aside from the databases),
therefore the database provides a consistent method of accessing a shared resource.

The actual data associated with the file is also stored in the Data database. For a given
page of the file, the key is the file’s identifier concatenated with the page index. We first
sort the tree by the file’s identifier and then by the page index. This means that all of a file’s
data pages are allocated contiguously in the tree, thereby improving locality and allowing
the use of database cursors.

Selecting database parameters properly is of the utmost importance for the Data
database. In our experiments we found that there can be a factor of ten difference in
performance based on page size, cursor use, and other database-tuning parameters. The
page size is a particularly important parameter for data-intensive operations. BDB uses
a configurable database page size of powers-of-two between 512 bytes and 64KB. We
considered two primary alternatives for selecting the page size: (1) using the OS’s native
page size (4KB on Linux) and (2) using the largest page size available (i.e., 64KB). Using
a native OS page size, allows us to match our disk transfer unit to the OS, but requires
overflow pages. Using a larger page size allows us to take advantage of locality and
eliminates the need for overflow pages. Using a smaller page size than the native OS
page size would put Amino at a great disadvantage, because more I/O transfers would be
needed to read the same amount of data. Intermediate page sizes would not realize the full
benefits of bulk I/O transfers associated increasing the page size.5

Native Page Size The first alternative we considered was using a page size that is equal to
the native page size of the underlying file system (4KB on Linux). This ensures that BDB

4The existence of a file does not imply that a pathname points to it. This situation occurs when an open
file is unlinked.

5In fact, our initial tests showed that 8KB pages exacerbate the problems of 4KB pages, because overflow
pages are still used. Additionally, neither 16KB or 32KB pages yield the performance of 64KB pages.
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reads and writes in units that the file system can handle efficiently. The BDB page size also
determines when and how overflow pages are used. For the Data database, most records
are rather large, so they are stored in overflow pages, which means that they are not stored
directly with the key. We have found that BDB will store only a single record within an
overflow page. Therefore, if the database page size is larger than our file system’s transfer
unit (for the remainder of this paragraph we refer to our file systems page as a transfer unit
to avoid confusion with BDB pages), then the remainder of the database’s overflow page is
wasted, reducing available disk space and imposing unnecessary I/O overheads. Similarly,
if the overflow page size is less than or equal to the file system transfer unit, then BDB
stores a small amount of internal meta-data in the beginning of the overflow page, and the
first part of the actual data in the remainder of the first overflow page. Another complete
overflow page is used for any remaining data, and the rest of it is wasted.

BDB’s overflow page allocation behavior means that the file system transfer unit must
be carefully selected to avoid performance conflicts with BDB. For example, with a file
system transfer unit of 4,096 bytes and the default BDB page size of 16,384 bytes, only
4,122 bytes on each overflow page are used (4,096 for the data, and 26 bytes for BDB’s
internal meta-data), wasting the remaining 3

4
of the page. This not only wastes space, but

hurts performance because useless data needs to be sent to and from the disk. With a
database page size of 4,096 and an equal transfer size, 26 bytes of meta-data are stored on
the first overflow page and only 4,070 bytes of actual file-system data can be stored. On the
second overflow page only the remaining 26 bytes of file-system data are stored—wasting
nearly half of the space. Because of these considerations, when a 4,096-byte page is used
the transfer unit for our file system is 4,070. Although this is a non-standard size, well-
behaved applications should execute the fstat system call to find the optimal transfer unit
stored in the st blksize field. Poorly behaved applications work as expected, but with
degraded performance. Our benchmarks show that when applications using a 4,096 block
size, there is a 4% slow down for sequential reads, and an 18% slow down for sequential
writes. Random operations have a greater performance penalty, because they do not benefit
from locality as the sequential workloads do: reads are slowed by 48.4% and writes by
57.1%. The Inversion file system made a similar trade-off [56]: it uses a transfer unit that
is slightly less than POSTGRES’s 8KB page size.

Large Database Pages The second alternative we considered was using the largest page
size available. The advantage of this alternative is that we can present applications with a
standard 4,096-byte transfer unit without the use of overflow pages in the database. Addi-
tionally, using a larger page automatically provides read-ahead, because for each transfer
unit that is read into the database cache 15 adjacent transfer units are also read into the
cache. The major concern with this page size is that random I/O performance could be
reduced, because the database performs I/O operations in terms of whole database pages.
This means an I/O operation for a single transfer unit requires reading or writing 15 adja-
cent transfer units of data.

Our benchmarks show that using 64KB pages with 4,096-byte transfer units provides a
26.3% improvement for sequential read; a 17.7% improvement for sequential write; and a
3.9% improvement for random read. However, random write throughput was reduced by
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4.9%. Overall, we concluded that using a 64KB page size is a significant improvement over
the 4KB page size in terms of performance and also application compatibility. Therefore,
we use a 64KB page size by default (and in our evaluation in Chapter 5).

Cursor Usage We found that using database cursors is essential for good sequential read
performance. Simply retrieving each item in the Data database using the GET primitive
without cursors can be twice as slow as sequentially reading the file with a cursor. There-
fore, whenever possible we use cursor reads with the more efficient DB NEXT flag instead
of simple GET operations.

Ordering Database Operations Files in Amino support traditional Unix semantics in-
cluding the ability to have sparse regions (a.k.a holes) inside of the file or at the end of the
file. Our original implementations of the read and write operations were very much
like a standard Unix file system: we read the file’s meta-data, and then proceeded to read
the data. On a traditional Unix file system, this is required, because the meta-data contains
block pointers which must be read to read the actual file data. This is also convenient,
because reads past the end of the file can be eliminated or truncated to an appropriate
size—eliminating the need for special cases.

However, on an Amino file system, reading the meta-data before accessing a block
is not required, because storing pointers to individual blocks is delegated to the DBMS.
In fact, reading meta-data first proved quite harmful for concurrent performance. For a
sequential read workload, adding additional processes results in a steady decrease in the
number of operations performed. Worse yet, the additional lock contention causes two
processes to be several times worse than a single process.6

Our current implementation reverses this intuitive approach. To read a file, the specific
data page is read first and only then is the meta-data read and updated. This slightly com-
plicates the implementation of sparse files. A possible hole at the end of the file is detected
by encountering the data-local meta-data of the next file in the database (or equivalently the
last record in the database). To determine whether the hole actually exists, the data-local
meta-data of the file is accessed and if the size is greater than the position of the last byte
that was read, then the hole is filled. As we show in Section 5.2.2, this approach prevents
random and sequential reads from degrading as concurrency increases.

2.2.3 The Orphan Database
Files that have been unlinked, but are still open, are stored in the Orphan database. The
Orphan database is identical to the Path database, except that instead of storing the name,
only the file’s unique identifier is stored. In case of a system crash, we can quickly locate
and remove all such orphaned files using a database cursor during the next mount.

6The processes must wait for each other after each I/O and thus serially perform what becomes random
I/O. After a fourth process is added, the I/O rate improves because the head seeks for each I/O become shorter.
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2.2.4 Path-local and Data-local Meta-data
The stat system call returns vital information about a file, such as its size, owner, and
access permissions. The performance of stat is quite important, as it constitutes a large
portion of many workloads. Ellard’s traces of NFS-mounted home directories show 24.6–
72.4% of all calls were GETATTR and ACCESS, which both require stat information [13].
Because each file has a single set of attributes, the file’s unique identifier determines the
stat information even if the file has multiple pathnames. This means that the stat at-
tributes are a functional dependency of the unique identifier. To avoid logical redundancy,
or having the same data stored in two different places, and its associated pitfalls in a tradi-
tional SQL database, the stat information should be stored in a database with the unique
identifier as the key [40]. In our schema, logical redundancy introduces update anomalies
in which one copy of the data could be updated, but the other might not. However, if stat
information could be stored in the Path database, then performance would be improved
because stat would require only one database access.

To solve this problem, we take advantage of the flexibility provided by BDB’s key-value
pair model to develop a more dynamic schema. Meta-data is divided into two classes: (1)
path-local meta-data and (2) data-local meta-data. Path-local meta-data includes all meta-
data that is specific to one path of a file. Data-local meta-data includes all meta-data that
may refer to more than one path. For example, a newly created file’s stat information
is stored as path-local meta-data, because there is no other path name that references this
stat information. However, if a hard link to the file is created, then the path-local meta-
data is promoted to data-local meta-data, as both names can used to reference the same
underlying file. If one of the links is removed, then the data-local stat information is
demoted to path-local meta-data. Dividing meta-data into path-local and data-local com-
ponents allows our schema to avoid the pitfalls associated with logical redundancy. Yet
when the data has no logical redundancy, the stat information is stored right with the
pathname to improve performance.

2.2.5 Example File System
To illustrate the relations in our schema, we present a concrete example of an Amino file
system with three directories and four files. Figure 2.1 shows the file system’s databases.
The keys are rectangles with sharp corners and the values are rectangles with rounded
corners. The solid arrows show key-value relationships within a database, and the dashed
arrows show logical relationships between the databases. The database manages the key-
value relationships, but our file system maintains the logical relations. The data shown in
the Data database is only an example, in reality entire data pages would be stored.

This file system contains three directories: /, /doc, and share. The attributes for all
directories are stored in the Path database, because directories cannot have hard links. The
directories have a single entry in the Data database, indicating that their unique identifier
is in use. The sorting algorithm is also demonstrated by this example. The root directory,
“/” is first, because it has the smallest depth (i.e., zero). The directories with a depth
of one are next (i.e., direct descendants of the root directory). Within a given depth, the
directories are sorted in lexicographic order. This has the effect of sorting a directories

12



ID=1
...Owner = 0

ID=4

ID=4

Owner = 2361
...

Size = 50

ID=1 Link Count=1

ID=3 Link Count=1

And everywhere that Mary went, the lamb was sure to go!ID=5, Pg#=1

ID=5, Pg#=0 Mary had a little lamb, whose fleece was white as snow.

ID=5 Link Count=1, Open Count=1

Link Count=1, Open Count=1ID=6

ID=6, Pg#=0 Peter Piper picked a peck of pickled peppers.

ID=7 Link Count=0, Open Count=1

ID=7, Pg#=0 "Please, sir," replied Oliver, "I want some more."

Tweedle−dum and Tweedle−dee resolved to have a battle.ID=4, Pg#=0

/

...Owner = 0
ID=2

...Owner = 0
ID=3

Size = 7503
Owner = 2361
...

ID=5

/doc

/share

/doc/mary

/share/pete

Path Database

Orphan Database

ID=7

Data Database

ID=2 Link Count=1

Owner = 2361
...

ID=6
Size = 45

/doc/dee

/doc/dum

Link Count=2, Open Count=0ID=4
Size=54, Owner=2361

Figure 2.1: A sample Amino file system. Within a database, keys (rectangles) and
data (rounded rectangles) are connected by solid arrows. Logical relationships between
databases are denoted by dashed arrows.
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children consecutively in the database.
There are two files without hard links in this example: /doc/mary and /share/

pete. Like the directories, the meta-data is stored in the Path database, because there are
no hard links for these files. In the Data database, there are entries for the unique identifier.
For example, /doc/mary has a unique identifier of five, and the corresponding entry
indicates that no other file may use that identifier. These files also have data pages, that are
contained entirely within the Data database. For /doc/mary, there are two pages; and
/share/pete has a single page. A file need not have consecutive pages, for example a
sparse file does not store any page for holes. Pages also need not be as long as the maximum
page size. For example, /share/pete is only 45 bytes long, so its first page is 45 bytes.
When BDB returns data from a database, it also returns the data’s size. Amino uses the
record’s size as returned by BDB to handle sparse files. The file /doc/mary also has
pages that are less than 4,096 bytes. The first page contains only 55 bytes of data (“Mary
had a little lamb, whose fleece was white as snow.”). When a user process reads bytes 56–
4,096, zeros are automatically returned. Similarly, the second page contains only 55 bytes
of data (“And everywhere that Mary went, the lamb was sure to go!”). Because the file is
7,503 bytes long, Amino automatically returns zero for bytes 4,151–7,503.

The file with the unique identifier four has two names, /doc/dee and /doc/dum.
Because storing the file’s meta-data in the Path database introduces logical redundancy, the
meta-data is instead stored in the Data database together with the file’s reference count.
The file’s page is stored identically to those files without hard links.

Finally, this file system has an orphan file. Orphan files are files that do have no name.
They come into existence on Unix systems when an open file is removed. After the file is
closed, the file’s data is removed. If the system crashes while orphan files are open, Amino
locates these files by iterating through the Orphan database and deleting them. In other
respects, orphan files are identical to the other files.

2.3 Internal File System Transactions
It is essential that each operation in an ACID file system be protected by a transaction.
This is true even when the application executing that operation is not concerned with ACID
semantics, because other applications must see a single consistent view of the database to
ensure the isolation property.

Also, to ensure that the file system is consistent, certain integrity constraints must be
maintained. Defining and verifying integrity constraints for most disk-based file systems is
difficult, because the combination of caches and asynchronous writes yield complex states
that must be managed. Recent work to address this adapted Linear Temporal Logic (LTL)
to disk-based file systems [61, 81], however this type of logic is not suitable (or necessary)
for file systems based on a transactional DBMS. This is because the DBMS handles the
complexities of ensuring that caches and the disk-based image are consistent, and it allows
the file system to apply multiple updates atomically.

We define our file system to be consistent, if and only if it meets the following seven
integrity constraints:
UNIQID Each file identifier is unique.
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REFCOUNT Each file’s link reference count is equal to the number of path names that
reference it.

NOORPHANEDFILES Each data-local meta-data block has a positive link count or open
instance reference count. If the link count is zero, then an entry for this file must
exist in the Orphan database.

NOORPHANEDBLOCKS Each data page in the Data database has an associated data-local
meta-data block.

HARDLINKUSESDLMD If and only if a file has a link reference count greater than one,
then it uses data-local meta-data.

PAGESMATCHSIZE A file has no data pages with an index greater than or equal to
d FileSize

TransferUnit
e.

LASTPAGEMATCHESSIZE If there is page at index b FileSize
TransferUnit

c, then it is no larger
than FileSize mod TransferUnit bytes.

Each of these integrity constraints is equivalent to a similar invariant in a standard file
system and is also equivalent to common integrity constraints enforced by a database sys-
tem. For example, REFCOUNT is equivalent to a foreign key constraint, and standard file
systems verify the same when performing a fsck. In traditional file systems, constraints
similar to PAGESMATCHSIZE and LASTPAGEMATCHESSIZE are checked by fsck to en-
sure that no orphaned blocks exist and that stale data does not reappear, respectively.

Our file system does not require a fsck, nor does it explicitly enforce the integrity
constraints. Instead, each file system operation is designed to transition from one consistent
file system state to another consistent file system state. Because each file system operation
is surrounded by a transaction, it is atomically applied or it has no effect. Therefore, our file
system is always consistent (because it meets the required integrity constraints). To recover
the file system after a crash, it is enough to open the database with BDB’s DB RECOVERY
flag, which replays the database log, and to remove any orphaned files (we efficiently locate
these files using the Orphan database). BDB’s internal support for recovery obviates the
need for us to take complicated recovery steps in our file system code. An alternative
strategy is enforcement. If we selected an RDBMS that enforced integrity constraints, the
database system would validate the constraint before committing each transaction, thus
simplifying our file system’s design at the cost of decreased performance (because each
integrity constraint must be verified).

2.4 Transactions API for Applications
Legacy applications need no changes to enjoy the benefits of a consistent file system that
uses transactions for each individual operation (as applications do today with a journaling
file system). However, some applications require more stringent atomicity, consistency,
isolation, and durability properties. For example, a mail server must append large messages
to the end of a mailbox, and on Linux a password update system must consistently update
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/etc/passwd and /etc/shadow together. Importantly, both legacy and enhanced
applications can coexist and use the same data—without the need to access a data store
using a specialized interface.

For applications that need fine-grained control of transactions, we export a transactional
API (shown in Figure 2.2 on Page 17) to user applications. Our primary design goal for
the API was to avoid any changes to existing system calls, which means that we could
not add a transaction argument to each call. We created a new system call called amino
that performs all of the operations for our API based on its first argument. To begin a
transaction, an application issues a begin call that associates a current transaction with the
process (or thread in multi-threaded applications). Each file system operation after that
point is protected by the current transaction. The application can then commit or abort the
transaction, with the expected semantics: an aborted transaction has no effect on the file
system, and a committed transaction is safely written to stable storage. Our API supports
the BDB flags DB TXN NOSYNC, DB TXN SYNC, and DB TXN NOWAIT. These flags are
directly passed to BDB and instruct the database to skip flushing the log on commit, flush
the log on commit, and return DB LOCK DEADLOCK immediately instead of blocking on
locks.

Using BDB’s support for nested transactions, each of the file system’s internal transac-
tions is started as a child of the current transaction. This simplifies error handling in the
file system, because a transaction for a failed system call can just be aborted. If the child
transaction is committed, then it is committed to stable storage only if the parent transac-
tion is committed as well. If a child transaction is aborted, then its effects are undone, but
the parent transaction can continue. Our design makes use of this, by wrapping each indi-
vidual system call in a transaction. In this way, our file system can abort transactions, even
if the application is wrapping a set of system calls into a transaction. This functionality is
also exposed to user applications. If a process already has a current transaction, and a new
transaction is created, then a new current transaction is created as a child of the existing
current transaction. This creates a stack of nested current transactions associated with the
process.

Aborting a transaction simplifies error handling code, but developers still must take
care not to persistently change state during an aborted transaction (e.g., internal application
data structures). One simple way to ensure this property is to exit after an abort (many
programs already exit on unexpected failures). A better option is to use recoverable virtual
memory facilities to rewind data structures transparently [69]. We believe that one reason
many applications are structured such that error handling consists of shutting down the
current process or thread is that ad-hoc error recovery is so difficult, hard to debug, and
error-prone that fault-tolerant applications, despite their benefits, are often impractical to
develop on current systems. We believe that if transactional semantics for the file system
and data structures were provided, then programmers may structure their programs to be
more robust in the face of failures rather than coding their programs to exit upon failure.

We employ a simple shared-memory like API to allow processes to share transactions,
and we support multiple concurrent transactions without changing the existing system call
API. When a current transaction is established, the transaction stack (i.e., the transaction
and all of its children) is assigned a unique identifier. A process set its current transaction
by attaching to the unique identifier. In this way, two processes can share the same transac-
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amino(BEGIN TXN, pathname, flags) Creates a new current transaction for
this process that is associated with the mount containing pathname. If pathname
is not located on an Amino file system, then ENOSYS is returned.
If this process already has a current transaction, then a child transaction is created.
This forms a stack of transactions. If the parent transaction is for a different mount
point than pathname, then EXDEV is returned. The process’s new current transac-
tion is the child.
The DB TXN NOSYNC, DB TXN SYNC, and DB TXN NOWAIT flags are passed to
BDB.
On success, a unique identifier for the transaction stack (i.e., the transaction and all
of its parents) is returned.

amino(COMMIT TXN, flags) If the process has a current transaction, then it is
committed. If there is no current transaction, then EINVAL is returned.
The flags parameter relates to shared transactions and can be 0, TXNOP WAIT, or
TXNOP FORCE. If the transaction is not shared, it is always committed immedi-
ately. If the transaction is shared (i.e., the reference count is greater than one), then
the action depends on the flag. If the flag is 0, then EBUSY is returned. If the flag is
TXNOP WAIT, the transaction is committed after all other users have detached from
it. If the flag is TXNOP FORCE, then the transaction is committed immediately and
marked invalid so that other processes cannot use it.

amino(ABORT TXN, flags) The ABORT TXN operation is analogous to the
COMMIT TXN call, but aborts the transaction instead of committing it.

amino(ATTACH TXN, id) If the process has no current transaction, then transaction
stack with the identifier id is associated with the process and its reference count is
increased. If the process has a current transaction, then EINVAL is returned. If no
transaction stack has the identifier id, then ENOENT is returned.

amino(DETACH TXN) If the reference count of the current transaction is greater than
one, then decrement the transaction’s reference count and disassociate this process
from its the current transaction.

amino(SUSPEND TXN) Disassociate the process’s current transaction with the pro-
cess. The transaction’s reference count is not updated, and the transaction is added
to this process’s suspended transaction list. On process exit, the transaction’s ref-
erence count is decremented. If it reaches zero, then the transaction is aborted.

amino(QUERY TXN) Returns the current transaction identifier.

Figure 2.2: Our transactions API has seven operations. Three operations begin and
end transactions BEGIN TXN, COMMIT TXN, and ABORT TXN. Three more operations
allow sharing of transactions: DETACH TXN, ATTACH TXN, and SUSPEND TXN. The
QUERY TXN operation returns the current transaction’s identifier.
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tion. Similarly, a process can detach from its current transaction, so that future operations
are not transaction protected. If all processes have detached from a transaction, then it is
automatically aborted (this policy ensures that no transaction-protected data reaches the file
system if it was not explicitly committed). If a process temporarily wants to stop using a
transaction, but not abort it, then it may suspend the transaction (e.g., to temporarily switch
between transactions). The suspend and detach primitives allow processes to switch be-
tween transactions without adding system call arguments.7 For example, a network server
may concurrently service many separate clients. Each client’s data should be protected by
separate transactions. On exit, all uncommitted transactions are automatically detached.

Transactions can be automatically inserted into an existing application’s system call
stream using pre-defined profiles. For example, we developed a profile to protect an entire
application by inserting a begin-transaction call on exec, and a commit-transaction call on
exit. Another profile could use file sessions to insert transactions [68]: on the first open
system call, a transaction is begun; on each subsequent successful open, a counter is incre-
mented; and decremented on close. When the counter reaches zero, then the transaction is
committed. Other transaction profiles can be designed and developed, either for a general
class of applications or even for the behavior of a specific application.

2.5 Transactional Applications
We added transactional semantics to four applications: Postmark, GNU Make, GNU tar,
and mail.local. Postmark is a benchmark that stresses meta-data operations [37], GNU
Make is used to build software packages [16], GNU tar extracts files from an archive,
and mail.local is the Sendmail component that delivers mail to a user’s mailbox [77].
Our small modifications to Postmark, GNU Make, and GNU tar are described in Sec-
tions 2.5.1, 2.5.2, and 2.5.3, respectively. Our reimplementation of mail.local is de-
scribed in Section 2.5.4.

2.5.1 Postmark
Postmark is a relatively simple benchmark (1,500 lines of code) that creates an initial pool
of files, performs four types of operations on that pool, and then removes the pool. The
four Postmark operations are:

Create Adds a new file to the pool and write data to it.

Unlink Removes a file from the pool.

Read Sequentially reads an entire file from the pool.

Append Appends data to an existing file in the pool.
7Although the API supports switching transactions, it is likely to be error-prone in our current prototype,

because the dead lock detector does not know that the transactions are part of the same thread of control. In
practice, we have used the suspend functionality to “hand off” transactions to child processes. We describe a
method that could provide switching transactions in Section 7.1.4.
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All four operations stress meta-data operations, and to a lesser degree the create, read, and
append operations stress data operations. Because of Postmark’s simplicity it is often used
for file system benchmarking.

We modified Postmark 1.5 to use the Amino transactions API described in Section 2.4.
Modifying Postmark to use transactions was a rather simple task, requiring only 33 lines of
code. Postmark was already structured around the notion of a transaction, so all that was
required was marking the beginning and end of the four transaction functions with Amino
calls. Each of these functions takes the form:

if (amino(BEGIN_TXN, file_table[free_file].name, 0) == -1) {
fprintf("begin: %s\n", strerror(errno));
exit(1);

}

/* Function Code Goes Here. */

if (amino(COMMIT_TXN, 0) == -1) {
fprintf("commit: %s\n", strerror(errno));
exit(1);

}

As can be seen, beginning a transaction requires four lines and committing it takes another
four. Therefore, each of the four functions requires eight lines each, for a total of 32 lines
of code. Combined with a single line to include the amino.h header file, this means that
Postmark required only 33 lines of code. Part of the reason that Postmark requires so few
lines of code, is that it is never necessary to abort a transaction, because if a failure occurs
it already exits.8 Because Amino automatically aborts transactions on process exit, this
results in simple code.

2.5.2 GNU Make
GNU Make is a popular software package that manages the dependencies of source files,
intermediate files, and output files—typically for source code, object code, and executables.
It is the core of building most Unix packages (e.g., OpenSSH, which we use as a compile
benchmark in Section 5.5).

Unlike Postmark, Make does not read or write any of the files we are interested in
transactionally protecting. Instead, it uses a series of rules that are defined in a Makefile
to execute external programs that operate on these files (e.g., gcc -c to compile a file and
then ld to link the object files).

Rather than modifying each of these external programs individually, we chose to modify
Make such that it wraps each individual program in a transaction. If the external program
succeeds (or if the Makefile directs make to ignore the error code), then we commit the
transaction. If the program fails, then we abort the transaction. This is similar to the

8The original Postmark 1.5 does not exit, but rather silently ignores errors. We used a slightly modified
version described in Section 5.4 that uses improved timing and exits on failure.
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Lines of Code Purpose
1 Include amino.h.
1 Include transaction ID in Make’s child process data structure.
1 Verify that parent has no current transaction before fork.

19 Begin transaction in parent before fork.
4 Suspend transaction in parent after fork.
4 Attach to transaction after child completes fork.
4 Abort transaction on failure.
4 Commit transaction on success.

38 Total Lines of Code for Make.

Table 2.2: Our modified Make required 38 new lines of code to transparently provide
transactions for child processes.

standard Make behavior, which deletes the targets after failure. The difference in behaviors
is that an unmodified Make may leave temporary files of which it is unaware, but our
modified Make undoes all changes.

To implement this Make extension required 38 lines of code as detailed in Table 2.2.9

One line of code was required to include the Amino header, and another was used to add
the transaction ID to Make’s internal data structure that represents a child process.

About half of our code is in the start job command function, which is responsible
for starting external programs and recursive instances of Make (called sub-make processes).
We present a simplified version of this code in Figure 2.3 on page 21. We do not transaction
protect sub-make processes, because they protect their own sub-processes. Before Make
starts a new child process, we verify that there is no child transaction (1 line). If we have a
transaction, this would indicate that our parent began a transaction, which is most likely due
to a programming error in which we did not recognize that Make was recursively calling
itself. Next, we determine Make’s present working directory and begin a transaction on that
Amino file system if we are not executing a sub-make (19 lines). At this point Make begins
the child process using the vfork system call. The child process immediately executes the
external program and is unmodified. The parent process suspends the current transaction
and the child’s job is started (4 lines).

The remainder of our code is in the reap children function. We present a simpli-
fied version of the code in Figure 2.4 on page 22. After a child returns Make looks up its
child data structure. If there is a transaction associated with the child (which is true, unless
it was a submake), then we attach to that transaction (4 lines). If the child process failed
and the error should not be ignored, then we abort the transaction (4 lines). Otherwise, we
commit the transaction (4 lines). This has two effects: (1) if a build process fails, then we
no leave stale temporary files; and (2) if the build process is durable, no synchronous writes
are required until the external program completes.

9The number of lines inserted is actually 68. The number 38 omits comments and blank lines.
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/* Determine what job is to be run, assemble argv, and
* initialize stdin. */

/* Make itself should never have a transaction, because we
* do not create one for recursive makes. */

assert(amino(QUERY_TXN) == 0);

/* If this is not a recursive make, then start a
* transaction, using the pwd as the transactional file
* system. */

if (!(child->flags & COMMANDS_RECURSE)) {
pwd = getcwd(NULL, 0);
child->txnid = amino(BEGIN_TXN, pwd, 0);

} else {
child->txnid = 0;

}

child->pid = vfork();
if (child->pid == 0) {

/* Execute child job, this never returns. */
}

/* We are the parent, so we suspend this transaction. */
if (child->txnid)

amino(SUSPEND_TXN);

Figure 2.3: A simplified version of the start job command function, which begins a
transaction for the external program. We omit error handling and code that is not related
to our modifications.
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/* Reap a child and determine its exit code. */

/* We attach to the child’s transaction. */
if (c->txnid)

amino(ATTACH_TXN);

if (child_failed && !c->noerror) {
/* The commands failed, so delete targets. */
if (c->txnid)

amino(ABORT_TXN, TXNOP_WAIT);
} else {

if (c->txnid)
amino(COMMIT_TXN, TXNOP_WAIT);

}

Figure 2.4: A simplified version of the reap children function, which commits or
aborts a transaction for the external program. We omit error handling and code that is
not related to our modifications.

Lines of Code Purpose
1 Include amino.h.
5 Begin a transaction.
5 Function to abort a transaction.
5 Function to commit a transaction.
1 Extern declaration for abort function.

18 Commit/abort function calls (and required extra braces).
35 Total Lines of Code for tar.

Table 2.3: Our modified tar required 35 new lines of code to protect each extracted file.

2.5.3 GNU tar
We modified GNU tar to transactionally protect each file extracted. This prevents appli-
cations from leaving partially extracted files and from unsuccessfully overwriting existing
files. In fact, GNU tar already includes 468 lines of code for managing backup files to
restore the last overwritten file when extraction fails. Our solution is only 35 lines long and
provides more robust error handling in the face of hardware and software errors. Table 2.3
describes the changes, which are to begin a transaction (5 lines), create functions for com-
mitting and ending that transaction (10 lines), and to call that function in the appropriate
places (18 lines of which 8 are the function calls and the remainder are newly required
braces).

2.5.4 mail.local
The mail.local program is the Sendmail component that is responsible for delivering
mail to users on a local machine. This operation boils down to appending the data from
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the standard input stream to a file specified on the command line (e.g., /var/mail/
cwright). The deliver function of mail.local performs this append and is 451
lines long and has a McCabe cyclomatic complexity of 83 [44], which counts the number
of control points.

Our transactional local mailer is 113 lines long. The delivery function is 72 lines long,
and has a cyclomatic complexity of 14. This means that our mailer is six times less complex
than the non-transactional equivalent. The delivery function uses two transactions. The first
transaction is used to execute the stat and open system calls in isolation. The stat call
verifies the owner of the file and its mode. The open system call opens the verified file,
creating it if it does not exist. This transaction does not require durability, because if the
file is not created the only update is the file’s access time. If the file is created, then the
only change is its existence as a zero-sized file. If the machine crashes before this update
reaches the disk, then the file is recreated when the next message is delivered.

The second transaction protects the actual writing of the message to the mail file. This
transaction provides atomicity, consistency, isolation, and durability. Atomicity is required
so that either the entire message is written to the mailbox or none of it is. Isolation is
required so that two concurrently delivered messages are not intermixed. Together these
properties yield application-level consistency: that the mailbox is properly formatted series
of complete messages. Finally, durability is required so that by the time the local mailer
exits successfully, Sendmail can safely remove the message from its queue.

The mailer application would work correctly with a single transaction, but we chose to
use two different transactions to provide improved concurrency. If we used one longer-lived
transaction, then the long-held lock on the path database would reduce concurrency.

We handle deadlocks differently for the two transactions. For the first transaction, if a
deadlock occurs we repeat the stat and open. The second transaction is more compli-
cated because as the message is appended to the mail file, we consume it from the stdin
stream. If the transaction fails mid-way, we have already consumed part of the message,
and cannot roll back stdin. To solve this, we exit with the status EX TEMPFAIL, which
instructs Sendmail that the mail was not delivered, but that it should attempt delivery again.
An alternative approach would have been to store the message in a deadlock free temporary
file,10 and then read from that file before sending the message. However, we chose to use
the simple and convenient retry method built into Sendmail.

10For example, the temporary file could be stored on a non-transactional file system to ensure that it is
deadlock free.
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Chapter 3

Monitor Design

We developed a prototype ACID file system on Linux, called Amino. The key implemen-
tation question for our file system is how to intercept calls and direct them to the database
transparently. We evaluated six techniques with respect to the following two criteria:

• Legacy applications should not be modified. In the best case, unmodified binaries
can run without recompiling or relinking. We also considered techniques in which
the application must be recompiled or relinked without source code modification.

• The interception technique should not insert caches between the application’s sys-
tem calls and the database. This is because any caches that are not managed by the
database suffer from two problems. First, if a transaction spanning multiple opera-
tions is aborted, then the cache becomes stale. Second, if the caches are accessed
without consulting the database, then the isolation property is violated.

Finally, we considered the implementation effort and attempted to minimize changes to
existing infrastructure. We considered six choices.

In-kernel file system The most direct approach would be to write a standard in-kernel
file system. In-kernel file systems do not require relinking of binaries, and such file systems
fit into the existing kernel architecture. They also have the advantage of running in kernel
mode, so they minimize data copies and context switches.

In-kernel file systems, however, have two key disadvantages. The first is that standard
in-kernel file systems are intimately intertwined with caches. This means that substantial
code changes are required to ensure coherency between the internal database caches and
the external VFS caches. The second disadvantage is that all of the database code needs to
be ported to the kernel and then executed within the kernel address space. Although this is
not an insurmountable problem,1 it introduces a code base into the kernel that is ten times
larger than most existing file systems.

1In fact, we have previously ported a subset of BDB to the kernel [35, 36], and the lessons learned from
that project have motivated this thesis.
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FUSE FUSE or Filesystem in Userspace is a hybrid user-kernel approach [86]. Like a
standard kernel-level file system, no application modifications are required. A standard
kernel file system is used to interface with the VFS, but VFS calls are sent to a user-
space demon via a device. The user-space demon executes the call and returns the data
and status codes to the kernel-level file system, which in turn passes them on to the user.
This means that the database code need not run within the kernel, eliminating one concern
about developing an in-kernel file system. Unfortunately, this approach still suffers from
the same caching problems, as a standard kernel level file system, in that cached accesses
do not consult the DBMS. As FUSE file systems run outside of the kernel, and have less
control over the VFS than a standard file system, these problems would be more difficult
to solve than with a standard kernel-level file system. Finally, because FUSE file systems
are limited to a strictly-defined VFS-like interface they have no notion of processes. Our
design requires process information for current transactions and transaction sharing, which
is another reason that FUSE is not appropriate for our system.

User-level NFS server toolkits A user-level NFS server toolkit, like the SFS-toolkit [43],
has many of the same advantages and disadvantages as FUSE: applications need not be
modified and the database can run in user level, but the kernel caches information inside
of the NFS client, thereby violating the isolation property and creating coherence prob-
lems with the database caches. Additionally, user-level NFS servers require additional data
copies through the network stack, as well as context switches. The NFS protocol also di-
vorces the file system from processes and is not easily extensible for new transactional
primitives.

LD PRELOAD library Another option is to run our file system directly in the address
space of user processes and intercept system-call wrappers using the LD PRELOAD
runtime-linker mechanism. This approach has three main advantages. First, as file-system
calls are intercepted at the highest possible level, there are no cache coherency or isolation
issues to contend with. Second, the database does not need to run in the kernel. Third,
data copies between the process and the kernel are not required. There are, however, four
disadvantages. First, statically linked binaries cannot use the file system, so they must be
recompiled. Second, the C library itself continues to use the existing calls, so every call of
interest must be intercepted (e.g., fprintf must be intercepted because applications use
it to write to the file system). Third, system calls that do not use the library wrappers are
not intercepted, so not all code would work with this approach. Fourth, as the file system
runs in the separate address space of each process, sharing data among them becomes
more difficult.

Modified C library Directly modifying the C library is another option to extend new file-
system functionality to applications [39]. The advantages and disadvantages are similar to
the LD PRELOAD mechanism, but high-level calls like fprintf do not need to be mod-
ified if the corresponding low-level library calls like write are handled correctly. Three
additional disadvantages of using a modified C library instead of an LD PRELOAD are that
all applications must be relinked with the new C library, modifying the C library requires
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significant implementation effort, and that circular dependencies would exist between the
BDB library and the C library. For example, BDB needs the fwrite library call, but that
call in turn would depend on BDB.

ptrace The final option we considered was using the process-tracing facility,
ptrace [25]. The process-tracing facility allows a monitor to intercept and modify
system calls and signals. From the perspective of the application, the monitor is equivalent
to the OS, so no application modifications are required. As shown in Figure 3.1, the
monitor runs in user-level, so BDB does not need to execute within the kernel. Unlike
the library approach, a single instance of the monitor can handle multiple processes, so it
is simpler to share data, caches, and other resources. To enable the concurrent execution
of system calls, the monitor uses a separate thread for each user-level process that is
being traced. On Linux processes and threads almost identical, so the monitor can trace a
multi-threaded application just as if it were tracing two separate processes.2

int 0x80
iret

int 0x80
iret

int 0x80
iret

...

Process 1

Process N

Amino Monitor
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wait
ptrace

wait
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Thread N
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Figure 3.1: The Amino monitor can trace an arbitrary number of processes. Each appli-
cation process is traced by a separate thread within the monitor. At system call entry, the
kernel signals the monitor via the wait system call. Amino manipulates the monitored
processes’ state with ptrace primitives. BDB executes within the monitor’s address space
and uses standard system calls.

The major disadvantage of the ptrace approach is that performance may suffer for
system-call–intensive programs, as more context switches are required for each system call.
However, we felt that ease of development and cache consistency outweighed performance
concerns.

In Section 3.1 we describe the process tracing primitives. In Section 3.2 we describe
the structure of the Amino monitor. In Section 3.3 we describe Amino’s process control
blocks, and in Section 3.4 we describe Amino’s path resolution and mount framework. In

2This decision also has the convenient side-effect of causing each thread in the monitor that issues Berke-
ley DB operations to map exactly to a thread of control in the application. Without this property, it would
be possible for undetectable deadlocks to occur in BDB, because BDB does not permit two outstanding
transactions in the same thread of control.
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Section 3.5 we discuss address space issues. Section 3.6 describes our mmap implemen-
tation and discusses conflicts between ACID semantics and the POSIX memory-mapping
interface. Section 3.7 describes our ptrace enhancements, and Section 3.8 discusses
limitations of our current prototype.

3.1 Process Tracing Primitives
The ptrace framework provides three primitives to establish tracing: the monitor can
issue PTRACE ATTACH to begin tracing a currently running process, the monitor can
issue PTRACE DETACH to stop tracing, and one of the monitor’s children can issue
PTRACE TRACEME to be traced by the monitor. Our monitor begins by forking a new
child, issuing PTRACE TRACEME, and then executing the to-be-traced executable. From
this point onward, the monitor is notified via the wait system call whenever the child
needs attention.

The monitor uses three primitives to control the execution of the child process. (1)
PTRACE SYSCALL continues execution until the next entry or exit from a system call.
If the child is in user-mode, then the child process is stopped before the kernel enters
the system call handler, so that the monitor can change the arguments, or even the sys-
tem call to be executed. If the child process is in the midst of executing a system call,
then the kernel completes the routine and the monitor can examine and change any re-
turn values. (2) PTRACE CONT continues execution until the child receives a signal. (3)
PTRACE SINGLESTEP continues execution until the next instruction.

When the child is in the stopped state, the monitor uses four primitives to ob-
serve and manipulate the child process: PTRACE GETREGS, PTRACE SETREGS,
PTRACE PEEKDATA, and PTRACE POKEDATA.

PTRACE GETREGS retrieves the values of the registers saved during a context switch
from the kernel’s process control block. On the Intel 80x86 architecture, the eip register
contains the program counter, the eax register indicates what system call the process wants
to execute, and the remaining general purpose registers contain the system call’s arguments.
Our current implementation is tied to the 80x86 architecture, because it references these
registers, but it would not be difficult to add support for other architectures as the ABI
is similar on all Linux platforms. In our prototype, only 440 out of 14,227 lines of code
reference 80x86 specific registers.

The monitor can also manipulate the registers with the PTRACE SETREGS primitive.
Before a system call executes, the monitor can change the call to be executed by setting
eax, and the arguments can be changed by updating the corresponding registers. After a
system call is executed, the return value can be set by updating the value of eax. At any
point in time, the execution flow of the program can be changed by modifying eip. This is
required when a single system call must be implemented in terms of several other system
calls.

Finally, there are two primitives to examine and update a word in the child process’s
memory: PTRACE PEEKDATA and PTRACE POKEDATA. These primitives are used when
the system call takes pointer arguments (e.g., file names are passed as strings, and stat
fills in a user-supplied buffer).
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Figure 3.2: ptrace primitives used to handle a read system call. Arrows indicate control
transfer. Double arrows indicate that the function was called and returned immediately.

Figure 3.2 shows an example of how the monitor handles a read system call destined
for an Amino file system on behalf of a user process. There are ten steps involved in this
call:

1. The user process issues a system call using int 0x80. The system call to execute
is stored in eax.

2. The wait system call in the monitor returns the process ID of the user process.

3. The monitor issues a PTRACE GETREGS call to retrieve the value of eax. Based on
eax and the call’s arguments, Amino determines whether this call is destined for the
database. If the call is not destined for the database, then Amino allows the process
to continue with no further intervention.

4. Amino performs the database read operation, and uses the PTRACE POKEDATA
primitive to write the returned data into the user process’s address space (we also
have an optimized mechanism described in Section 3.5.1).

5. Amino changes the registers to prevent the kernel from handling the call. In the case
of read, Amino sets eax to –1, thus the kernel essentially ignores the call because
no handler is associated with –1.

6. Amino instructs the kernel to continue execution until the end of the call and calls
wait (in this case the call returns immediately without performing any service, be-
cause eax was set to –1 in step 5).

7. The kernel executes the system call, and returns from wait.

8. Amino uses the PTRACE SETREGS primitive to store the return value of the previ-
ously executed read in eax.
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9. Amino uses the PTRACE SYSCALL primitive to allow the user process to continue
executing.

10. The kernel issues an iret instruction to return control to the user process. The user
process reads the return value from eax, and it is as if the system call were serviced
by the kernel.

3.2 Amino Structure
The Amino monitor begins by forking a child process to trace. After the fork, the child
executes the program to be monitored. All of the process’s descendants are also monitored,
and each monitored process is assigned a state. The three most common states are INUSER,
INCALL, and INFORCERET, which indicate that the process is executing user-level code,
the kernel is executing a system call, or the monitor is emulating a system call, respectively.
To service requests, Amino calls the wait system call. When a process requires attention,
usually because it is entering or exiting a system call, the kernel returns its process ID as the
result of the wait system call (wait also returns when a signal is delivered or a process
exits).

InUser InForceRet

InCall

PSfrag replacements
Is Chdir→Save PWD Candidate

OK→Set PWD

FAILURE
Is Amino Open→Internally Open File

Is Amino Call→Nullify Call →Set Registers

Figure 3.3: The monitor has 17 states that determine its actions after wait returns. This
diagram shows three of those states: INUSER, INCALL, and INFORCERET. The edges
are labeled with implications. If the antecedent is true, then the edge is followed after the
actions in the consequent are performed. Unlabeled edges are followed unconditionally.

After returning from wait, Amino retrieves the current process’s state and performs an
appropriate action. A simplified State diagram is shown in Figure 3.3. Each edge is labeled
with one or more implications, which are evaluated from top to bottom. If the antecedent
is true, then the edge is followed after performing the actions in the consequent. If the
antecedent is empty (or the edge is unlabeled), then the edge is followed unconditionally.
If the consequent is empty (or the edge is unlabeled) no action is performed. After each
transition the user-level program’s execution is resumed. We can see that the monitor begins
in the INUSER state, because the user-level program begins by executing user-level code.
After a trap into the monitor, the process’s registers are examined, and if the call is not
destined for Amino, the monitor transitions into the INCALL state. After the call completes,
the monitor transitions back to INUSER and is ready to service the next system call. If the
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call is destined for Amino, then the monitor nullifies the system call (so that the kernel
does not service it) and transitions into INFORCERET. After the nullified call completes,
the monitor sets the processes registers to the appropriate return value and then returns to
INUSER. In the example in Section 3.1, the return value of the read is determined in
step 5, but is not yet returned. When the return value is determined in step 5, the monitor
sets the state to INFORCERET. After step 8, Amino looks up the state and because it is
INFORCERET, Amino sets the value of eax to the proper return value. To complete the
call, Amino sets the state to INUSER and issues PTRACE SYSCALL (step 9).

InUser

InOpen

InForceRet

InCall

InChdir

InExec InExec2

PSfrag replacements

Is Chdir→Save PWD Candidate
OK→Set PWD

FAILURE

FAILURE

Is Exec

OK→Get Exec Event
→Reset Address Space

Is Amino Open→Internally Open File
OK→Associate Returned FD with Internal File
FAILURE→Close Internal File

Is Amino Call→Nullify Call →Set Registers

Figure 3.4: Most of the 17 monitor states are for specific calls. Using the same notation as
Figure 3.3, this state diagram shows the transitions for open, chdir, and exec.

There are currently 17 states, most of the states indicate that the user process is in the
midst of a specific call, for example chdir, open, or exec. Figure 3.4 shows the state
transitions for these three calls. Before the chdir call is executed, the monitor saves the
present working directory candidate (i.e., the directory into which the application wants
to change). If the chdir call is successful, then the monitor sets the process’s PWD
to the saved value. On either success or failure, the monitor then returns the process to
the INUSER state. An Amino open call proceeds similarly to chdir, first the monitor
internally opens the file and transitions to the INOPEN state. If the kernel cannot reserve a
file descriptor for this file, then the file is closed. If the kernel can reserve a file descriptor
for this file, then the file is associated with that file descriptor. The exec call is slightly
more complicated than chdir; exec requires two states: INEXEC and INEXEC2. First,
if the system call being executed is exec, the process transitions to the INEXEC state. If
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the exec call fails, then the process returns to the INUSER state. Otherwise, the monitor
transitions verifies that it received an exec ptrace event, and then transitions to the
INEXEC2. After the INEXEC2 state, the exec system call was successful and the monitor
resets address-space-specific information about the process (e.g., shared memory regions
are destroyed by exec).

Three other states of note are REDOCALL, RESTOREREGS, and INFRCEXEC. REDO-
CALL indicates that the current system call should be repeated, and RESTOREREGS indi-
cates that the process’s registers should be set to their original values. REDOCALL allows
us to insert a new system call into the stream (e.g., to create shared memory regions), and
RESTOREREGS is used when we need to change system call arguments (e.g., when rewrit-
ing file names). The INFRCEXEC overrides the return value as is done in INFORCERET,
but the original system call is executed.

The DOCONT and FORKCONT states indicates that the process should be continued
on the next entry. The INSHMAT state is used for shared memory attachment, which is
described in Section 3.5.2. The remaining five states are used to handle the dup, mmap,
mremap, clone calls (clone requires two states).

3.3 Process Control Blocks
The monitor maintains each process’s state in a private process control block (PCB). The
monitor’s PCB is independent of the OS PCB, and contains the process ID to use as a search
key, a copy of the process’s registers, the current state of the process (e.g., INFORCERET),
and all state-specific information (e.g., the return value to be passed back to the appli-
cation). Encapsulating all of this information in a single structure allows the monitor to
handle concurrent processes.

Like an OS PCB, the monitor’s PCB contains an open-file table and present working
directory (PWD). The open-file table is a simple array with a slot for each possible file
descriptor. If a given file descriptor is connected to an Amino file, then its slot contains a
pointer to a structure describing the file; otherwise it is empty (NULL). If a system call uses
a file descriptor as an argument, it is looked up in the open-file table. If the file descriptor’s
slot is empty, then the system call proceeds with no further intervention. Otherwise, Amino
extracts the schema data (i.e., the database and environment handles) and the unique file
identifier from the open-file table and directs the call to BDB.

Amino cannot arbitrarily assign file descriptors to the user-level process, because the
kernel would not know that a given file descriptor is in use. To handle this situation, Amino
uses shadow descriptors. When opening a file in the database, Amino changes the path
name to “/” before letting the system call proceed. The resulting file descriptor (in the
child process) is used as a place holder, and no system calls are issued against it. The kernel
does not assign the resulting descriptor to any other file, so Amino can correctly identify
the calls that it handles; in case of a software error, most calls on this file descriptor fail
with EISDIR (because “/” is a directory). For efficiency, Amino reuses this file descriptor
with dup on subsequent open calls.
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3.4 Mount Subsystem
The Amino monitor must maintain a mount table to associate pathnames with database
schemas. On startup, an Amino configuration file provides a list of paths to manage,
and for each path, the mount type and data (the configuration file is essentially equiva-
lent to /etc/fstab). Currently, our monitor supports Amino mounts that take the BDB
database pathname as an argument, pass-through and AES mounts that take a directory
to stack over as an argument, and ISO mounts which take an ISO image as an argument.
When the monitor encounters a system call that references one of these paths, it passes the
call to the appropriate file system’s routine.

This architecture is somewhat similar to the prefix table in Sprite [58]. In Sprite, a
dynamic table of path name prefixes was used to resolve servers. This is somewhat different
than the classical vnode interface, which does not rely on an explicit table of mounts for
path name resolution, but rather has a vnode field that points to the root of a new file system
if the vnode is a mount point. The static mount table in Amino, however, is less complex
than the Sprite prefix table, which dynamically changes based on the state of file servers.

Pathnames passed to system calls can be rather complex. If they are relative path names,
then they depend on the process’s context. Any path can use the “..” operator to move one
level up the directory tree. We store paths as stacks, with the root path represented as an
empty stack, and a path such as /usr/local/bin is represented by a stack containing
usr, local, and bin. If a path is managed by Amino, then it is a child of one of the
mount-table entries described in the configuration file. To rapidly determine if one path
is a child of another, the path structure also contains a depth, and a length for each path
component.

Each PCB contains a path stack for the PWD. When a chdir or fchdir system call
is issued, the new PWD is stored as a candidate. If the system call is successful, then the
candidate becomes the PWD. The mount table also uses a path stack to identify the path
for each mount.

Figure 3.5 (page 33) is a flowchart of how the monitor resolves path names that are
passed to a system call. First, the monitor creates an empty path stack. Next it checks
whether the path begins with a “/.” If not this means the path is a relative path, so the
process’s PWD is copied to a new stack. Each subsequent component is pushed onto the
stack. If the component is “..,” then an element is popped off the stack (unless of course
the stack is already empty). After converting the string pathname into a path stack, the
monitor searches the mount table for any mount that contains this path. The path structure
is optimized for this purpose: if the path has a depth less than the mount, then it cannot be a
child; and the length is stored with each component so the component names only need to
be compared if they have equal length. If a mount is found, then the path components after
the root of the mount are extracted (e.g., if the path is /usr/local/src/amino and
the mount is rooted at /usr/local, then src/amino is extracted). The mount private
data containing the database handles and the extracted path are then passed to the BDB
call. If the path name is not contained in a mount, then Amino allows the system call to go
through without any changes.
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Path begins with a "/" Copy PWD Into Path

Create Empty Stack

Retrieve User−Specified Path

NO: Relative Path

YES: Absolute Path

Push This Component Onto the Stack

Extract First Pathname Component

Pop the Top Component Off the Stack

Component is ".."? Stack is Empty?

Extract Next Pathname Component

Another Component Exists?

YES YES

NO NO

END

NOYES

Figure 3.5: The monitor uses stacks to represent path name components. When a new
component is encountered, it is pushed onto the stack. When a “..” is encountered a
component is popped off the stack.
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3.5 Address Spaces
There are two distinct address spaces involved in executing the Amino monitor: (1) the
address space of the monitor and (2) the address space of the user process. In Section 3.5.1
we discuss accessing the user process’s memory. In Section 3.5.2 we discuss rewriting
system call arguments.

3.5.1 Accessing User Memory
The ptrace primitives to access the user process’s address space are rather limited—they
can only examine or change one word at a time. Thankfully, Linux provides a more pow-
erful interface to it through the /proc file system. A process with permission to ptrace
another process may read from the traced process’s memory using the /proc/pid/mem
file, where pid is the PID of the traced process. This allows the transfer of up to a page
(1,024 words on the 80x86) in a single system call. Linux also has support to write to
/proc/pid/mem, but it is disabled by default. For our prototype, we enabled a writable
/proc/pid/mem to allow bi-directional bulk transfers. If the /proc/pid/mem inter-
face is not available for reading or writing, then Amino falls back to PTRACE PEEKDATA
and PTRACE POKEDATA.

To further improve on this interface, we created a kernel patch that allows the monitor
to map arbitrary regions of the user process’s address space into its own. After a mapping
is established, the monitor no longer needs to rely on system calls to transfer data to and
from the user process instead using standard memory access. These mappings have two key
performance advantages over the existing interfaces: (1) the data does not need to be copied
from the user-process to the kernel before being copied to the monitor (or vice versa), (2)
fewer system calls are required because there is no artificial limit on transfer sizes.

Using the rather simple kernel component that establishes mappings, the monitor tracks
which mappings are established between itself and the user-level process using a multi-level
page table. When those mappings become invalid (e.g., through successful brk, mmap,
munmap, exec, or fork calls), then the monitor removes the invalidated mappings.

Using the more flexible memory-mapped interface automatically eliminates one data
copy, but we realized further reductions by changing the monitor. For example, without the
memory-mapped /proc/pid/mem interface, before invoking Amino’s read operation
the monitor creates a temporary buffer that is large enough for the result. Amino then reads
the data into that buffer (one data copy is required to transfer data from the BDB cache
into the buffer), and it is copied to the user application (requiring a two data copies, one
to transfer data to the kernel and a second to transfer data to the application). When a
memory-mapped /proc/pid/mem is available, then Amino reads directly into the user
process’s address space—requiring only one data copy (the one from BDB’s cache into the
user application). Though it is in theory possible to remove this copy without altering the
ptrace interface it is difficult in practice for two reasons. First, BDB provides support
for reading data into an arbitrary buffer provided by the user or a buffer allocated using the
OS’s malloc. Neither of these methods is suitable for zero-copy reads using the existing
ptrace interface. To provide zero-copy reads, a new BDB method must be added that
returns the address of data in the cache. The second reason the existing ptrace interface

34



makes zero-copy reads problematic is that the core of Amino’s file system operations would
need knowledge of ptrace and its limitations (e.g., only one 4,096-byte aligned page
can be written to). It is certainly possible to add this knowledge to Amino file system
operations, but it breaks the abstraction between the core of the monitor and the file system,
increasing the complexity of both.

3.5.2 Rewriting System Call Arguments
All system call arguments must be in the user processes’ address space. For example, the
first argument to open is a pointer to a string. If Amino needs to update these values, then
it must manipulate the child’s address space. It is not always possible to manipulate the file
name in place, because the new file name may be longer than the existing file name, and
the memory segment may be read only. To address this issue, previous ptrace monitors
modified either the stack or the first writable segment. In Amino, we establish a System-V
shared-memory region between each user process and the monitor. The monitor writes
the new file name into its own address space and updates the child’s registers to point to
the shared memory region in the child’s address space. After the call, the child’s original
registers are restored. This approach has the advantage of requiring no data copies, and the
child’s existing memory is not modified, therefore the child’s memory does not need to be
restored after the call.

Establishing the shared memory region requires inserting a new system call into the
process’s system call stream. The state transitions used for this procedure are shown in
Figure 3.6 (page 36) using the notation of Figure 3.3 (page 29). Amino calls do not re-
quire rewriting the file name, because the kernel does not execute them, therefore they are
unchanged by the introduction of the shared memory region.3 When the first system call
is issued with an argument that needs to be rewritten, the shared memory region is not yet
established. To establish the shared memory region the following steps are taken:

1. The monitor creates a System V shared memory region and attaches to it in its own
address space.

2. From user applications, the shmat call attaches to a shared region memory region,
but on Linux shmat is implemented in terms of a larger ipc system call. The ipc
system call returns the address that a shared-memory region is attached by updating
a pointer in the process’s address space. This means that to establish the region, we
must store this return address somewhere within the child’s address space.
The monitor locates the first private writable address within the process for this return
value.

3. The contents of the process’s address space in which ipc will write its return value
are saved.

4. The process’s registers are changed to perform the ipc call by setting eax to
NR ipc and the other registers to the appropriate arguments.

3The open call actually rewrites the filename to /, but we omit this detail for clarity. Rewriting a path
for an Amino call works exactly like rewriting a path for a kernel call.
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InForceRet

InCall

InUser

InShmat

RestoreRegs

PSfrag replacements

Is Amino Call→Do Call →Set Registers

→Restore Registers

→Restore Registers
and Return Value

Rewriting is Required and

Rewriting is Required and

Shared Memory is Established

Shared Memory is not Established

→Rewrite Name, Set Registers

→Find Address for Return Value,
Save Contents, and set eax to NR ipc

Figure 3.6: Using the same notation as Figure 3.3, this state diagram shows the transitions
for rewriting file name arguments to system calls. Amino calls do not require rewriting,
so they are unaffected. If a shared memory region is already established, then it is used
to rewrite the file name. If rewriting is required, but the shared memory region is not yet
established the monitor establishes the region and restores the process’s registers including
the instruction pointer (EIP). After transitioning back to the INUSER state, the process
attempts to execute the original system call and can use the newly established region.
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5. The state is set to INSHMAT, and the process continues.
After the ipc system call completes, control is returned to the monitor. Because the pro-
cess is in the INSHMAT state, the monitor stores the value returned by ipc in the PCB.
This address is later used to update the process’s registers when rewriting file names. The
process’s original registers and the contents of the overwritten memory are restored, and the
process is allowed to continue. Because the instruction pointer (eip) register was restored
along with the others, the user process re-executes the original system call.

When re-executing the original system call, the shared memory region has already been
established. The file name is rewritten into the monitor’s shared memory segment, and the
user process’s registers are updated to point to its copy of the shared memory segment. The
process’s state is set to RESTOREREGS, and it is allowed to execute the call. Upon return,
the monitor restores the registers to their original value. Arguments to subsequent system
calls can be rewritten by simply updating the local region and the child’s registers.

3.6 Memory-Mapped Operations
Many applications (e.g., linkers) take advantage of memory-mapped operations, which al-
low access to the file system through an efficient memory-like interface. Therefore, sup-
porting mmap is essential to providing good compatibility for POSIX applications. The
monitor provides support for memory-mapped operations by intercepting the mmap sys-
tem call and any SIGSEGV signals that are delivered to a monitored process.

Upon intercepting an mmap system call destined for one if its file systems, the monitor
behaves much like an OS kernel: it establishes an empty region and services page faults for
that region. To create the empty region, the monitor converts the process’s mmap system
call to an anonymous region that the process is not allowed to read or write. The monitor
also records the address of the memory-mapped region and its backing file in the process’s
PCB using a multi-level page table structure. The multi-level page table structure, which
is identical to the structure used by most OSs, allows the monitor to find the region corre-
sponding to a given address using two table lookups. The structure is also efficient in terms
of space, requiring only 4MB to address 4GB of memory.4

Normally, the OS handles the page faults through a hardware trap triggered by the
MMU. The monitor handles page faults through a software trap. Whenever an application
accesses an invalid page (either because it does not have permission or the page does not
exist), the OS sends it a SIGSEGV signal. Before a monitored application receives the
signal, the monitor examines the signal information including the address that faulted. If
the monitor finds a region corresponding to the address, then the monitor reads the page
into the process’s address space. Next, the monitor issues an mprotect system call in the
context of the application to allow the process to read the page. If the address is not found,
then a SIGSEGV signal is delivered to the process, usually resulting in a core dump.

Memory-mapped files can be either private or shared. For shared mappings, writes to
the memory region are reflected in the file, whereas for private mappings writes are not

4In practice, the amount of memory required is smaller. As only Amino mappings are tracked, the vast
majority of the structure is sparse. Moreover, memory mappings are clustered together so if a second-level
table is required, then it is likely used more than once.
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reflected in the backing file. For private mappings, only one page fault is required—the
one that initially brought the page into memory both reads it and marks it as writable (as
any writes to the region are discarded by the file system, so tracking them is not required).
However, for shared mappings the system must keep track of which pages in a region have
been written to, so that they can be written to disk. When a shared page that was already
read into the process’s address space is written to, a second page fault is generated. The
monitor marks the page’s state as dirty. It then allows the process to change the page
(using mprotect). Unfortunately, the signal information structure informs us only that
an access violation occurred; it does not inform us whether the requested access was a read
or write. If we had this extra piece of information, we could reduce the number of traps
into the monitor that are required for memory-mapped writes, because if a region is written
to without being read, then we would not need the first fault.

On munmap or msync, the monitor writes dirty pages to the backing file. Although the
monitor does not currently write dirty pages in other circumstances, it would be possible
to create a separate thread for flushing dirty pages (analogous to Linux’s pdflush or
FreeBSD’s vm pageout).

On closer inspection, the POSIX memory-mapping interface, particularly for shared
mappings, is fundamentally at odds with ACID semantics:

• User-level applications map regions, which can be thought of as a file-level opera-
tion. After the mapping is established, traditional load/store instructions (or instruc-
tions that reference memory) operate on bytes or words. The operating system on
the other hand uses a fundamentally different abstraction for memory-mappings—
pages. Ideally, the operating system would provide memory-mapped semantics that
are defined to the level of bytes, but hardware limitations essentially dictate the page
is the smallest unit which can be used for memory-mapping efficiently.

• The question of when a write should be acknowledged and propagated, makes trans-
parent ACID semantics difficult. For system calls, it is clear when the OS should
write data to disk, because they are executed at a single point in time. However,
for memory-mappings the application can write data over a long period of time and
there is no commonly used signal to indicate that a write operation is completed. In
our implementation we use the munmap and msync system calls, but this method
has three drawbacks. First, munmap and msync are not required. Second, msync
is a rarely used system call (e.g., we did not observe any instances of it during any
of our benchmarks).5 Third, by not propagating writes until the munmap call the
system has the potential run out of memory and swap when it otherwise would not.
Normally, the OS would periodically flush these writes according to a timer, or when
memory is running low. However, if writes are not propagated until munmap or
msync, then the outstanding writes must be kept in virtual memory until they are
explicitly flushed.

• The expected semantics of shared mappings, fundamentally propagate unisolated
5The msync call is also comparatively rare in source code. In the Fedora Core 5 source packages, the

mmap and munmap calls occur on 4,031 and 1,487 lines, respectively. However, msync occurs only 192
times (i.e., 7.7 times less than munmap).
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writes. There are two components to shared-mapping semantics. First, the changes
made to a shared mapping are reflected in the backing file. Second, the changes made
to a shared mapping are immediately visible by other processes that are mapping the
file using a shared mapping (or reading from the file). This second condition, is
fundamentally at odds with isolation, because writes are visible by other transactions
before the transaction commits. Moreover, causing these applications to block for
locking changes the expected semantics in such a way that applications are likely to
break (e.g., applications can use shared memory for explicit synchronization).

• Implementation artifacts introduce several undesirable properties. For private map-
pings, it is unspecified whether changes to the file after the mmap system call are vis-
ible in the mapped region. This is more than just a gap in the specification, whether
updates are visible actually depends on a specific execution of processes. If the page
is being accessed for the first time, then it reflects updates; otherwise it does not.
Clearly, undefined or ill-defined behavior is at odds with transactional semantics.

Given this conflict, our current design falls closer to a standard POSIX OS: memory-
mapped reads take place on the first read from a page; memory-mapped writes take place
on msync or munmap; and we do not attempt to provide isolation for memory-mapped
accesses after the initial access.

3.7 ptrace Enhancements
The standard ptrace interface requires at least six context switches for each system call:
(1) the traced process traps into the kernel; (2) the kernel transfers control to the monitor;
(3) the monitor transfers control to the kernel; (4) after executing the system call, the kernel
transfers control back to the monitor so that the return value can be manipulated; (5) the
monitor transfers control back to the kernel; and finally, (6) the kernel transfers control
back to the traced process. In reality, more context switches are required as the monitor
must retrieve the values of traced process’s registers, issue system calls to provide OS-like
services, etc.

Clearly, reducing the number of times that the monitor is called improves performance.
For most calls the monitor needs to be notified only on entry. If the call is not destined for
an Amino file system, the monitor does not need to examine the return value so the call
could execute without further intervention by the monitor. If the call will be handled by
the Amino file system, the return value could be set and the monitor need not be notified.
Unfortunately, these two modes of operations are not possible under the current ptrace
interface.

Therefore, we created two new ptrace operations: PTRACE CHECKEMU
and PTRACE SYSSKIP. The PTRACE CHECKEMU operation is similar to the
PTRACE SYSEMU operation that was recently introduced to improve the perfor-
mance of User Mode Linux (UML) [12]. The primitive PTRACE SYSEMU allows all of a
process’s system calls to be emulated, but it is not suitable for the Amino monitor, because
we emulate only a subset of the system calls. Our PTRACE CHECKEMU interface allows
the monitor to determine whether emulation is required after examining the registers.
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The UML developers agree that our more general PTRACE CHECKEMU interface is an
improvement over the existing PTRACE SYSEMU [20]. Most of the primitives are the
same as those described in Section 3.1, but steps 6–9 are replaced with a single operation:

6. The monitor instructs the kernel to skip executing this system call and immediately
return to user space.

Aside from reducing the number of ptrace operations and context switches, reducing the
number of traps decreases CPU time and other unnecessary operations (e.g., the monitor
checks for certain conditions and gets the process’s registers after a wait call).
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Figure 3.7: The PTRACE CHECKEMU call reduces the number of ptrace primitives re-
quired for servicing a system call compared to the standard ptrace primitives shown in
Figure 3.2.

The corollary to PTRACE CHECKEMU is PTRACE SYSSKIP. When the Amino
monitor does not implement a call, then it issues PTRACE SYSSKIP instead of
PTRACE SYSCALL to bypass notification of this system calls return value and go directly
to the start of the next system call.

In Section 3.2, Figure 3.3 (page 29) showed the states that were required for traditional
ptrace primitives. PTRACE CHECKEMU removes the need for the INFORCERET state
and PTRACE SYSSKIP removes the need for the INCALL state. Figure 3.8 shows the
simpler state transition diagram, when these primitives are used. Because these two states
are eliminated, fewer transitions are needed, thus reducing traps into the monitor by 30.8%
during an OpenSSH compile.

Finally, there are also many non-file-system system calls that the monitor need not
intercept at all (e.g., time or getpid). Other operating systems, such as Solaris, already
provide this functionality, but Linux did not. To reduce the number of extraneous calls
into the monitor, we added an optional bitmap of system calls to the task structure. By
using a new ptrace primitive, PTRACE SELECT, the monitor selects precisely the set of
calls that need to be traced. This method reduced the number of traps to the monitor by an
additional 12.8% during an OpenSSH compilation. Overall, these techniques reduced the
number of traps to the monitor by 43.7%.
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InUserPSfrag replacements

Is Amino Call→Set Registers, PTRACE CHECKEMU

→PTRACE SYSSKIP

Figure 3.8: Figure 3.3 assumes the standard ptrace interfaces. Our new primitives re-
duce the number of states and transitions needed for many calls. PTRACE CHECKEMU
removes the need for the INFORCERET state and PTRACE SYSSKIP removes the need
for the INCALL state.

These three improvements can benefit a variety of ptrace monitors. For example,
the PTRACE CHECKEMU grew out of work for User Mode Linux, but provides a more
flexible interface that can be used by a monitor that emulates a subset of system calls. Many
security-oriented monitors need to examine only which system calls are being executed and
their arguments, but not their return value. For these types of monitors, PTRACE SYSSKIP
would greatly improve their performance. The strace program provides support for
filtering the set of system calls to display (e.g., file system, process, or IPC related calls),
but this filtering is done in user-space. By using PTRACE SELECT, strace could have
the kernel perform this filtering.

3.8 Implementation limitations
Our monitor implementation provides a sound framework for exploring ACID file system
development, yet there are four limitations that prevent its use as a production system: (1)
no permissions checking, (2) non-standard shared mapping semantics, (3) lack of invalida-
tion for memory-mapped access to /proc/pid/mem, (4) and no symbolic link support.
None of these limitations are fundamental to the design of our system, but are rather unim-
plemented features.

First, although Amino stores ownership and permissions information it does not en-
force it for file system operations. The existing OS cannot provide enforcement, because
all of the files in an Amino file system are stored together on the lower-level file system
without regard to the owner. Providing enforcement in the monitor is conceptually rather
straightforward. The lower-level Amino files could be owned by a designated user, and the
monitor would be a set-UID executable that runs as the user owns the files. After opening
the database files, the monitor could drop its escalated privileges and apply the appropriate
permissions based on the monitored process’s UID and GID. Of course, as with any set-
UID program, additional steps must be taken to minimize possible security vulnerabilities.

Second, our current implementation of shared memory-mappings does provide the ex-
pected write-back semantics of shared mappings, but does not provide the sharing aspect.
Each independent shared mapping is treated as a separate unit, and changes made to that
mapping are not reflected by read system calls or in other shared mappings until msync
or munmap is called. Even then, previously mapped regions are not updated (unless that
page has never been read). Traditional POSIX semantics could be delivered in the follow-

41



ing manner (as to whether that is desirable see Section 3.6). Each page of a file would be
allowed to exist in only a single shared mapping at any instant in time.6 If a page is to be
loaded into a mapping, it is first invalidated in all other mappings and, if necessary, written
to the database. Before processes are read the file using read system calls, the mapping
would be similarly invalidated. This architecture would be quite similar to cache coherency
in UCLA’s architecture for stackable file systems [28, 29]. As an optimization, instead of
using multiple anonymous regions and invalidating pages, we could use a temporary file as
a backing store for our shared memory-mapped regions. The underlying OS page cache,
would provide the expected sharing semantics in memory, and modified pages could be
written out before read system calls.

Third, the kernel patch that provides memory-mapped access to /proc/pid/mem is
suitable for our prototype, but is not suitable for a production system. Specifically, the
kernel does not invalidate the mapping’s pages after exec, munmap, mremap, brk, and
fork.7 This can lead to unexpected results. For example, a successful exec system
call replaces the address space of the process, but if an address was already read by the
monitor, then it may access stale data. Similarly, munmap and mremap can remove data
from a process’s address space. The fork system call is slightly more subtle, but can also
cause inconsistencies as shown in Figure 3.9. Though fork does not directly change the
process’s address space, it does mark it as copy-on-write. If the parent process writes to
a page before the child, then a new page is created in the parent process’s address space.
However, the monitor’s mapping still references the old page, which is in the address space
of the child (thus yielding the data from the child’s address space and not the parents). If
an application does not correctly manage its mappings, it is possible to read from or write
to process’s that it should not (e.g., after executing a set-UID program). Therefore, for
production use the kernel must properly invalidate pages from these mappings.

Fourth, Amino does not currently support symbolic links. To add symbolic links, the
pathname resolution algorithm described in Section 3.4 must consult the file system while
considering each path name component. If that component is a symbolic link, then the link
should be read and resolved.

6This requirement can be relaxed such that a read-only copy of a page may exist in multiple mappings,
but a read-write copy of a page must be the only copy of that page.

7The monitor does perform the proper invalidations from user-level with munmap. Properly written
applications, can thus access the process’s memory in a consistent manner.
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Rain, rain, go away

Come again another day;

Process Page Tables Physical Pages

Page 1, Count=2
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(a) Page tables before the fork system call. The monitor’s page tables
point to the pages of the user-level process (labeled “Parent”).

Monitor

Parent

Child

Rain, rain, go away

Come again another day;

Process Page Tables Physical Pages

Page 2, Count=3
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(b) After fork the Parent and Child process share physical pages.

Monitor

Parent

Child

Rain, rain, go away

Come again another day;

Little Georgie wants to play.

Process Page Tables Physical Pages

Page 1, Count=3

Page 2, Count=2

Page 3, Count=1

(c) When the parent writes to page 2, a copy of the page is made and the
parent can change it. The monitor points still points to page 2 (which is
mapped by the child), thus causing an inconsistency.

Figure 3.9: Our kernel patch does not currently handled copy-on-write pages after a fork.
In a production system, the kernel should invalidate pages that the monitor maps after a
fork to prevent an inconsistent view of the parent process.
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Chapter 4

File System Complexity

We identified three main advantages of using a ptrace-based infrastructure for user-level
file system development as opposed to porting code to the kernel:

Avoid kernel changes Our primary reason for using ptrace instead of a direct kernel
file system is that ptrace allows us to bypass VFS caches without changing large
portions of the core kernel. This is essential for Amino, as interjecting VFS caches
between the application and the database would break both the atomicity and isola-
tion properties. The existing stable of VFSs (FreeBSD, Linux, and Solaris) are all
intimately intertwined with caches—a cached object must exist before methods can
even be invoked. To separate any of these VFSs from its caches requires significant
code changes not only to the VFS, but also to any existing file systems.

Leverage user-level libraries One of our initial observations was that developing a trans-
action processing system is a huge task in its own right, as evidenced by the size
of various transaction processing systems [53, 82]. Utilizing an existing transaction
processing library (BDB) allowed us to develop Amino much more quickly than we
could have otherwise.
If we were to have developed Amino in the kernel, we first would have to port BDB
to the kernel, test it, and still it may not be entirely suitable for use in the kernel. For
example, BDB expects to use several large contiguous segments of memory for its
cache, but in the Linux kernel there is only a small amount of address space set aside
for these types of large allocations (less than 100MB). Worse yet, this address space
must be shared among all of BDB’s components (e.g., the logging subsystem buffers
data before writing it out) and even other kernel modules. Though this example is
Linux specific, porting BDB to any OS kernel is likely to run into similar problems.

Simplified debugging Kernel debugging is rather difficult. Some kernel debuggers are
available [34], but more often developers choose to insert print statements. These
problems, combined with lengthy reboot cycles and the raw complexity of any large
OS kernel introduce debugging difficulties that almost never occur in user space.
Conversely, developers have a wide variety of good debugging techniques at their
disposal in user space [15, 60, 79].
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All of these factors contributed to allowing us to develop Amino rather quickly, without
a large team of programmers. Moreover, implementing new file systems at the system-
call-level has advantages over implementing them using the VFS interface. For example,
an encryption file system has more control over a process’s memory when implemented
at the system call level (e.g., it could insert mlock calls to prevent data from reaching an
unencrypted swap partition [62]).

Our monitor includes a simple Virtual File System (also known as a File System Switch
or VFS). Our VFS is different from others in four ways [90]:

• To varying degrees, existing VFSs perform significant functionality before passing
operations down to the file system, thus preventing the file system from changing its
behavior. Our hierarchy of methods begins at the system call layer (the highest one
available to an OS, or the monitor). This allows file systems to replace the monitor’s
default behavior from system call entry to exit.

• Existing VFSs struggle with whether to include functionality in the VFS, or to push it
down to individual file systems. Our solution to this problem is to provide operations
at multiple levels of abstraction. For example, the generic system call methods for
read, readv, and pread all call an internal read method. This allows simpler
file systems to implement a single read operation, but more complex file systems can
individually implement read, readv and pread if the need arises.

• Our architecture is designed such that file systems can be layered with additional
function calls only for methods that the layered file system implements.

• Our VFS includes event notifications for various process related events: exec,
fork, and exit.

Appendix B describes each method that our VFS provides.
To demonstrate the simplicity of developing file systems using our monitoring frame-

work, we wrote three simple user-space file systems. The major difference between these
file systems and Amino is that they are smaller in scope and can be designed with other
techniques such as FUSE or as an in-kernel file system. In Section 4.1 we describe a sim-
ple pass-through layer that handles file system operations by passing them down to another
directory. This pass-through layer serves as the basis for our AES encryption file system
described in Section 4.2. In Section 4.3 we describe a user-level ISO file system, which
allows users to browse CD-ROM images. In Section 4.4 we evaluate the complexity of
these file systems.

4.1 Pass-Through Layer
We developed a simple pass-through file system layer for two reasons. First, it serves as
an example for other file system extensions. We developed it in such a way that its oper-
ations could be reused for other file systems (e.g., the encryption file system described in
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Section 4.2). Second, it provides a suitable basis for evaluating Amino’s overhead (Sec-
tion 5). The pass-through file system takes a single mount-time argument: the name of the
directory to which operations should be redirected.

The pass-through file system implements 21 operations, 17 of which are simple wrap-
pers around another system call. It also defines two new operations: encodename and
decodename. File systems built on top of this pass-through layer can override these op-
erations to manipulate file names. These methods translate upper-level file names to the
corresponding lower-level names (and vice versa). A representative method of the pass-
through file system is unlink (shown in Figure 4.1), which has only three function calls:
(1) the argument is converted to a lower-level name using encodename; (2) the lower-
level name is unlinked; and (3) the lower-level name is freed.

static int null_unlink(struct pcb * pcb) {
char *fullpath = NULL;
int ret;

ret = pcb->cur_mount->ops->encodename(pcb,
pcb->cur_mount,
pcb->cur_filename,
&fullpath)));

if (ret)
return ret;

if ((ret = unlink(fullpath)) != 0)
ret = -errno;

free(fullpath);
return ret;

}

Figure 4.1: The unlink method for the pass-through file system layer.

The read, write, and lseekmethods are similar to the system-call-based wrappers,
but take internal monitor objects (i.e., mount and open file structures) as arguments instead
of operating at the ABI level. This allows the methods to be re-used for many types of
system calls (e.g., the read operation is used for both the read and readv system calls
in addition to memory-mapped reads). The last two methods are open and close, both of
which wrap underlying system calls and manage monitor state (e.g., the open file structure).

4.2 AES Encryption Layer
We have developed an AES [54] encryption file system on top of the pass-through layer
described in Section 4.1. This encryption layer allows users to encrypt the contents of a
directory, thereby preventing a breach of confidentiality if the hard disk is stolen.
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4.2.1 Encryption scheme
Our file system layer encrypts both file names and file data. However, to simplify develop-
ment and administration, we chose to preserve the existing structure of files by encrypting
each file separately for four reasons: (1) users are used to dealing with a traditionally orga-
nized file hierarchy [6, 89]. (2) backing up a subset of encrypted files is simple; (3) when
an encrypted file is deleted, the space is immediately reclaimed; and (4) there is no need
to preallocate space for encrypted volumes. This convenience, however, comes at the ex-
pense of revealing some information about the structure of the files (e.g., how many files
exist in a given directory and their size). Several systems have made theses choice, in-
cluding CFS [6], NCryptfs [89], and eCryptfs [27]. The data and names in our system are
encrypted using a key that is read with getpass on startup.

We use a separate scheme for file name encryption and data encryption. For file names,
we must encrypt the parent directory name and a name within that directory. Each parent
directory has an associated initialization vector (IV), which means that a file with the same
name in two different directories does not encrypt to the same text. We chose to use the
AES-CBC mode to encrypt file names. This has the disadvantage of causing the file name’s
length to be rounded up to the nearest cipher block size (16-bytes), but it is more secure:
more malleable cipher modes (e.g., CFB and CTR) are inappropriate because they do not
permit the reuse of an IV for different cipher texts. After the file name is encrypted, it
is base-64 encoded so that illegal (i.e., “/” and “\0”) or control characters, which can
disrupt the user’s terminal and confuse utilities, are not written to the file system. Before
encryption, we include a CRC that is checked on decryption. This CRC allows us to detect
files that were encrypted with a different key (or unencrypted files) and omit them from the
directory listing.

For data we need a scheme that has four properties:

• Two different files with the same plaintext have different cipher text. This means that
different files should have different IVs.

• Two different regions of the same file that contain the same plaintext have different
cipher text. This means that the ciphertext should be dependent on the position in the
file.

• We can rewrite regions of the file with the same IV. This means that we cannot use
more malleable modes of encryption such as CFB or CTR, because an attacker who
reads the ciphertext before and after an update could recover the plaintext.

• Random access has a constant penalty, so we cannot use a chaining mode over the
whole file.

The scheme we developed, inspired by Blaze’s OFB/ECB hybrid [6], is a hybrid of AES-
CTR and ECB mode that satisfies each of these properties. This scheme has the advantage
over Blaze’s that there is no need to store precomputed data; it supports arbitrarily large
files; and we use a distinct random stream for each file.

Blaze generated a large random file using OFB mode. To encrypt a block of data, it is
first XORed with the data in the same position in the random file. If a file to be encrypted
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is larger than the random data, then the position is taken modulo the random file size. The
result is then encrypted with ECB mode. In sum, Blaze’s scheme is:

Ci = ECBK(Pi ⊕ Ri mod s) (4.1)

Where Ci is the i-th block of cipher text. Pi is the i-th block of plaintext data, Ri is the
i-th block of random data, K is the key, and s is the size of the random data. This scheme
allows random access and only one cipher block ever needs to be reencrypted.

We adapted this scheme to use AES-CTR. AES-CTR essentially generates a stream of
random bits based on an IV as follows:

Ri = ECBK(f(i)) (4.2)

To encrypt data at position i, it is XORed with Ri and a per-file IV. We used this method to
generate an arbitrary-length random stream in place of the precomputed random data. For
the IV, we use a 128-bit nonce that is generated when the file is created. The scheme is then
similar to Blaze’s method:

Ci = ECBK(Pi ⊕ n ⊕ ECBK(f(i))) (4.3)

using the previous notation where n is the per-file nonce. This scheme has the advantage
over Blaze’s that there is no need to store precomputed data, and it supports arbitrarily
large files. Though this scheme does not require precomputed data, the values of Ri can be
precomputed and stored in memory, thus eliminating half of the ECB encryption operations
for those precomputed values of Ri. This allows the user to trade off increased memory
utilization for decreased CPU utilization.

4.2.2 Extended attributes
For each encrypted file we must store two pieces of information: its initialization vector
and its actual size, because the file’s size is rounded up to the nearest cipher block size. In
both cases we use the extended attribute API supported by Ext2, Ext3, Reiserfs, and many
other file systems [24].1

Extended attributes are not the only solution, but they are well suited for storing small
amounts of per-file data. Other possible solutions we considered are:

• Storing the data in the file itself. We did not store this extra data inside of the file,
because it is only 24 bytes long. If we stored it in a block aligned manner, we would
need to waste a full block. If we did not store it in a block aligned manner, we would
change the file’s expected performance characteristics (because applications expect
data to be aligned according to disk blocks).

• Storing the data in a per-mount auxiliary file. Storing the data in an auxiliary file
would require additional code to organize the data efficiently. Moreover, modern
file systems store extended attributes within the file’s inode, which must be updated
whenever these attributes are updated.

1In our previous work, we have developed a stackable file system that adds extended attribute support to
any existing file system using a BDB database.
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• We could also have used a self-describing padding scheme for the last block, but
chose not to because finding file size by opening the file would hurt performance of
stat.

We believe that for this type of data, which is updated in concert with the inode, extended
attributes are superior to any of the previously described methods.

4.2.3 Implementation
When the monitor initializes the AES encryption file system its operations vector is dynam-
ically computed using the pass-through methods described in Section 4.1 as defaults. The
encryption file system then overrides 16 of these methods. Most of these methods in turn
call a pass-through method, but insert new functionality before or after the method call.

The mount operation initializes the AES encryption and decryption keys and locks
them in memory so that the OS does not write them to swap. The unmount operation
zeros out the keys before freeing them. The encryption layer defines four generic VFS-like
operations: open, read, write, and lseek. It retrieves the file’s IV via the extended
attribute interface. If the file does not yet have an IV, then a new one is generated. The
read and write functions are more complex than the others because they must correctly
handle I/O operations that are not aligned on the AES block size, forcing us to use padding.
Because of the padding we use an extended attribute to determine the real size of the file.

The encryption layer implements two internal methods for the pass-through file system:
encodename and decodename. The encodename method converts a decrypted file
name (e.g., /home/cwright/amino/thesis.pdf) to an encrypted file name. For
each pathname component, the IV of the parent is first retrieved and then it is encrypted
using CBC mode. The result of the encryption is base-64 encoded to avoid writing in-
valid or control characters to the file system. The encodename operation is used for
open, mkdir, and other operations that take a pathname as an argument. Conversely, the
decodename operation is used for directory-reading operations. It retrieves the IV of the
parent, and then decrypts the name.

Finally, the encryption layer implements five system-call-level functions: stat,
fstat, truncate, ftruncate, and read. The stat and fstat functions retrieve
the file size using extended attributes. The truncate and ftruncate functions fill
holes that could be created by sparse files, and align all truncate operations on AES
block-size boundaries.

It is important to note that for operations that the encryption file system does not de-
fine, the pass-through file system is called directly by the monitor—without the encryp-
tion file being called at all. Existing VFS architectures require additional function calls
for each stackable layer [90]. Moreover, by providing the extensible encodename and
decodename functions, the pass-through file system obviates the need for derived file
systems to implement most methods.
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4.3 ISO9660 File System
CD-ROM images, also known as ISOs, are formatted according to the ISO9660 standard.
ISOs are a convenient way of transferring large collections of files, such as Linux distri-
butions, software backups, or even family photos. However, to access the files in an ISO,
users must first mount it using a loop device. Unfortunately, mounting a file system re-
quires root privileges. It would be possible to create set-UID programs to allow a user to
mount ISO images, but even if developed securely, there is always a potential for bugs or
misconfigurations that could compromise the security of the system.

To address this issue, we developed a user-level file system using our monitor, built
around libiso9660 from GNU libcdio [66]. The monitor’s user-space nature al-
lowed us to link against this library and leverage its 3,449 lines of already tested code.

Because ISO9660 file systems are read-only by their nature, we needed to implement
only nine methods for this file system: mount, unmount, open, close, read, lseek,
fstat, getdents, and fcntl. The most complex method was read. For read, much
of the code complexity was caused by a limitation of the libiso9660 library, which only
allows 2KB-blocks to be read. To implement read efficiently, we wrote more code to avoid
extra data copies for unaligned access.

4.4 Complexity Evaluation
We used four metrics to compare the amount of development effort different frameworks
require to write pass-through, encryption, and ISO9660 file systems. For each type of
system that we evaluated, Table 4.1 (page 51) shows the number of lines, tokens, identifiers,
and the McCabe [44] cyclomatic complexity. McCabe’s metric is the most precise: it
measures the number of control points in a program. It has been shown that programs with
a lower cyclomatic complexity are less error prone [30, 80, 87].

To calculate cyclomatic complexity we used the C and C++ Code Counter [41], which is
the most robust tool we found for calculating cyclomatic complexity. Unfortunately, it can-
not handle all of the complex programming constructs used in operating system code (e.g.,
old-style function declarations, bit fields, preprocessor directives interspersed with control
statements, and some advanced C++). Therefore, we needed to modify the source of most
packages for CCCC to parse them correctly. We endeavored to preserve complexity during
any modification. Indeed, most of our modifications simply removed structure definitions,
macros, or the offending code. These modifications can only decrease the cyclomatic com-
plexity, and our monitor requires no such transformations; so these transformations do not
give any advantage to our system.

4.4.1 Framework implementation
Our monitor and the FUSE frameworks require a similar amount of development effort to
implement. We chose the SFS toolkit [43] as an example of a user-level NFS server. It is
more than twice as complex than either FUSE or our monitor, but it is tightly integrated with
a simple pass-through file system, which we did not remove from its complexity metric.
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Method LoC Tokens Identifiers MC
Framework Implementation

ptrace 7,606 46,854 15,940 1,272
Kernel 48,072 255,969 109,081 8,152
FUSE 8,481 46,051 17,772 1,338
NFS 18,480 103,960 42,734 2,726

Pass-Through File System
ptrace 785 4,297 1,514 136
Kernel 6,079 34,612 14,146 599
FUSE 706 5,010 1,659 149

Cryptographic File System
ptrace 1,321 8,331 2,612 236
Kernel 9,780 57,489 23,130 943
FUSE 2,396 19,297 7,468 423
NFS 1,556 8,981 3,663 251

ISO9660 File System
ptrace 582 2,906 1,046 93
Kernel 3,769 22,158 8,666 616
FUSE 1,704 11,890 4,315 363

Amino File System
ptrace 6,621 38,454 14,396 960

Table 4.1: We evaluated different types of file systems implemented using different frame-
works according to four metrics. Bold entries are the smallest in their class. (LoC means
Lines of Code; MC means the McCabe cyclomatic complexity).

51



The kernel’s VFS system is the largest framework by any metric. This is not surprising be-
cause it cannot rely on external libraries and includes caching, quota management, support
for several binary formats, asynchronous I/O, and many other tightly integrated facilities.
This tight integration means that a kernel developer has to be familiar with a large body of
complex code to develop file systems.

4.4.2 Pass-through layer
The monitor’s and FUSE’s pass-through file systems have similar complexity: FUSE is
11% shorter, but has 16% more tokens, 10% more identifiers, and a 10% higher cyclomatic
complexity. Although our pass-through file system is 26 lines longer, it has more func-
tionality than its FUSE counterpart. Our file system transforms names before passing the
operation down to the lower-level file system, which enables us to mount on any lower-level
directory (FUSE is limited to “/”) and build our encryption file system on our pass-through
file system. When this additional functionality is removed from our file system, its cyclo-
matic complexity is reduced to 97 (or 53% less than FUSE’s). The SFS toolkit provides
a built-in loopback NFS server, but the toolkit itself is more complex than our monitor or
FUSE and the corresponding pass-through file system put together. Wrapfs, a pass-through
file system for the Linux kernel, has the highest complexity, because it must perform elab-
orate operations on reference counts and cached objects, and emulate much of the VFS’s
functionality.

4.4.3 Encryption file system
We compared our monitor to the in-kernel eCryptfs [27], FUSE’s EncFS [22], and the
encryption file system from the SFS toolkit. Our file system and the one from the SFS
toolkit have similar complexity. This is as expected because both allow a file system layer
to extend an existing pass-through layer. Because EncFS was developed in FUSE, where
the interface is similar to the VFS’s, developers had to implement a lower-level interface,
and thus they had to implement more routines. EncFS originally had over 14,000 lines
of code and a McCabe complexity of 1,323. Even when we removed all code related to
configuration, abstract classes, header files used by C++, and specialized caching, we still
found EncFS to be twice as complex as our file system. eCryptfs suffers from the same
problems as Wrapfs (because it is essentially a modified copy). Thus it is twice as complex
as the other file systems.

4.4.4 ISO9660 file system
We compared our ISO9660 file system to the kernel’s and to the FUSE-based
fuseiso [51]. Our monitor’s ISO9660 file system is 582 lines of code with a
McCabe complexity of 93. The size and complexity of fuseiso was greater: 1,704 lines
and a cyclomatic complexity of 423. This increase is for two reasons: (1) our monitor uses
libiso9660, whereas fuseiso does not use any external libraries, so it has code for
reading ISO9660 directories, and (2) FUSE requires its file systems to handle more VFS
objects than our framework. The kernel implementation is larger than fuseiso. This
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is because it cannot use external libraries such as libiso9660 or even system calls, so
interfacing with the device it is mounted on is more complicated.

4.4.5 Amino file system
We cannot directly compare Amino implemented in different frameworks, because we only
implemented via ptrace (indeed, it would not be possible to do it over NFS or FUSE;
and would have been more difficult to do it in the kernel). Amino is more complex than
the other classes of file systems we investigated. In terms of lines of code, tokens, and
identifiers Amino is larger than any user-level file system, and only the in-kernel encryption
file system is larger. Amino is more complex in terms of the McCabe complexity than any
of the other user-space file systems. The Amino file system is slightly less complex than
our monitor framework with 13% less code, 17% fewer tokens, 19% fewer identifiers, and
25% less complexity than the framework.

In sum, FUSE and NFS are comparable to our monitor in terms of complexity. How-
ever, neither of these methods would have been able to export the transactional semantics
to applications that was required for Amino.
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Chapter 5

Evaluation

We evaluated the performance of our system by running several micro-benchmarks and
general-purpose workloads. In Section 5.1 we present results for meta-data–intensive
micro-benchmarks, and in Section 5.2 we present results for data-intensive micro-
benchmarks. Section 5.3 summarizes interesting micro-benchmark results. We chose three
general-purpose benchmarks to evaluate our system. In Section 5.4, we present results for
the Postmark benchmark [37]. In Section 5.5 we present results for an OpenSSH compile,
and we present results for a Sendmail benchmark in Section 5.6. Section 5.7 summarizes
the results of the general-purpose workloads.

For all our benchmarks we used a dual 2.8Ghz Xeon machine running Fedora Core 4
with all updates as of July 19, 2005. All experiments were located on a dedicated 147GB
10,000RPM Fujitsu U320 SCSI disk (model MAP3147NC). The benchmark scripts, sys-
tem utilities, and results were stored on an identical disk. We compared Ext3 to Amino us-
ing BDB databases stored on Ext2. We used Ext2 as the underlying file system for Amino,
because BDB provides ACID semantics even without a journaling file system. We chose
to use Ext3 as a basis for comparison, because it provides a limited subset of the ACID
properties, whereas Ext2 does not. To ensure a cold cache, we remounted the file systems
between each iteration of a benchmark. For all tests, we computed the 95% confidence
intervals for the measured quantity the Student-t distribution. Unless otherwise noted, the
half-widths of the intervals were less than 5% of the mean.

We used the following nine configurations for our tests:

VANILLA The benchmark is run on Ext3.

VANSYNC The benchmark is run on Ext3, but the file system is mounted with the sync
mount option to provide durability.

STRACE The benchmark is run on Ext3, but is monitored by strace -cf. This configu-
ration shows the overhead of the ptrace facilities, but does not modify any system
calls or produce any output during execution.

AMINOTRACE The benchmark is run on Ext3, but is monitored by the Amino monitor.
This configuration shows the overhead of ptrace and our path-name resolution
infrastructure.
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AMINONULL The benchmark is run on the pass-through file system described in Section 4.
This measures the overhead of ptrace, our path-name resolution infrastructure and
the operations required to implement a file system using ptrace. It is important to note
that AMINONULL does not require extra data copies for file data, because it reads data
directly from the lower-level file system into the user process address space using a
memory-mapped /proc/pid/mem interface.

AMINOACI The benchmark is run through the Amino monitor with a BDB database stored
on an Ext2 file system. BDB is configured to provide atomicity, consistency, and
isolation, but not durability.

AMINOACID This configuration is the same as AMINOACI, but durability is also provided
because BDB flushes the log to disk on each commit.

AMINOTXN This configuration is the same as AMINOACI, but the benchmark is modified
to insert calls to begin and commit Amino transactions. This measures the overhead
of adding transactional code to the applications and the transactional code in the
database, without incurring durable writes.

AMINODTXN This configuration is the same as AMINOTXN, but with durability enabled.
This configuration improves performance over AMINOACID, because data needs to
be flushed to disk only after the transaction is committed, rather than after every
system call.

These configurations can broadly be broken up into two groups: those that do not pro-
vide durability and those that do. The six configurations that do not provide durability are
VANILLA, STRACE, AMINOTRACE, AMINONULL, AMINOACI and AMINOTRACE. Within
this group of configurations, the are in order of increasing amounts of code provided by
the monitor. For example, STRACE includes the overhead associated with ptrace, and
AMINOTRACE adds the overhead of our path-name resolution on top of that. The three
durable configurations are VANSYNC, AMINOACID, and AMINODTXN. The added cost of
providing durability in these configurations can be determined by comparing them com-
pared to the non-durable configurations VANILLA, AMINOACI, and AMINOTXN, respec-
tively.

Not all benchmarks use all configurations. For example, the micro-benchmarks do not
use AMINOTXN or AMINODTXN, because the operations are not logically grouped together,
and read-only benchmarks do not use VANSYNC or AMINOACID.

5.1 Meta-data Micro-benchmarks
We ran several micro-benchmarks on Amino to evaluate the overheads of certain primitive
file system functions like file creation and deletion as well as reading and writing data. We
broadly classify our micro-benchmarks into metadata and data benchmarks. We describe
the meta-data micro-benchmarks in this section, and the data benchmarks in Section 5.2.
The meta-data operations we evaluated are create (and mkdir), unlink (and rmdir),
stat, and readdir. We chose these meta-data operations because they are a broad
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cross-section of file system operations, and together with data operations account for the
vast majority of operations [13].

To generate metadata operations, we developed a C program that operates on several di-
rectories each containing a fixed number of files. We used this method rather than a generic
data set (e.g., the source of a package), because when evaluating one specific method we
did not want to use directory reading operations or lookups to determine which files must
be operated upon. For all the metadata workloads, we disabled atime updates on both in
Ext3 and in Amino so to isolate the overheads of the metadata operation to be tested.

Create To evaluate the overhead of the create and mkdir operations, we used our C
program to create 1,000,000 files evenly spread across 5,000 directories (i.e., 200 files per
directory). We spread the files among the directories, to avoid unfairly penalizing Ext3 for
its linear lookup operation. For the durable configurations we created only 100,000 files
evenly spread across 500 directories, because they take significantly longer than the non-
durable configurations. To account for this difference, we normalize the elapsed time to
operations per second and CPU utilization.
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Figure 5.1: Creation micro-benchmark results. The left axis shows the number of creates
per second, the right axis shows CPU utilization.

As seen in Figure 5.1, VANILLA created 34,117 files per second. The STRACE configu-
ration created 9,970 files per second, or a reduction of 70.8%. The AMINOTRACE configu-
ration had a slightly lower reduction of 62.3% compared with VANILLA. The AMINONULL
configuration had a 68.6% reduction compared with VANILLA. Much of this overhead
derives from the context switches required for tracing, as evidenced by STRACE, AMINO-
TRACE, and AMINONULL using an additional 4.1, 3.0, and 3.7 times more CPU time, re-
spectively.
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The AMINOACI created 5.4 times fewer files per second than VANILLA. There was 6.7
times increase CPU time as well. The applications CPU time decreased by 18.6%, because
the application did not perform any creates in the kernel. However, the monitor used an
additional 6.0 times as much CPU time as the original process. 23.1% of this increase
is attributable to the monitoring, the remaining 76.9% is caused by setting registers, con-
text switches, comparisons traversing B-trees, and locking overheads. The AMINOACID
configuration ran 4.4% faster than the synchronous mode of Ext3.

Unlink To evaluate the performance of unlink and rmdir, we removed the files and
directories created by the create workload described above. We unmounted and remounted
the file system to ensure cold cache between the create and unlink workloads. Figure 5.2
shows that the STRACE configuration performed 41.9% fewer deletions per second than
VANILLA, mostly because of the context switches of ptrace. AMINOTRACE performed
42.7% fewer deletions per second than VANILLA, and AMINONULL performed 34.0% fewer
deletions than VANILLA. AMINOACI ran 2.67 times slower than VANILLA. The break up
of the overhead is similar to that of the create workload. The AMINOACID configuration
ran 3.9 times faster than Ext3 in its synchronous mode. This is because of a 51.3% de-
crease in the wait time, as a result of 74.0% fewer sectors being written. The AMINOACID
configuration requires so many fewer sectors, because Ext3 must update the inode bitmap,
directory block, and deleted inode which are stored in different locations on disk, whereas
Amino only needs to update the leaf node of the B-tree.
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Figure 5.2: Deletion micro-benchmark results. The left axis shows the number of unlinks
per second, the right axis shows CPU utilization.
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Stat Directory lookups are one of the most common operations, because they are a pre-
cursor for almost every meta-data operation (e.g., opening a file, creating an entry, deleting
an entry, etc.). To evaluate the lookup operation, we ran stat on 5,000 directories with
200 files each. After unmounting and remounting the file system, we performed a stat
system call on each of the files. Figure 5.3 shows the results for this workload. The STRACE
configuration performed 65.8% fewer lookups per second than VANILLA and used 6.4 times
as much CPU time. The AMINOTRACE and AMINONULL configurations performed 56.2%
and 57.3% fewer lookups than VANILLA and used 4.5 and 4.8 times more CPU time, re-
spectively. The overhead for this workload is caused by two factors. First, the monitor
context switches contribute to the increased system time. Second, the increase in user time
is caused by resolving each path to determine if it is destined for a BDB mount in the
monitor.
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Figure 5.3: Directory operation micro-benchmark results: stat. The left axis shows the
number of stat operations per second. The right axis shows CPU utilization.

The AMINOACI configuration performed 56.8% fewer lookups per second than
VANILLA. This is statistically indistinguishable from tracing alone (AMINOTRACE), but
AMINOACI uses 26.7% more CPU time than AMINOTRACE. The increased CPU time over
AMINOTRACE is attributable to two factors a 25.1% increase in monitor system time (for
reading pages from the database) and a 4.0 times increase in monitor user time to perform
B-tree traversal. This is slightly offset by a 73.2% decrease in application system time,
because the kernel does not perform directory searches on behalf of the process. Wait time
is reduced by 54.9%, because 77% fewer read I/O operations are required (even though
48.4% more sectors are read). Because there were no writes in this workload, the durable
configurations are identical to their non durable counterparts.
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Readdir We used the same working set as in the stat micro-benchmark to evaluate
the performance of the readdir operation. We performed a readdir on each of the
5,000 directories in sequence. The results are shown in Figure 5.4. The STRACE, AMINO-
TRACE, and AMINONULL configurations are all within 5% of vanilla. The reason is that
the directory reading is I/O-bound on Ext3, and reading directory entries in sequence takes
advantage of read-ahead. This allows the slight increase in CPU time of at most 5.7% to
overlap with I/O operations. Additionally, as Linux provides the getdents call to read
directory entries, the total number of operations performed in the readdir workload is
smaller than the lookup workload, thus the monitor incurs fewer context switches.
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Figure 5.4: Directory operation micro-benchmark results: readdir. The left axis shows
the number of directory entries read per second. The right axis shows CPU utilization.

The AMINOACI configuration ran 2.3 faster than vanilla Ext3 for this workload. The
improvement is mainly due to a 77.8% decrease in wait time. Wait time is reduced because
Ext3 requires seeks to read each directory, as it does not place directories close to each
other on the disk. This is evidenced by Amino’s read requests taking 46.8% less time
even though 3.3 times as many sectors are read. AMINOACI stores the path names in a
B-tree and hence has better spatial locality. Therefore it requires fewer and shorter seeks to
read directories. The use of B-trees to store metadata and data makes Amino suitable for
metadata-intensive workloads which benefit from this locality. The difference in overheads
between VANSYNC and AMINOACID are within 2% of VANILLA and AMINOACI as this is
a read-only workloads.
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5.2 Data Micro-benchmarks
To evaluate the performance of data operations we ran a random read, random write, se-
quential read, and sequential write micro-benchmark. For each benchmark we created an
8GB file, which is twice the size of the machine’s memory. This reduces the effects that
caches have on the workload, because the workloads cycle through their list of blocks
before rereading a block. For sequential operations, we operated (read or write) on consec-
utive pages of the file in sequence. For random operations, we generated a pre-populated
pattern by randomly shuffling a sequential list of page numbers, and operated on the file
using the shuffled list. This method ensures that there are no repeated pages so that caching
does not affect the results.

For random and sequential read we ran the workload for a 30 second warmup period
followed by a 150 second measurement period. The warmup period allows the system
to reach a steady state before measurement. For the sequential write workloads, we used
a warmup period of 120 seconds and ran the benchmark for ten minutes and rebooted the
machine between iterations. We used a longer write warmup period, because writes are very
fast until the cache is filled, at which point the number of operations drops dramatically.
We also used a longer measurement period, because the synchronization phase (to clear
dirty cached pages) takes several minutes. The read benchmarks reached a steady state
faster, so this additional time was not required. For all benchmarks, we report the number
of operations performed per second and the percent of CPU utilization. We describe the
random write setup in Section 5.2.1.

In Section 5.2.1 we present uncached single threaded results. In Section 5.2.2 we
present uncached multi-threaded results. In Section 5.2.3 we present cached read results.

5.2.1 Single Threaded Results
In this section we describe the single threaded results for sequential read, random read,
sequential write, and random write. All benchmarks are run with a cold cache.

Sequential Read The overheads of Amino under the sequential read workload are shown
in Figure 5.5. The VANILLA configuration achieved 23,955 operations per second and used
17.1% of the CPU. The STRACE configuration performed 53.9% fewer reads and used 4.9
times as much CPU. The AMINOTRACE and AMINONULL configurations performed better,
with 20.3% and 22.2% fewer operations, respectively. The AMINOTRACE and AMINONULL
configurations also used less CPU time than STRACE, with an increase of 149.9% and
159.0% over VANILLA.

The AMINOACI configuration performed 79.8% fewer operations than VANILLA. The
small increase in user and system time is because of data copies and B-tree comparison
overheads. The increase in wait time is due to two factors: (1) sequential reads require
more sector reads and fewer requests are merged in Amino than in Ext3 as the data layout
in Amino is a B-tree, and (2) Amino does not provide any explicit read-ahead. The lack of
read-ahead for Amino is exacerbated by the Linux read-ahead policy. As soon as a non-
sequential access to a file is made, read-ahead is turned off and must begin again. As the
database periodically accesses the database out-of-order, this results in Linux performing
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I/O operations that are on average 2.9 times bigger for VANILLA than for AMINOACI. As
part of our future research, we plan to investigate more efficient data layouts, possibly
including a hybrid model that combines a flat file and a database structure. The overheads
of AMINOACID are comparable to AMINOACI, as this is a read-only workload.
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Figure 5.5: Data micro-benchmark results: Sequential read. The left axis shows the number
of operations per second, the right axis shows the CPU utilization.

Random Read The results of the random read benchmark are shown in Figure 5.6. The
VANILLA configuration performed 203.5 operations per second. The STRACE, AMINO-
TRACE, and AMINONULL configurations were all within 1% of VANILLA. The CPU uti-
lization for all of these configurations was low, with STRACE being the highest at 2.1%. The
AMINOACI configuration had an overhead of 10.0%, and CPU utilization increased to 3.7%.
Amino performed 0.99 disk read operations per pread system that was issued, whereas
Ext3 performed 1.19 disk read operations per pread. However, Amino read 120.0 sectors
for each pread request, whereas Ext3 read only 9.6. These differences can be attributed
to the fact that Ext3 was configured to use 4KB blocks, but Amino’s Data database had a
page size of 64KB. The 21% decrease in disk read operations is caused by Amino finding
some of the blocks it needs to read in the cache. The 12.5 times increase in the number of
sectors read is caused by Amino reading the 14 adjacent file pages from the database each
time it reads a page. The overheads of AMINOACID are comparable to AMINOACI, as this
is a read-only workload.

Sequential Write Figure 5.7 shows the time taken for Amino for the sequential write
workload. The VANILLA configuration performed 9,584 write operations per second. The
STRACE configuration had an overhead of 23.4% over VANILLA due to a 4.3 times increase
in CPU utilization. The AMINOTRACE and AMINONULL configurations were 7.4% and
8.4% slower than VANILLA, respectively. However, they used 93.1% and 100.7% more
CPU, respectively. The AMINOACI configuration performed 72.5% fewer writes, and used
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Figure 5.6: Data micro-benchmark results: Random read. The left axis shows the number
of operations per second, the right axis shows the CPU utilization.

112.6% more CPU than VANILLA. Amino in its AMINOACID configuration ran 92.3%
faster than Ext3 in its synchronous mode of operation. The difference is primarily due to
an increase in merged disk write requests because Ext3 requires non-contiguous changes to
blocks and block bitmaps, whereas Amino just needs to commit changes to the B-tree leaf
nodes.

Random Write The random write workload does not produce normally distributed, re-
sults, because the Linux dirty buffer flushing daemon is quite sensitive to various cut-
offs [88]. Figure 5.8 shows the number of operations per second performed compared to
time during the benchmark (sampled at 10 second intervals). It is clear that there are large
spikes (thousands of times larger than the mean), which cause a high variance. The initially
high numbers of operations per second occur before the memory has many dirty buffers.
Once a given number of the buffers are dirty (e.g., 10%), Linux begins to write them out
in the background. This does not greatly affect the measured application, because it can
still dirty buffers without penalty. The precipitous drop is caused when the number of dirty
buffers exceeds a specified threshold (e.g., 40%). At this point, the application must write
out a number of buffers (e.g., 48) for every buffer that it writes. When the combination
of this throttling and the background flushing daemon bring the total below 40%, this syn-
chronous behavior is removed. If the synchronous threshold were always 40%, then we
would not expect this behavior, but Linux dynamically changes the threshold, thus caus-
ing oscillations. Aside from the large spikes, if we examine the values in the range from
100–1,000, we can see that there is still significant variation. If we were to use longer
measurement periods, we would smooth some of the variation, but the large spikes are so
much larger (and unpredictable) that achieving a stable result is exceedingly difficult.

As can be seen in Figure 5.9, other configurations also suffer from the same periodic and
erratic behavior. In this example, STRACE has periods of fast writes approximately every
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Figure 5.7: Data micro-benchmark results: Sequential write. The left axis shows the num-
ber of operations per second, the right axis shows the CPU utilization.
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Figure 5.8: Random write: operations/second (log scale) vs. time using one second samples
for VANILLA. The Linux dirty buffer flushing is very sensitive to certain thresholds, so the
data is both periodic and highly erratic.
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three to four minutes (STRACE has more of these periodic increases than VANILLA, because
it writes buffers at a slower rate therefore the cache can drain more often). Including a
warmup period does not eliminate these kind of startup effects. Instead we run the random
write benchmark for 15 minutes and measure the total number of operations per second.
The results of the benchmark are shown in Figure 5.10. We also include a box plot of
the 1 second samples showing the first quartile, median, third quartile, and outliers1 for
each configuration in Figure 5.11. Note that although AMINOACI and AMINOACID show
outlying points near zero, the VANILLA, STRACE, AMINOTRACE, and AMINONULL also
have points in this range, but they are not shown because the interquartile range for these
configurations includes zero.

 10

 100

 1000

 10000

 0  100  200  300  400  500  600  700  800  900

O
pe

ra
tio

ns
/s

ec
on

d 
(lo

g 
sc

al
e)

Time (s)

Figure 5.9: Random write: operations/second (log scale) vs. time using one second samples
for STRACE. The Linux dirty buffer flushing is very sensitive to certain thresholds, so the
data is both periodic and highly erratic.

Figure 5.10 shows the overheads associated with Amino for the random write workload.
The VANILLA configuration performed 501 operations per second and utilized 0.9% of the
CPU. When we consider each second of the benchmark independently, the interquartile
range for this benchmark was 14–92 operations per second were performed (i.e., 25% of the
samples were less than 14 operations per second, 50% of the samples were between 14–92
operations per second, and 25% of the samples were greater than 92 operations per second).

1Outliers are defined as points that are more than 1.5 times the interquartile range (Q3 − Q1) from the
median.
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The highest number of operations achieved in a second was 68,864. The STRACE, AMINO-
TRACE, and AMINONULL performed 1.2%, 1.5%, and 4.0% fewer operations per second
than VANILLA. Most of the one second samples were faster than vanilla for these config-
urations, with interquartile ranges of 39–213, 19–113, and 23–125 for STRACE, AMINO-
TRACE, and AMINONULL, respectively. However, the maximum achieved values were
lower at 13,619, 36,854, and 34,614 operations per second. These two effects balanced
out, with the mean value for VANILLA, STRACE, and AMINOTRACE being statistically in-
distinguishable and the AMINONULL having a slight 4.0% overhead due to an increase in
CPU usage. The AMINOACI configuration performed 59.3% fewer writes than VANILLA.
This can be attributed to Amino writing 7.5 times as many sectors per write operation, be-
cause the Data database uses a 64KB page size, whereas VANILLA can write data in 4KB
units.
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Figure 5.10: Data micro-benchmark results: Random write. The left axis shows the number
of operations per second, the right axis shows the CPU utilization.

As expected the durable configurations performed worse than the non-durable configu-
rations: VANSYNC was 7.9 times slower than VANILLA, and AMINOACID was 7.9% faster
than VANSYNC.

5.2.2 Multi-Threaded Results
In this section we describe results for sequential read, random read, sequential write, and
random write from 1–32 threads. Each thread operates on a disjoint subset of the file. An
array that contains all of the page indexes in the file is divided into n sections (for example,
in the two threaded case the first half of the array and thus file, is one section and the second
half of the file is another section). Each thread repeatedly operates on its section from start
to finish until the workload terminates. The random workloads operate in the same way,
but the array is randomized before dividing the file into sections. All benchmarks are run
with a cold cache.
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Sequential Read As seen in Figure 5.12, the VANILLA configuration improves as threads
are added. For two threads, 44.7% more read operations are performed than for a single
thread. For four, eight, sixteen, and 32 threads, 2.72, 7.7, 8.9, and 9.5 times as many oper-
ations as a single thread are performed, respectively. The tracing configurations were not
able to scale along with VANILLA configuration. For two threads, STRACE improved by
46.3%. Because the STRACE monitor is single threaded, as more threads are added there
is more competition for the monitor among the threads. For four threads the improvement
over a single thread was only 14.6% (i.e., less than the improvement for two threads). For
8–32 threads, STRACE performed 19.6–22.3% more operations than a single thread. For
two and four threads AMINOTRACE configuration improved by 23.4% and 14.1% over a
single thread, respectively. The CPU time used also increased by 58.5% and 99.5% to
67.7% and 85.1%, respectively. Eight threads produced the best results, with an increase
of 39.6% over a single thread. For 16 and 32 threads, the CPU utilization increased even
more to 225.7% and 274.3%, respectively.3 This marked increase in CPU time caused per-
formance to degrade to 13.0% over a single thread for 16 threads, and for 32 threads the
number of operations performed per second dropped to 29.3% less than a single thread.
The AMINONULL configuration performed 46.3% more operations with two threads than
a single thread, meaning that it scaled similarly to VANILLA. However, for 4, 8, 16, and
32 threads it only achieved 14.6–22.3% more operations than for a single thread. The
AMINONULL configuration did not degrade below a single threads performance as AMINO-
TRACE did, because the AMINONULL configuration actually uses less CPU time than the

2The half-width for VANILLA sequential read with four threads is 12.8% of the mean.
3The maximum CPU utilization for this machine is theoretically 400%, because it has two hyper-threaded

processors.

66



AMINOTRACE configuration. The reason is that the application’s system time is reduced
by 64.6% from AMINOTRACE to AMINONULL, because the application performs none of
its own system calls as the monitor does all of them on its behalf. The AMINOACI config-
uration scaled similarly to the tracing configurations. Its performance increased by 61.5%,
78.3%, and 63.9% for two, four, and eight threads, respectively. For sixteen threads, the
number of operations performed was 1.0% higher than for a single thread. For 32 threads,
the number of reads was 17.3% lower than for a single thread.
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Figure 5.12: Data micro-benchmark results: Multi-threaded sequential read.

Random Read For the random read workload, the VANILLA configuration performed
14.1% more operations for a two threads than a single thread. As threads were added,
VANILLA made steady gains: 33.7% for four threads, 64.2% for eight threads, 105.5% for
sixteen threads, and 143.9% for 32 threads. The STRACE, AMINOTRACE, and AMINONULL
configurations were all within 2.1% of the VANILLA configuration for 1–32 threads. The
AMINOACI configuration scaled similarly to VANILLA, but was between 7.0% and 11%
slower than VANILLA for the same number of threads. The overhead is caused for the same
reasons as in a single threaded workload: Amino had to read significantly more data (due
to its larger page size), but fewer I/O operations were required (as some pages are found in
the cache).
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Figure 5.13: Data micro-benchmark results: Multi-threaded random read.
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Sequential Write The single threaded sequential write workload performed 9,585 oper-
ations per second under VANILLA. For two threads, the throughput increased by 46.3% to
14,022 operations per second, but four 4–32 threads there was a slow decline from 2.8%
higher than a single thread to 12.4% worse than a single thread. The tracing configura-
tions followed suit, with STRACE declining from 15.2% faster for two threads than a single
thread to 10.4% slower than a single thread for 32 threads. The STRACE configuration
performs worse than the VANILLA configuration for a single thread, because the monitor
is single threaded so cannot take advantage of as much concurrency. The AMINOTRACE
configuration performed 55.5% more operations for two threads than a single thread. For
4–32 threads the rate declined from 26.8% faster than a single thread to 22.2% slower than
a single thread. The AMINONULL configuration was similar to AMINOTRACE. For two
threads, there was a 31.7% improvement over a single thread, which declined to a 10.5%
degradation over a single thread for 32 threads. The AMINOACI configuration ran increased
by 85.9% for two threads over a single thread. For 4–32 threads it declined from 84.6% to
28.0% faster than a single thread.
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Figure 5.14: Data micro-benchmark results: Multi-threaded sequential write.

As expected, the durable configurations are slower than the non-durable configurations.
The VANSYNC configuration experienced steady gains as threads were added. Two threads
were 16.2% faster than one thread, four threads were 61.9% faster, eight threads were
2.1 times faster, 16 threads were 2.6 times faster, and 32 threads were 3.2 times faster
than a single thread. The AMINOACID configuration had relatively constant results. For
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2–32 threads it was between 0.5–9.5% slower than for a single thread. The reason that
AMINOACID does not scale well is that the file’s modification time update requires a write
lock for the duration of the log flush. This prevents group commit from occurring, so
only one record can be flushed to the log at a time. Although AMINOACID was faster
than VANSYNC for 1 and 2 threads, it did not scale as well as VANSYNC, so the VANSYNC
configuration was faster for four or more threads.

Random Write The multi-threaded random-write benchmarks are shown in Figure 5.15.
The number of operations performed per second remained relatively flat for the VANILLA,
STRACE, AMINOTRACE, and AMINONULL configurations. For each configuration, 2–
32 threads were within 5.0% of a single thread using the same configuration except for
the thirty-two threaded AMINONULL configuration, which was 6.9% faster than a single
thread.4 The AMINOACI configuration performed an increased number of operations as
threads were added. Two, four, eight, sixteen, and thirty two threads performed 12.0%,
17.1%, 26.9%, 36.1%, and 30.4% more operations than a single thread, respectively,

The VANSYNC configuration had more pronounced gains than AMINOACI. Two and
four threads were 36.3% and 94.6% better than a single thread, respectively. The 8, 16, and
32 thread workloads were 2.6, 3.3 and 4.1 times better than a single thread. The VANSYNC
results were also the most consistent, with very few outliers compared to other configu-
rations. The AMINOACID configuration performed 5.2% fewer operations for two threads
than a single thread. However, for four threads 6.7% more operations were performed
than for a single thread, and slight gains were made as threads were added: 8.7% for eight
threads, 12.4% for sixteen threads, and 14.7% for 32 threads.

5.2.3 Cached Results
In this section we describe results for sequential and random read for a single thread. We
used a 500MB file for this workload, as it fits entirely in the cache. Before the warmup
phase, we sequentially read the file to load it into the caches.

Cached Sequential Read As expected, the cached read workload performed signifi-
cantly more operations per second than the uncached workload. The VANILLA config-
uration performed 5.9 times as many read operations, and the CPU utilization increased
from 17.1% to 94.5%. All of the other configurations had similarly high CPU utiliza-
tion, but in addition to the user application consuming CPU the monitors did as well. The
STRACE configuration performed 91.2% fewer operations, because the monitor consumed
66% of the CPU. The AMINOTRACE and AMINONULL configurations performed better
than STRACE, because they used less CPU for the monitor (though slightly more overall
CPU). The AMINOTRACE and AMINONULL configurations had a reduction in I/O opera-
tions of 66.7% and 69.1%, respectively. The AMINOACI configuration had a reduction of
79.7%. For AMINOACI, the monitor used 79.2% of the CPU, and the user component of
the monitor’s time was the highest at 47.6%.

4The four threaded VANILLA results have a half-width that is 6.4% of the mean.
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Figure 5.15: Data micro-benchmark results: Multi-threaded random write.
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Cached Random Read The cached random read results are statistically indistinguish-
able from the cached sequential read results for vanilla, STRACE, and AMINOTRACE.
For AMINONULL, the sequential read performed 1.7% more operations per second. The
AMINOACI configuration performed 7.0% fewer random reads than sequential reads, be-
cause the monitor CPU time per read increased by 9.5%.

5.3 Micro-benchmark Summary
To summarize, our micro-benchmarks show that ptrace adds additional CPU time, which
has the largest impact on CPU-intensive workloads. Our monitor in the AMINOTRACE
configuration is faster than STRACE, and the AMINONULL configuration is often faster than
STRACE. The AMINOACI configuration utilizes yet more CPU time than AMINONULL,
resulting in decreased throughput.

We draw three conclusions from our meta-data micro-benchmarks:

• The create and unlinkworkloads are CPU-intensive; therefore, tracing caused a
performance decline of from 62.3–70.8% for create and 34–42.7% for unlink.
The AMINOACI configuration used 6.0 and 6.1 times more CPU time for create
and unlink, respectively. This resulted in an 81.6% and a 62.6% decline in opera-
tions per second when compared to VANILLA.

• The stat workload showed that tracing had a large impact on this workload
(56.2–65.8%). However, AMINOACI was statistically indistinguishable from
AMINOTRACE. The AMINOACI configuration uses more CPU time than AMINO-
TRACE because it traverses the B-tree. However, AMINOACI performs fewer I/O
operations, canceling out the additional CPU utilization.

• For readdir, the tracing configurations are all within 5% of VANILLA, and
AMINOACI is 2.3 times faster than VANILLA because it has better locality.

These results tell us that the additional CPU overhead of ptrace results in a decrease
in throughput for CPU-intensive write workloads (between 2.7–5.4 times). For the read-
only stat workload, AMINOACI shifted CPU time from the kernel to user-space, and de-
creased the number of I/O operations. For the read-only readdirworkload, the improved
locality of a B-tree increased throughput.

Our single-threaded data micro-benchmarks show that:

• The AMINOTRACE and AMINONULL configurations performed better than STRACE,
because they used less CPU time.

• For the random read and write workloads, AMINOACI’s larger database page size
resulted in fewer operations per second.

• For the sequential read workload, the smaller I/O operations issued by the kernel
combined with the overhead of ptrace AMINOACI caused a 79.8% decrease in
operations per second.
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• The random write workload is highly erratic on Linux. An improved buffer flushing
policy could yield more predictable performance [88].

Our multi-threaded data micro-benchmarks show that:

• For the sequential read workload, although Ext3 improves with multiple threads,
the tracing configurations do not improve as much. The reason is that the tracing
configurations saturate the CPU more quickly, making it a bottleneck.

• The random read workload is I/O-bound, and tracing has negligible overhead. The
AMINOACI configuration has relatively constant overhead of 7–11% because of its
larger database page size.

• The random write workload is also I/O bound. Whereas the VANSYNC configuration
improves as threads are added, the AMINOACID configuration does not because the
file’s modification time updates cause the log flushes to be serialized.

In many cases, our micro-benchmarks show significant declines in performance. We
believe that many of the performance declines would be offset by porting our file system
to the kernel and using a representation for the data that does not rely on the BDB access
methods.

5.4 Postmark
Postmark 1.5 is an I/O-intensive benchmark that stresses the file system by performing a
series of file system operations such as directory look ups, creations, and deletions on small
files [37]. Postmark is typically configured by specifying a number of initial files, and a
fixed number of transactions (this is Postmark’s term for an operation, and is distinct from
Amino transactions) to run. Postmark then creates the initial pool of files, performs the
fixed number of transactions, and removes any left over files.

The primary metrics of interest are elapsed time or transactions per second (a function
of elapsed time). Unfortunately, this makes it difficult to compare two configurations that
have large differences in the amount of time they take to run (e.g., a durable vs. non-durable
configuration), because a configuration large enough to stress the non-durable configuration
takes too long on the durable configuration, and vice versa. To solve this problem, we
modified Postmark such that it still takes an initial number of files parameter, and then a
time limit. Our modified Postmark creates the initial pool of files, performs transactions
for the specified time, and then removes any left over files. The metric of interest in our
modified Postmark is the number of transactions per second. We also measured the CPU
utilization of Postmark and our monitor.

The first Postmark configuration we chose is to create 2,500 files ranging from 512
bytes to 10KB, and perform transactions for three minutes. We used the read and write
system calls (as opposed to Unix buffered I/O), and a transfer size of 4,096 bytes for both
Ext3 and Amino.

The Postmark results are shown in Figure 5.17. The VANILLA configuration performed
1,591 transactions/second and had CPU utilization of 40.3%. The VANSYNC configuration
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Figure 5.17: Postmark: 2,500 files. The left axis is transactions per second, and the right
axis is CPU utilization.

synchronously writes data and meta-data to disk to provide durability. The VANSYNC con-
figuration was slower than VANILLA by a factor of 100.2, due to additional synchronous
disk writes. The STRACE and AMINONULL perform 37.7% and 23.7% fewer transactions
than VANILLA, respectively. This shows the overhead of the process-tracing facilities.
Overall, Amino’s CPU utilization is slightly less than strace. The Amino monitor uses
53% less system time than strace (the monitor in the STRACE configuration), because
it accesses all process registers using a single system call instead of one system call for
each register. However, Amino uses 60.0% more user time than strace because it re-
solves each path name. The AMINONULL configuration performs 30.1% fewer transactions
than VANILLA, but is 8.3% worse than AMINOTRACE. This shows the added overhead of
performing the operations within the monitor.

AMINOACI provides atomicity, consistency, and isolation using BDB. It performs
31.9% more transactions than VANILLA, but at a cost of increased CPU utilization—98.2%.
This CPU increased CPU utilization results from two factors. First, Amino requires more
data copies than VANILLA or AMINONULL, because it copies data from the kernel into the
BDB cache and then from the BDB cache into the user-space process. Second, BDB has
more complex data structures and thus uses more CPU than Ext3. However, this is offset
by more efficient I/O utilization. AMINOACI wrote 86.8% fewer sectors than VANILLA
and these I/O operations took 99.8% less time. This shows that a file system built on a
database can provide atomicity, consistency and isolation with good performance, even for
I/O-intensive applications, because we can quickly access files and directories with our
schema and BDB efficiently writes data to the log.

AMINOACID provides all four ACID properties: atomicity, consistency, isolation, and
durability. To provide durability, the database log must be synchronously written to disk
after each transaction. This leads to an expected overhead of a factor of 72.3 over VANILLA,
but AMINOACID provides semantics closer to VANSYNC. When compared to VANSYNC,
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AMINOACID improves performance by 46%.
In AMINOACI, each individual system is protected by a transaction. In AMINOTXN,

we modified Postmark to begin and end Amino transactions before each high-level oper-
ation (i.e., create, remove, read, or write a file) that Postmark refers to as a transaction as
described in Section 2.5.1. In this configuration, Amino provides application-level con-
sistency, so there are never any partially written files. This decreases the transactions per
second that Amino can sustain by 20.8%, because more CPU is required to manage the
transactions and the CPU was already saturated at 98.2%.

The final configuration we used was AMINODTXN, which combines the consistency
properties of AMINOTXN with the durability of AMINOACID. The AMINODTXN config-
uration is 81.6% faster than the AMINOACID configuration and 2.6 times faster than the
VANSYNC configuration. Moreover, the AMINODTXN configuration provides application-
level consistency, whereas the VANSYNC and AMINOTXN configurations do not.

In sum, we show that Amino can provide performance as good as Ext3, but has a
higher CPU utilization. Moreover, with only small modifications, applications can improve
durable performance and benefit from full ACID semantics.

5.4.1 Alternate Configurations
We also ran two alternate Postmark configurations that are slight modifications of the first
configuration. The first alternative configuration has ten times larger files: from 5,120–
102,400 bytes. The second configuration has ten times more files: we increased the number
of initial files to 25,000. For this configuration we introduced 250 subdirectories, so that
Ext3 would not be required to perform linear scans over 25,000 files for some operations.

Larger Files The results of the first alternative configuration (larger files) are shown in
Figure 5.18. The results for VANILLA, STRACE, AMINOTRACE, and AMINONULL were
similar to the original configuration. VANILLA performed 495 transactions per second,
and STRACE, AMINOTRACE, and AMINONULL performed 44.6%, 26.1%, and 35.1% fewer
transactions per second, respectively. The AMINOACI and VANILLA configurations per-
formed a statistically indistinguishable number of transactions. However, the AMINOACI
configuration used significantly more CPU: 93% vs. 27.6%. This shows that Amino loses
some of its performance advantage for this benchmark as the benchmark shifts from a more
meta-data–intensive benchmark to a more data-intensive benchmark. The AMINOTXN con-
figuration performed 18.6% fewer transactions than the AMINOACI configuration.

The VANSYNC, AMINOACID, and AMINODTXN configurations performed 147.6, 91.2,
and 21.9 times fewer transactions than VANILLA, respectively. These results are similar
to the original Postmark configuration: AMINOACID was 61.8% better than VANSYNC and
AMINODTXN was 4.0 times better than AMINOACID. The major difference is that AMIN-
ODTXN performed 4.0 times better than AMINOACID rather than 81.6% better. The rea-
son that AMINODTXN outperformed AMINOACID more than in the previous configuration
is that more individual write operations were required for each transaction, so a larger
number of writes could be coalesced into a single synchronous log write.
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Figure 5.18: Postmark: 2,500 Files; 5,120–102,400 bytes. The left axis is transactions per
second, and the right axis is CPU utilization.

More Files The results of the second alternative configuration (more files) are shown in
Figure 5.19. VANILLA performed 346 transactions per seconds, and was outperformed by
AMINOACI by a factor of 4.3. The reason is that VANILLA spreads the files through many
cylinder groups, but AMINOACI stores them together in a balanced tree, improving locality
thereby reducing wait time. However, this comes at a cost of increased CPU utilization,
AMINOACI used 94.1% of the CPU and VANILLA only used 9.3%. The STRACE, AMINO-
TRACE, and AMINONULL configurations performed as expected: 32.3%, 26.9%, and 32.0%
slower than VANILLA, respectively.

As expected, the synchronous configurations were slower. VANSYNC had a 24.7 times
slow down, and AMINOACID had a 17.5 times slowdown. Again, AMINODTXN was the
most efficient synchronous configuration with only a 10.2 times slowdown over VANILLA.
This configuration demonstrates that explicitly marking transactions combined with BDB’s
highly-tuned logging infrastructure can improve durable file system performance.

5.5 OpenSSH Compile
To simulate a more CPU-intensive typical user workload, we adapted the SSH build work-
load [76], but used OpenSSH 4.2p1 as it builds cleanly on our systems whereas SSH 1.2.26
does not. This workload stresses the Amino monitor, as it requires significant amounts of
additional CPU time in order to intercept system calls. The compile benchmark is divided
into three phases: (1) unpack, (2) configuration, and (3) build. We measured the elapsed,
system, and user time of each of the phases separately to isolate their different character-
istics. In contrast to our previous benchmarks, lower values are better than higher values.
In the unpack phase, the package is uncompressed and new files are created by tar. In
the system-call-intensive configuration phase, the configure shell script preforms many
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Figure 5.19: Postmark: 25,000 Files. The left axis is transactions per second, the right axis
is CPU utilization.

small configuration tests, which involve a fair mix of file-system operations. The build
phase is more CPU-intensive and builds 157 object files, two libraries, eleven executables,
and sixteen man pages. In the unpack and build phase, AMINOTXN and AMINODTXN use
our modified versions of GNU Make and tar described in Section 2.5.2 and Section 2.5.3,
respectively. In the other configurations, we use the standard GNU Make and tar. In the
configuration phase, AMINOTXN is identical to AMINOACI and AMINODTXN is identical to
AMINOACID.

Figures 5.20, 5.21, and 5.22 show the results of each phase of the OpenSSH compile
benchmark. The unpack phase (shown in Figure 5.20) took 0.09 seconds on VANILLA.
The STRACE configuration added an overhead of 84.4%, and AMINOTRACE had an over-
head of 59.9%. The AMINONULL configuration had an overhead of 84.8%. For all three
of these Ext3 configurations, the benchmark completed quickly, because no disk writes
were performed during program execution due to the buffer cache. The AMINOACI con-
figuration took 0.66 seconds to complete, which is a factor of 7.4 slower than Ext3. The
reason that AMINOACI is slower than Ext3 is that the CPU time used increased by 0.31
seconds from 0.11 seconds to 0.42 seconds. The AMINOTXN configuration is similarly
7.5 times slower than VANILLA, because of an increase in CPU time, however it provides
application-level consistency (i.e., no partially written files). The last three configurations
we tested were VANSYNC, AMINOACID, and AMINODTXN. The VANSYNC configuration
is 340 times slower than the VANILLA configuration, because changes are written to the
disk synchronously. The AMINOACID configuration provides the same functionality, it is
only 194 times slower than VANILLA, because BDB is optimized for durable performance.
The AMINODTXN is only 69 times slower than VANILLA, but provides application-level
consistency and durability. In general, this untar phase of the benchmark is quite short, so
it does not provide the most accurate (because of timing accuracy) or interesting results.
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Figure 5.20: OpenSSH Unpack results. Each configuration has two bars grouped together.
The first bar is for Elapsed time, the remaining bar consists of each of the CPU time compo-
nents. Configurations with lower CPU and elapsed time perform better than configurations
with higher CPU and elapsed time.

Therefore we performed two more untar benchmarks described in Appendix A.1, which
shows that AMINOACI is between 3.9 and 7.0 times slower than VANILLA (the Appendix
includes results for all of the configurations).

The second phase of benchmark, configuration, is shown in Figure 5.21. On VANILLA,
this phase took 26.6 seconds. This phase of the benchmark is CPU and system call in-
tensive, so the STRACE and AMINOTRACE configurations had overheads over VANILLA of
98.2% and 69.6%, respectively. The AMINONULL configuration had an overhead of 72.1%.
The AMINOACI configuration has an overhead over VANILLA of 84.7%. When compared
with AMINOTRACE, the overhead of AMINOACI is only 9.0%. This demonstrates that our
file system is relatively efficient, though the CPU intensive nature of this workload causes
the context switches and data-copying induced by the monitoring infrastructure to degrade
performance. Of note, our ptrace monitoring infrastructure including the file system is
faster than STRACE alone. When durability is added, VANSYNC is 18.3 times slower than
VANILLA, and AMINOACID is 7.9 times slower than VANILLA. Again, this demonstrates
that Amino efficiently provides durable performance.

The build phase (shown in Figure 5.22) took 35.3 seconds on VANILLA. Even though
this phase is the most CPU intensive phase of all, this is the least system call intensive.
Therefore, the monitoring infrastructure has a lower overhead than in the configuration
phase: 31.5% for STRACE and 31.1% for AMINOTRACE. The elapsed times for the STRACE
and AMINOTRACE configurations were statistically indistinguishable, but AMINOTRACE
used 4.5% more CPU time. The AMINONULL configuration had an overhead of 30.9%,
which is statistically indistinguishable from AMINOTRACE. The AMINOACI configuration
had an overhead of 39.5%. Most of this was due to a 45.2% increase in CPU time from 35.1
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seconds to 51.0 seconds, caused by BDB operations, additional data copying, and context
switches. The AMINOTXN configuration had an overhead of 40.8%, which is 0.9% higher
than AMINOACI. The additional overhead is caused by a 1% increase in CPU utilization for
tracking transactions. The VANSYNC configuration was 6.4 times slower than VANILLA,
and AMINOACID was 5.3 times slower than VANILLA. The AMINODTXN configuration
performed much better, with an overhead of 55.1% over VANILLA, just 15.6% more than
the AMINOACI configuration. This demonstrates that although durability degrades perfor-
mance, much of the loss can be made up for by inserting explicit transactions.

5.6 Sendmail
We ran a Sendmail 8.13.4 server and varied the backing store for the /var/mail direc-
tory where user mailboxes are stored. We used a 2.8Ghz Xeon with 2GB as the client and a
1.7Ghz Pentium 4 with 1GB of RAM as the server. The /var/mail directory was stored
on a dedicated 7200RPM Maxtor 40GB IDE disk. We did not run Sendmail through the
Amino monitor, because it does not access the mail files. Instead, it delegates that task
to the local mailer. We used the default local mailer for the VANILLA configuration. To
provide isolation and an approximation of atomicity, the local mailer performs locking and
complex checks (e.g., repeatedly calling stat to ensure that the file does not change).
To ensure that mail is not lost (i.e., provide durability), the local mailer calls fsync after
writing the message. These checks are unnecessary under Amino, as our file system trans-
parently provides isolation to applications, without the need for explicit locking calls or
repeated checks. Instead of using the default local mailer, we wrote a simple replacement
that uses an Amino transaction to provide ACID properties for the AMINOTXN configu-
ration (see Section 2.5.4). The STRACE and AMINOTRACE configurations monitored the
mail.local program. The DEVNULL configuration discarded the message.

For our benchmark, we developed a Perl script that stress tests the mail server by contin-
uously sending mail. We created a pool of 100 users to receive the mail, and each message
had a randomly selected recipient. The messages sizes were normally distributed with a
mean of 5,993 bytes and a standard deviation of 4,166. We chose the size parameters based
a 2.5%-trimmed mean of our non-spam email for the past year. The test begins with a 60
second warmup period, in which the test runs without measurement to avoid startup effects.
After the warmup, messages are sent for five minutes, and we record the mean achieved
rate. The client could use up to 32 concurrent threads to send messages (fewer threads are
used if the rate limit is met).

We ran the test for requested rates of 5–20 messages per second (MPS), and plotted the
requested rate against the achieved rate in Figure 5.23. Ideally, the server would process
exactly the same number of messages as were requested, but in practice the network, CPU,
and disk act as bottlenecks.

All configurations handled 5 MPS well, achieving the requested rate. The DEVNULL
configuration achieved 10.1, 11.4, and 11.5 MPS for a request rate of 10, 15, and 20 MPS,
respectively. This shows how many messages the machine could handle if the disk was not
a bottleneck. The VANILLA configuration achieved 8.7, 9.3, and 10.4 MPS for a request
rate of 10, 15, and 20 MPS, respectively. This represents a decline of 13.9%, 18.4%, and
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Figure 5.23: Local mailer: requested vs. achieved load.
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9.6% from the DEVNULL configuration. The STRACE configuration achieved 8.8–8.9 MPS
for requested rates of 5–20 MPS, and AMINOTRACE achieved 8.7 MPS for a requested rate
of 5–20 MPS. At 15 MPS, this represents an overhead of 5.3% and 7.0% for STRACE and
AMINOTRACE, respectively. At 20 MPS, this overhead increases to 16.6% and 15.0%, re-
spectively. AMINOTXN had degraded performance compared to the other configurations. It
was only able to handle 8.0–8.2 MPS for a requested rate of 5–20 MPS. This is a reduction
compared to VANILLA of 7.2% for a requested rate of 10 MPS, 12.4% for a requested rate
of 15 MPS, and 22.6% for a requested rate of 15 MPS. Compared to AMINOTRACE, the
overheads are between 5.7–7.7%. The AMINOTXN overheads are clearly coming from two
sources: (1) ptrace monitoring and (2) the Amino file system itself. The Amino per-
formance is poorer than Ext3, because Sendmail uses multiple processes to deliver mail,
thus causing increased lock contention to provide the isolation. BDB uses page-level lock-
ing for the Path and Data databases, thus falsely limiting concurrency compared to Ext3
(which uses per-file locking). One possibility for improving performance is to investigate
alternative schema designs that may yield a higher degree of concurrency (e.g., moving the
data-local meta-data to the end of the file would improve append performance, at the pos-
sible expense of sequentially reading the file). Even though AMINOTXN is slower, the code
is significantly smaller and simpler, which means that fewer bugs and security flaws are
possible, and the system is more reliable. Moreover, our local mailer provides improved
guarantees. If the Sendmail local mailer exits successfully, then the message has reached
stable storage, but if the local mailer does not exit successfully (e.g., due to power failure
or an operating system error), then the mailbox can be corrupted. With our local mailer,
the mailbox always remains in a consistent state—regardless of whether the mailer exits
successfully or not.

5.7 General-Purpose Benchmark Summary
Our general-purpose benchmarks showed better performance than the micro-benchmarks.

Although Postmark is I/O-bound on Ext3, it is CPU bound on Amino. Our improved
performance for small files resulted in a 31.9% increase in Postmark transactions per sec-
ond. However, when larger files were used, the performance was identical. The perfor-
mance drop for larger ten times larger files is expected based on the results of our data
micro-benchmarks, which operated on a large file. Increasing the number of files decreased
performance for Amino and Ext3, but the decrease for Ext3 (78.3%) was greater than for
Amino (28.7%).

The OpenSSH compile is a CPU-bound workload, so tracing overheads cannot be over-
lapped with I/O. For the system-call–intensive configuration phase, the tracing configu-
rations were between 69.6–98.2%. The AMINOACI configuration was only 9.0% slower
than AMINOTRACE. During the build phase, fewer system calls are performed. Therefore,
the tracing configurations had smaller overheads ranging from 30.9–31.5% over VANILLA.
The AMINOACI configuration had an overhead of 45.2%, caused by a CPU time increase
attributable to BDB operations, additional data copies, and context switches.

For Sendmail, the AMINOTXN configuration performed between 7.2–22.6% fewer op-
erations than VANILLA. However, this decreased throughput comes with the benefit of
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transactional consistency and significantly lower code complexity.
All in all, our prototype is suitable for user-like workloads, and an optimized imple-

mentation is likely to achieve performance that is competitive with Ext3.
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Chapter 6

Related Work

In this section we discuss five classes of related work. In Section 6.1 we describe systems
that integrate transactions with the file system. In Section 6.2 we describe file systems
built on top of databases. In Section 6.3, we discuss log-structured and journaling file sys-
tems, which both use similar techniques to database systems to provide atomic updates. We
discuss transactional memory systems in Section 6.4, which are complementary to trans-
actional file systems. Section 6.5 we describe various system-call interception methods,
which are related to our monitoring infrastructure.

6.1 Transactions and File Systems
In this Section we describe Seltzer’s support for transactions in a log-structured file system,
WinFS, and Quicksilver.

Transaction Support in a Log-Structured File System Seltzer’s simulations of trans-
actions embedded in the file system showed that file system transactions can perform as
well as a DBMS in disk-bound configurations [73]. The same simulations showed that
for CPU-bound configurations, file system transactions usually have an overhead caused
by system call costs of less than 20%. In later work, Seltzer implemented a transaction
processing system embedded in a log structured file system (LFS) and compared it to a
user-space transaction processing system running over LFS and the same user-space trans-
action processing system running over a read-optimized file system [75]. Seltzer found
that LFS performed better than a read-optimized file system for the transaction processing
workload both in user-space and the kernel. Moreover, a transaction processing system
integrated with an LFS performed better than either user-space solution, because before-
images do not need to be written to the log in a no-overwrite file system (like LFS) and
synchronization was more efficient. The simulations actually predicted that synchroniza-
tion would be faster in a user-space transaction processing system, but the DECstation on
which the benchmarks ran did not have a test-and-set primitive. This required the user-
space transaction processing system to use two semaphore system calls for locking. On
an architecture with a test-and-set primitives, the user and kernel implementations should
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have similar performance. The transactional log-structured file system had only a negligi-
ble (1–2%) performance impact for non-transactional workloads.

Viewed in the context of Amino, this work has two major consequences:
1. Running the database transaction manager in user-space instead of the kernel should

not have inherent limitations. As evidenced by our evaluation, much of our overhead
was derived from ptrace. If we can improve the performance of ptrace, our file
system should be able to perform similarly to a traditional file system.

2. An LFS may be slightly more appropriate for a file system built on a database due
to its no overwrite behavior. The simulations indicated the LFS should be faster,
because there was no need to write before-images to the log (as they exist elsewhere
on disk). However, the simulations did not take into account the LFS cleaner, which
would block transactions during cleaning. This narrowed the gap between expected
performance based on simulations and actual performance based on benchmarks.1

WinFS WinFS is part of an upcoming version of Microsoft Windows [48] (originally
WinFS was slated for Longhorn, but has been delayed to “some future date”). WinFS will
integrate a full-fledged SQL DBMS into the OS. Using a heavyweight DBMS with SQL
enables powerful queries, but could add significant code complexity (as evidenced by the
delay of Longhorn and subsequent removal of WinFS). Additionally, overheads may be
significant depending on schema design and query processing. WinFS uses the database as
well as an NTFS file system as a backing store for all files. WinFS changes the basic unit
of data storage from a file to an item (an object with attributes). The WinFS API supports
explicit transactions for items, but since the API is so radically different, applications must
change to take advantage of its new features.

QuickSilver QuickSilver is a distributed operating system developed by IBM research
that makes use of transactional IPC [70]. QuickSilver was designed from the ground up us-
ing a microkernel architecture and IPC. Every IPC request has a transaction ID, and servers
must be able to rollback requests on abort and write them to non-volatile storage on com-
mit (assuming the server has non-volatile state). All resource management and notification
in QuickSilver are handled by transactions. For example, on process termination (commit
or abort) the window manager destroys all windows; the virtual terminal server closes the
standard input and output file descriptors; and the task manager kills all of its children.
The use of transactions removes the need to handle local vs. remote processes differently.
Amino integrates transactions into the file system using simpler and more widely-used OS
primitives than QuickSilver. Unlike Quicksilver, in which each OS component must pro-
vide specific transaction support for rollback and commit, Amino leverages BDB so that
each OS component or application can use simple begin, commit, and abort calls, without
managing its own rollback or commit.

1In hindsight, this result seems somewhat intuitive. The write-ahead log on the read-optimized file system
can be viewed similarly to the in-place writes on the LFS. Flushing dirty buffers in the read-optimized file
system is analogous to cleaning old segments in the LFS. The LFS probably still has some advantages,
however, because the schedule of the LFS cleaning can be more malleable than general data writeback on a
traditional file system (which non-transaction processing applications rely on for consistency).
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6.2 File Systems built on Databases
In this Section we describe the Inversion File System, the Ode File System, Oracle’s Con-
tent Management SDK, and DBFS.

Inversion The Inversion File System [56] is a user-level wrapper library with file-
system–like functions that stores files in a POSTGRES database. Inversion uses
POSTGRES to support transactions and fast crash recovery. Unfortunately, Inversion
operates in its own namespace, separate from that of other file systems, and uses different
functions from the traditional Unix API, making it unsuitable for integrating legacy and
transactional applications. Our ptrace-based design does not require any application
modification, and makes it possible to provide more OS services (e.g., memory-mappings).
Moreover, the transactions API provided by Inversion is also more limited than the
one provided by Amino. Inversion does not support nested transactions or the shared
transactions API that Amino does. Our richer transaction API allows us to modify
applications such as make to provide transactions for applications that do not support them
(e.g., gcc). POSTGRES has support for SQL query processing, query-execution planning,
network access, and stored procedures. Inversion uses each of these features, making
it more resource intensive, and hence less suitable for use by performance-sensitive OS
components such as the file system.

Inversion does, however, provide some notable features that Amino does not: typed files
and time travel. Inversion was designed for scientific research and supports typed files,
that have a specific structure or meaning to their data. For example, Inversion supports
several formats for satellite images with functions to access individual pixels. Inversion
also leverages POSTGRES’s no-overwrite storage policy to provide time travel for user
applications. As data is never overwritten, historical copies of data are always available
for users. This allows Inversion to provide functionality that is similar to comprehensive
versioning file systems like CVFS [84].

OdeFS OdeFS [17] was designed to provide a file-system interface to objects already in
the Ode object-oriented database. This allows standard tools to manipulate these objects,
alleviating the need to build a set of tools analogous to those already extant on Unix systems
(e.g., grep, vi, and lpr). However, for each type of Ode object, new methods must be
defined for read, write, and other file-system operations. This essentially makes OdeFS
a framework for developing other types of file systems, because each type of object has
differing semantics.

OdeFS is implemented as a user-level NFS servers that combines the Ode database
backend with a traditional Unix file systems. Thus, OdeFS includes some aspects of uni-
fication [59] as well as access to objects in a database. This leads to some non-intuitive
situations in which programs like cp do not work, because OdeFS cannot distinguish be-
tween writes to Unix files or Ode objects. The use of the NFS protocol comes with some
disadvantages. Notably, NFS does not include open or close operations, so OdeFS can-
not determine when a user has finished updating an object. This also makes error reporting
problematic, because the data that a user writes to an object may not be correct and this
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complicates when that error should be reported. Additionally, the NFS clients may cache
data that they write and thus OdeFS “plays games” with file modification times to mitigate
this problem. These limitations are related to the major reason that Amino could not be im-
plemented as a user-level NFS server. ACID properties cannot be extended to applications
using an NFS server, because there are no mechanisms for adding new primitives (e.g.,
begin or commit) to NFS and the NFS client cache can serve requests without consulting
the database system (thus defeating isolation).

Oracle Content Management SDK Oracle Content Management SDK (formerly known
as Oracle Internet File System or iFS) is a file system that is built on top of Oracles rela-
tional database [57]. iFS is designed to be robust and scalable shared file system for content
management. It provides access to files via several Internet protocols: Samba, NFS, HTTP,
FTP, SMTP, POP3, and IMAP4. As a shared content management system, iFS has several
features to improve collaboration: file versioning, check in and checkout, searching, and
email notifications when documents are modified. iFS provides convenient access to files
using a variety of network protocols, but the clients may cache data and transactions are
not available using these protocols.

DBFS The Database File System (DBFS) is a block-structured file system developed us-
ing BDB [52]. DBFS uses BDB’s transaction, caching, and logging components to build
a file system that provides consistency similar to FreeBSD SoftUpdates [46] (that is atom-
icity, consistency, and isolation) at the file system level, but did not extend transactions to
applications.

DBFS is implemented as a user-level library and a user-level NFS server. The user-
level library does not use a POSIX API, so applications must be modified and relinked to
use DBFS. The NFS server alleviates this to some degree, because unmodified applications
can use the standard NFS client in the kernel. The use of a library does not eliminate the
possibility of extending transactions to applications, but DBFS did not explore this possi-
bility. As we previously described, NFS servers cannot provide transactional semantics to
applications.

The database schema of DBFS is somewhat similar to Amino’s, but there are several
key differences. The DBFS schema is made up of three databases (DBFS refers to them as
tables): a dirtree database, a metadata database, and a blocks database. The most
similar database is the blocks database, which corresponds to our Data database. The
blocks database maps unique identifiers and a block index to the actual data. The main
difference is that our Data database also includes the information in DBFS’s metadata
database. Our design improves locality, because the metadata is stored together with the
data. The dirtree database is analogous to our Path database. The primary difference
is that DBFS’s dirtree database is structured like a Unix directory tree (i.e., a par-
ent inode number points to a child inode number and name). Additionally, DBFS uses
a single key with multiple values for each directory. The DBFS authors state that they
cannot skip to a specific directory entry, therefore to read an n-sized directory O(n2) cur-
sor walks are required. A consequence (though not mentioned by the DBFS authors) of
this fact is that the lookup operation is also O(n). However, we do not believe that this
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is a fundamental limitation of using a Unix like directory, but more probably an artifact
of DBFS’s schema implementation. It should be possible using a properly structured data
item and sort function to use the DB GET BOTH cursor flag to provide O(lgn) lookups and
the DB GET BOTH RANGE cursor flag to resume directory reading.

The primary goal of DBFS was to determine the performance characteristics of a file
system that was built on a database compared to FFS. In the abstract the DBFS authors
say that DBFS’s performance was 50–80% slower than FFS. However, this is true only for
asymptotically large data transfers (e.g., 8MB). For page-sized data transfers, the perfor-
mance was on the order of 5 times slower for reads and 30–40 times slower for writes.
However, meta-data operations were an order of magnitude fastr than FFS without Soft
Updates, but slower than FFS with Soft Updates. We have found that Amino shows similar
performance to DBFS for reads, but is faster for writes (with a slowdown of roughly 3.2
times). For meta-data operations, we found that Amino was slower than Ext3, but much of
the slowdown we observed was related to ptrace (the DBFS evaluation was performed
using direct DBFS library calls).

6.3 Log-structured and Journaling File Systems
Log-structured and journaling file systems borrowed the technique of write-ahead logging
from databases [26, 38, 67]. The key difference between a log-structured file system and a
journaling file system is that in a log-structured file system the log is the permanent home
of the data, whereas in a journaling file system the log is a temporary location until the data
is checkpointed to a permanent location on disk. Thus, Amino is similar to a journaling
file system in that when updates are made, they are first written to the database log file and
then written to their permanent locations within the database file.

Standard log-structured and journaling file systems write “transactions” to their log, but
these transactions are completely controlled by the file system software—user applications
cannot surround multiple file system operations in a single atomic transaction (the notable
exception being Seltzer’s work described in 6.1). Additionally, the transactions in a log-
structured or journaling file system do not provide all of the elements of ACID. Instead,
they provide atomicity and consistency for well-defined operations within the file system,
and durability can be provided by flushing the log to disk. Notably, log-structured and
journaling file systems do not include provisions for isolation apart from other facilities
provided by the OS (e.g., directory-level semaphores). Amino provides atomicity, consis-
tency, isolation, and durability for arbitrary sequences of file system operations.

In log-structured file systems, journaling file systems, and Amino, synchronous writes
have improved performance because they are written sequentially to the log, obviating the
need to seek to many locations of the disk for a single update.

6.4 Memory Transactions
Providing transactions on the file system is a useful first step towards providing fully trans-
actional semantics to applications. However, applications also have in-memory data struc-
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tures that need to be kept consistent. Therefore, we believe that providing transactional
semantics for in-memory data is complementary to providing transactions for on-disk data.
This way, applications can safely update their in-memory structures together with an as-
sociated file. If the transaction aborts, then both the application’s memory and the file are
restored.

Lightweight Recoverable Virtual Memory Lightweight Recoverable Virtual Memory
(LRVM) was developed to simplify Coda servers [69]. LRVM is designed to handle trans-
actionally protected memory-mapping of a file into a process’s address space. To simplify
LRVM’s design, the file should be a small portion of the total storage: the undo log was
stored in memory. Durability was provided by writing a redo log to disk. LRVM was devel-
oped as a user-library and requires explicit calls to indicate that a given region of memory
will be written to. We believe that a page fault handling mechanism for identifying writes
is more convenient and robust. Indeed, the LRVM authors point out that the most common
types of bugs were missing calls before manipulating a region, and suggest that language
support for LRVM calls would be a good solution to these missing calls.

Rio The Rio, or RAM I/O, project sought to bring persistence to standard memory [8].
If memory is persistent, then file systems can avoid writing data indefinitely, thereby im-
proving performance by an order of magnitude. The key observation is that most data in
memory is lost because of either power failures or software errors. Power failures can be
solved through the use of UPSs. To cope with software errors, two approaches are taken.
First, Rio memory uses page protection and checksums to prevent an errant instruction
from writing to it. To update a page, it must be made writable, then the update is per-
formed, and finally the page is made read-only again. Along with the update, checksums
are stored along with the data so that errors can be detected. These two mechanisms raise
the bar for updating memory, so that an errant instruction is unlikely to corrupt Rio mem-
ory, and even if Rio memory is corrupted, the change can be detected with a checksum.
The second approach that Rio uses is saving memory across warm reboots. After a system
crash, the machine is rebooted, but the memory contents are preserved. Before the OS is
fully booted, the memory is written to a swap partition. After the OS is booted, the contents
of Rio memory are restored from the swap partition.

The authors implemented a file cache with Rio, and showed that it can be as reliable
as a traditional disk-based file system under a variety of software faults. However, the two
major problems with the Rio architecture are that not all architectures support warm reboot
(e.g., an x86 cannot be rebooted without destroying RAM contents), and Rio also assumes
that hardware and power failures are so rare as to be ignored. Unfortunately, hardware
is becoming an increasingly large source of faults, as hardware components increase in
number and complexity, and cost pressures force the use of less reliable components [18,
49].

Vista is a transactional RVM built on top of Rio [42]. Vista greatly improves the per-
formance of an RVM system, because memory is assumed to survive a system crash—
avoiding synchronous writes. Because Vista is built on top of Rio, it does not require a
redo log, and the code complexity is much simpler than that of previous RVM systems, at
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around 700 lines.

6.5 System Call Interception
Using the ptrace interface allowed us to develop Amino much more quickly than if we
were to have modified the kernel directly. In this section, we describe several projects that
leverage system call interception to provide new OS-like functionality: the Ufo global file
system, Janus, Systrace, SLIC, and Interposition Agents.

Ufo The Ufo Global File system uses a similar interposition technique as our monitor [1].
Ufo provides transparent access to remote files via FTP or HTTP. Ufo’s monitor uses the
Solaris /proc file system. The monitor operates on system calls such as open, close,
and stat. When an access to a remote file is detected, the file is transparently fetched,
and the system call is changed to open the local copy. Ufo does not implement other calls
such as read, write, getdents, or stat internally, because the file’s local copy can
be used without modifying the application. To implement getdents and stat prop-
erly, however, sparse files are used to create stubs for files that are not yet locally cached.
Creating this hierarchy of stub files hurts performance.

This is in marked contrast to the Amino monitor, which does not rely on the lower-
level file system for any functionality. Like any design decision this comes with some
advantages and disadvantages. The major advantage of Ufo’s design is that it is simpler
and just “patches” a handful of system calls. This makes compatibility for the remainder
of system calls trivial in Ufo, whereas Amino must carefully implement each system call
to provide compatibility. This also has some positive performance implications for Ufo,
because it does not need to handle calls like read and write, the number of data copies
and context switches are reduced. Not handling all of the system calls also has some
negative performance implications: for example, to read a few bytes of a large file in Ufo
the whole file must be written to temporary storage during the open call. In Amino’s
architecture the file does not need to be written to temporary storage, instead the monitor
simply reads as many bytes as required.

The major disadvantage of Ufo’s design is that, because it handles just a handful of
system calls it cannot override kernel functionality for the unimplemented system calls.
For example, Ufo could not provide encryption functionality, because it would have to write
the unencrypted data to disk during open; thus defeating the purpose of an encryption file
system. Similarly, Ufo is not able to provide fine-grained transactional semantics for file
data, because the Ufo file system delegates all file data operations to a standard disk based
file system. For example, a transactional file system under Ufo cannot handle concurrency
on a single file. The Ufo monitor must manually provide whole-file locking (i.e., it cannot
rely on a DBMS as in Amino), because it does not know where reads and writes take
place within a file (or even if they take place at all until close). Moreover, all directory
operations must use similar locking, because of the reliance on stubs.

Interestingly, the Solaris’s /proc interface provides two pieces of functionality not
available under Linux: (1) writing to the process address space is enabled by default, and
(2) the monitor can select which system calls to intercept. This provides functionality
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that is equivalent to a read-write /proc/pid/mem file (described in Section 3.5) and
PTRACE SELECT (described in Section 3.7).

The performance of Ufo was poor compared to the existing operating system. For the
intercepted system calls the performance was 14.3–21.8 times slower than the standard
OS, even for files that Ufo did not handle (this configuration is similar to AMINOTRACE.
For files handled by Ufo (this configuration is similar to AMINONULL), the performance
was 52.8–128 times worse. Amino performed similarly, causing a slowdown of roughly
10–20 times for tracing and emulation (see Appendix A.2 for full results). For larger-scale
benchmarks, Ufo fared better. For the Andrew benchmark, the Ufo was 33% slower for
while tracing, and was 67% slower for files that it handled. This benchmark is most similar
to our compile benchmark, in which Amino had an overhead of 47% for tracing and 48%
for the AMINONULL configuration. For the iostone benchmark, Ufo was 8.33 times
slower for tracing and 34 times slower for files that it handled.

Janus The ptrace interface was used by the Janus framework to sandbox untrusted
applications [21]. Janus monitors file-system and network-related system call invocations,
and applies configurable policies to allow or deny system call execution.

Systrace Systrace [63] is a system call interception framework for improving host secu-
rity. Systrace intercepts system calls in the kernel and passes a configurable set of calls to
a user-level monitor. In this way it is similar to our PTRACE SETCALLS patch. Systrace
enforces user-defined security policies (e.g., the application may bind to port 53 or open
/var/named) and provides an interactive policy generation tool. Systrace also allows a
policy to elevate privileges for individual system calls, thus removing the need to run entire
setuid programs as root. Because Systrace is focused on security it takes precautions that
ptrace monitors can not, including resolving all symbolic links before executing calls
and copying all of the process’s arguments to the kernel’s address space. This prevents
malicious processes from exploiting TOCTOU vulnerabilities (e.g., passing innocuous ar-
guments that are verified by the monitor, and then having a sibling thread modify them
before the kernel executes the call [85]). Systrace originally required kernel modifications
to intercept system calls on Linux, Mac OS X, NetBSD, and OpenBSD, however, recent
Linux versions can use ptrace to intercept system calls without kernel modification.

SLIC Several other interposition techniques operate at the same logical system-call level
as Amino, but use a customized interface. SLIC [19] is an OS extensibility system that
allows kernel-level extensions or user-level servers to register handlers for system calls,
signals, and other OS entry points. SLIC has been used to patch security holes, encrypt
files, and provide a restricted execution environment. SLIC extensions that run as user-
level servers are quite similar to the ptrace interface.

Interposition Agents Interposition agents provide higher-level abstractions for system
call interception [33]. The key insight for interposition agents is that system calls can be
divided into classes that operate on independent sets of objects (e.g., path names or file
descriptors).
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Chapter 7

Conclusions

Applications use an easy-to-use and standard POSIX API to access file systems, but file
systems do not provide transactional semantics. Databases provide transactions, yet have
differing APIs. Many applications can benefit from transactions, which can greatly im-
prove error handling and provide atomic operations. For example, atomicity obviates the
need for complex error handling, because a transaction can simply be aborted without any
ill-effects. Atomicity can be used as a tool to ensure consistency, so that specialized and
complex recovery code is not required. Isolation allows applications to provide race-free
updates. Finally, durability ensures that data that was written actually reaches the persis-
tent storage. Because transactions are so useful and the file system interface is convenient
and ubiquitous, we believe that file systems should provide transactional semantics to ap-
plications. Furthermore, we contend that a combination of file system transactions and
recoverable memory will enable developers to use more robust and elegant error recovery
methods than simply “giving up” and terminating an application upon a failure.

We designed and developed Amino, a prototype file system with ACID semantics.
Amino uses the Berkeley Database (BDB) as a backing store, with an efficient file sys-
tem schema. Using BDB’s flexible key-value pair access model, meta-data properly mi-
grates between the Path and Data databases—improving performance for common oper-
ations while avoiding the pitfalls of logical redundancy. Amino exports an easy-to-use,
yet powerful, nested-transactions API to user space. Applications can begin, commit, and
abort transactions. We designed a simple API to enable cooperating processes to share
transactions. Using the same API, transactions can be added to unmodified processes. We
designed four sample applications using our transactional API: a transactional Postmark, a
version of GNU Make that adds transactions to the build process, a transactional version of
GNU tar, and a transactional local mailer.

We evaluated our ptrace file system infrastructure, and showed that file systems can
be developed using our monitor with lower complexity than in the kernel and that the com-
plexity is similar to other techniques, such as FUSE, but our monitor provides functionality
that FUSE does not. Our performance evaluation shows that our file systems have ac-
ceptable performance. For micro-benchmarks, our monitor is often several times slower
than Ext3, because of the additional CPU time required for ptrace monitoring and addi-
tional database operations. Our ptracemonitoring infrastructure can add new file-system
functionality to applications, and in many cases exceeds the performance of the standard
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strace tool—which simply traces processes without adding any functionality.
For general purpose workloads, the performance impact of Amino is small. The I/O

and meta-data-intensive Postmark workload Amino matches and exceeds the performance
of Ext3. For our Sendmail benchmark, Amino had overheads from 7.2–22.6% over Ext3,
but provided consistency guarantees that Ext3 can not. For more CPU intensive workloads,
such as the compile the overheads were larger, 39.5–84.7%. When durability is required,
performance inevitably suffers because of synchronous disk writes. For unmodified ap-
plications, Amino meets or exceeds the performance of Ext3. For modified applications,
Amino performs several times better than Ext3 in durable mode (even approaching the non-
durable configurations for the compile). Moreover, Amino provides applications with the
additional benefits of atomicity, consistency, and isolation. This validates our decision to
build Amino on top of a database rather than an existing file system.

7.1 Future work
In this section we describe interesting avenues for further research and possible improve-
ments of our system. In Section 7.1.1 we describe possible ptrace improvements. In
Section 7.1.2 we discuss address space manipulation. In Section 7.1.3 we describe possi-
ble extensions to our transactions API. In Section 7.1.4 we discuss database deadlocks. In
Section 7.1.5 we describe schema enhancements. In Section 7.1.6 we describe ExtAcid, a
proposed ACID file system that is compatible with Ext2.

7.1.1 Possible ptrace enhancements
In this section we describe the problems with m− n threading in Linux’s current ptrace
implementation and suggest an extensible kernel-level ptrace filtering mechanism.

m − n threaded ptrace monitors Our current monitor is multi-threaded, which is
essential for providing good file system performance under concurrent workloads. We
used a 1 − 1 threading model, such that one thread of the monitor monitors a specific child.
The main advantage of this model is that it is simpler to implement than a m− n threading
model, where m is the number of user-level applications and n is the number of monitors.
However, a m−n model may be more suitable for monitoring many processes, particularly
those that are user-time intensive such as a compile benchmark.

A m − n threading model would allow a monitor design that is similar to a pre-forked
network server, such as Apache [2]. The monitor could dynamically create new monitoring
processes as needed, and avoid setting up and tearing down threads for each child process.
For example, in the Configuration phase of a compile benchmark, hundreds of very short-
lived processes are executed. Eliminating these startup costs could improve performance.
Moreover, if all of the processes on an OS are to be monitored, it is unlikely that all of them
execute simultaneously and need dedicated threads (e.g., on the author’s laptop there are
over 100 processes running while the machine is idle).

Unfortunately, ptrace does not permit a true m − n threading model, where a given
thread can be serviced by any of n monitor threads. Instead, the ptrace API ties a thread
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to a specific monitor thread, so it is possible to statically assign a subset of threads to a given
monitor thread. We believe that a pool of monitor threads should be able to dynamically
service a given number of processes. This is a non-trivial kernel change, because there is a
direct link from a process to the thread that is monitoring it, but it is possible to modify the
kernel such that the link from the monitored process is to the monitoring process (including
all of its threads), rather than to just the individual threads within the monitoring process.
The ptrace API itself could remain essentially unchanged (and if minor changes are re-
quired, then the PTRACE SETOPTIONS primitive could enable them), thereby preventing
incompatibilities with existing tracing software.

Kernel-level filtering We are also considering porting performance-sensitive subsets of
the database and the monitor into the kernel. Selecting which calls to pass to the existing
OS vs. handling within the monitor are among the most performance sensitive parts of the
monitor (e.g., path name resolution and file-table lookups). Porting these facilities to the
kernel is essentially an extension of the PTRACE SELECT primitive that we introduced,
but rather than simply selecting calls to receive on the coarse-granularity of system call
number, the monitor can select calls based on file descriptor or paths. The most trivial
way to implement this would be a direct port of the Amino monitor’s pathname resolution
and file table maintenance code to the kernel with the appropriate system calls for the
monitor to manipulate the mount and file tables. This approach has the disadvantage that
is it intimately tied to file-system code and even some of our assumptions about file system
code (e.g., the mount a file system is on is determined by a prefix of its path).

A more general solution would be to allow ptrace monitors to upload small general-
purpose code to the kernel to filter requests. This would be useful because tracing monitors,
file-system monitors, security monitors, and others all take advantage of this type of func-
tionality. In addition, a small shared kernel-user segment can be created so that the monitor
can dynamically change the filtering criteria (e.g., by updating a file table). Care must be
taken any time untrusted code is executed within the kernel. Various methods can be used
to ensure kernel safety for such ptrace filtering extensions. The Packet Filter allows
user-level processes to upload simple byte-code programs for demultiplexing packets into
the kernel [50]. The packet filter provides safety by using an interpreted stack-based lan-
guage that does not allow arbitrary memory-references. Dispatching system calls to the
kernel or monitor is essentially a form of demultiplexing, so such a solution is likely to
be especially suited for this domain. The BSD Packet Filter extends this model to include
registers [45], and BPF+ dynamically verifies a filter’s safety and compiles it into native
code [3]. VINO [72], SPIN [5], and Exokernel [14] are extensible operating systems. Each
of these OSes takes a different route to ensure safety: VINO uses software fault isolation to
prevent code from accessing invalid memory and transactions to prevent resource hoarding;
SPIN requires extensions to be written in the type-safe Modula-3 language; and Exokernel
allows multiple independent library OSes to run on a single machine. Palladium [9] runs
kernel modules at a privilege level between that of the kernel and user-space using x86.
Cosy allows user functions to run at the kernel level, but prevents them from accessing
anything other than a shared buffer using x86 segmentation [64, 65]. One or more of these
safety mechanisms could be employed to provide the monitor with sufficient capability to
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modify a shared data segment and the kernel-code segment to use them in conjunction with
the process’s registers and address space contents to make filtering decisions.

7.1.2 Address Space Manipulation
The monitor is able to read and write from the process’s address space, but cannot change
it. Our monitor needs to manipulate the address space of the user applications as well as its
own address space. Unfortunately, the mechanisms Unix provides for address space ma-
nipulation are lacking. Specifically, ptrace should provide an API that allows to perform
the following actions:

• Insert new regions into the a process’s address space as if the process were calling
mmap.

• Remove regions from a process as if the process were calling munmap.

• Change the protection bits of pages in a process’s address space as if the process
were calling mprotect.

• Duplicate part of its own address space (or that of a monitored process), into a dif-
ferent part of its address space (or that of a monitored process).

The first three items (mmap, munmap, and mprotect) are a logical extension of the
monitor reading to and writing from the process’s address space. To get around this lim-
itation our monitor inserts these calls into the system call stream. This is relatively clean
for mmap and munmap, because our monitor only issues these calls when the process is
already executing a system call. However, the monitor must force user processes to issue
mprotect system calls at arbitrary points during the page fault handler. This involves
inserting machine code into the process’s address space, updating the instruction pointer
and other registers, and then restoring them. This works, but is less efficient and more
error-prone than the kernel providing a mechanism to accomplish the task.

There are several times throughout the design of our system that a flexible method of
grafting parts of one address space onto another would be useful. The most basic exam-
ple is that the monitor would no longer need to inject system calls for establishing the
System V shared memory region. Also, implementing shared mappings could be simpli-
fied considerably if the monitor could map the pages that represent a file in the monitor
into other processes. Another example that does not directly relate to the monitor is that
when implementing a recoverable virtual memory system, it would be convenient if the
application could map the same page into its address space read-only in one location and
read-write in another. This would allow efficient explicit logging functions in concert with
a robust page-fault based logging mechanism. Finally, System V shared memory could be
implemented in terms of such an API.

7.1.3 Transactions API
We describe two types of possible modifications to our transactions API: exposing more
BDB functionality to user applications and a language for defining transactions profiles.
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Exposing BDB Functionality We plan to expand our transactions API to allow appli-
cations to select a degree of isolation. By default, BDB provides the highest degree of
isolation, repeatable reads, which means that a given transaction can repeatedly read a
data item without it changing [23]. There are three weaker levels, cursor stability, browse,
and anarchy (present file systems support only anarchy). Lower-levels allow one process
to interfere with another, but provides better performance. This trade-off is appropriate for
some applications (e.g., locate does not need repeatable reads, as it only accesses each
file once). Fortunately, using the proper locking protocols, each of these isolation levels can
peacefully coexist, without negatively impacting transactions at a higher isolation level.

Transaction Profiles In Section 2.4 we proposed using transaction profiles to automati-
cally provide transactions for existing applications. Currently, implementing a transaction
profile requires inserting C code into the monitor to begin and end transactions where re-
quired. For example, the profile that protects an entire application’s execution is inserted
into the on new pcb and on free pcb events. An improved solution would be to pro-
vide a simple language for defining extensions rather than requiring monitor source code
changes. For example, if the monitor exposes system entry, exit, and notifications, then
declarative rules could be used to create a finite state automaton augmented with instruc-
tions to begin, commit, or abort transactions. In this way, the transaction profiles would be
quite similar to regular expressions over the language of the system calls.

7.1.4 Database Deadlocks
Any sufficiently complex database application is bound to exhibit deadlocks, and Amino
is no exception. Fortunately, BDB provides automatic deadlock detection, and returns the
error code to DB DEADLOCKwhen a deadlock occurs. To detect deadlocks, BDB reads the
lock table and constructs a “waits-for” graph [83]. A locker waits for another locker, if it
is requesting a lock that the other transaction holds. For example, if transaction A holds a
lock and transaction B is requesting the lock, then B waits for A. After constructing this
graph, BDB searches for cycles in the graph, which indicate a deadlock has occurred.

The primary limitation with this method is that BDB restricts each thread of control to
issuing database calls using a single transaction. When multiple transactions are used in a
single thread, self deadlock can occur. Consider the situation where a single thread begins
transactions A and B. If A requests an object, and then B requests the same object, then
neither transaction can make forward progress, because B is waiting for A and A will not be
scheduled. This is not detected as a deadlock, because the waits-for graph contains only the
edge B → A. More complicated scenarios also exist. Self deadlocks are possible because
Berkeley DB does not know about thread identifiers. If the waits-for graph was augmented
such that for each thread waiting on an object, edges are added from other lockers in the
same thread of control to that waiting locker, then cycles would be formed and deadlocks
could be detected. In the previous example, B is waiting on an object held by A so the
graph contains the edge B → A. Because B is waiting on an object, all other lockers
in the same thread wait on B so the edge A → B is added, thus forming a cycle. This
improvement to deadlock detection would allow concurrent child transactions, an m − n
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threading model, and prevent deadlocks on transaction suspend. Finally, the OS could also
augment the waits-for graph with other relationships (e.g., a blocking pipe reader waits for
the writer).

When two or more process’s share a transaction stack, we currently serialize their op-
erations using a mutual exclusion lock. Performance would be improved if each of the
processes could begin their own child transaction and perform operations concurrently.
The reason that concurrent child transactions are not currently supported in BDB is that
all of the child transactions are mapped to their parent for locking purposes, because if the
children were assigned different locker IDs, then they could self deadlock [71]. However,
if they were assigned different locker IDs and were in different threads of control they
would not self-deadlock; but true deadlocks are possible and must be detected. One possi-
ble solution to this would be to use a new database flag (e.g., DB TXN THREAD). However,
this solution would not permit the use of child transactions in the same thread of control
(as BDB now supports) and in different threads of control at the same time. Using the
self-deadlock aware waits-for graph would allow such child transactions. After the BDB
infrastructure is put in place, our file system’s transactions API would need to be modified
to support a tree of transactions rather than a stack.

We use a 1 − 1 threading model for our monitor for two reasons: (1) it is dictated
by ptrace limitations, and (2) it ensures that each user thread maps to a single monitor
thread. This second constraint prevents self deadlock. If two user threads began trans-
actions and were handled by the same monitor thread, then the monitor thread would in-
terleave calls for two transactions, thus introducing the possibility of self deadlock. If
self-deadlock was handled by BDB, then the monitor could use an m − n threading model
(assuming ptrace was also updated).

The transaction suspend primitive allows applications to issue calls against two trans-
actions at the same time, introducing the potential for self deadlock. If BDB were self-
deadlock aware, then this problem would be eliminated.

7.1.5 Schema Improvements
We also plan to further improve the performance of Amino’s database schema. Currently
our Data database uses a balanced tree. We plan to use a custom access method that will
write pages to a file (or possibly raw disk) directly. This will give us more control over data
placement, and allow us to align data properly with the native OS page size. BDB’s mod-
ular design means that we can use the existing locking, logging, transaction, and caching
components. This should help improve performance for data operations, which suffer com-
pared to a standard disk based file system.

We also plan to investigate changes to the Path database and how it is accessed that
would improve concurrent access. For example, by reordering operations to the Data
database, we were able to provide performance equivalent to a single thread for multi-
threaded workloads. Performing similar optimizations for the Path database is likely to
yield similarly positive results. We are also considering using a more Unix-like schema for
the Path database. In Unix each directory is also a normal file that can be moved by simply
unlinking it from one parent and linking it from another. To rename directories using our
schema the number of database operations required is linearly dependent on the number of
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descendent’s of the directory. Although renaming directories is not very common, this does
change the expected performance characteristics of a file-system operation. If a more Unix-
like schema is used, however, it is likely that certain paths will become a bottleneck (e.g.,
/) while traversing the directory structure. One possible answer to this is using a summary
table that has a schema much like the current path database. This summary table can be
lazily populated with full path names, and if directory renames occur it can then be en-
tirely removed (a constant time operation). The key performance question here is whether
maintaining the summary table is more expensive than the additional queries it is designed
to save. Moreover, maintaining the expected performance characteristics of directory re-
name may not be worth the extra effort. For improved efficiency, the summary table could
be stored in a memory-only BDB environment. If this summary table is maintained as an
in-memory database, it essentially devolves into a directory-name-lookup cache (DNLC)
within the monitor. This scheme ends up being rather similar to a sprite prefix cache, which
maps path name prefixes to the appropriate server [58]. In this case, the prefix cache would
instead map prefixes to database entries.

7.1.6 ExtAcid
Our investigation centered around developing a transactional file system using database
components for data organization. A logical alternative is to use an existing file system
format such as Ext2 for data organization. There are a large number of installations with
existing Ext2 and Ext3 file systems. The data stored on these file systems is valued, but the
code that accesses these file systems is interchangeable. For example, FreeBSD and Linux
can both access Ext2 file systems. We call our proposed Ext2 implementation that exposes
ACID semantics to the user level ExtAcid. ExtAcid should have the exact same on-disk
format as Ext2, making migration between an ACID and a non-ACID file system as trivial
as passing different options to mount. If ExtAcid and Amino provide the same user-level
transaction API, applications could use either ExtAcid or Amino seamlessly.

BDB is a highly modular software toolkit. It is possible to use some facilities of BDB
without using others. To provide ACID properties using the Ext2 format, one could use the
logging, locking, and caching components of BDB. Instead of using a BDB access method
(the components that define the on-disk structure of BDB databases), an Ext2 partition can
be directly accessed, leveraging existing Ext2 code where appropriate. By mediating these
accesses using the BDB lock, logging, and cache management facilities, it is possible to
provide ACID guarantees.

As part of this investigation, alternative ExtAcid-specific logging and locking compo-
nents should be developed. The performance and development time implications of us-
ing general-purpose database components vs. more finely tuned components can then be
explored. For example, BDB performs page-level locking, which can falsely limit con-
currency when many distinct objects are stored on a page (e.g., in the inode bitmap). A
custom locking component would be aware of the differences between bitmap, inode, and
data pages and thus have finer lock granularity when appropriate.

To obtain copies of the micro-benchmark programs used in this dissertation go to www.
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fsl.cs.sunysb.edu/∼cwright/benchmarks/.
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Appendix A

Additional Performance Evaluation

This appendix contains additional performance evaluation and ancillary graphs that are not
included in the body of the thesis. Section A.1 describes two additional untar benchmarks.
Section A.2 presents a micro-benchmark of our ptrace primitives.

A.1 Additional Tar Benchmarks
Although the Unpack phase of the OpenSSH compile produces statistically distinguishable
results, it completes too quickly to get measurements that one can be confident in, because
of startup effects and the resolution of the CPU time measurements. Therefore, we ran
the unpack phase of the experiment using the Linux 2.6.16 source tree as well. The Linux
2.6.16 source tree unpacks to 260MB in 20,433 files and directories. The results for this
experiment are shown in Figure A.1 and the non-durable configurations alone are shown in
Figure A.2.

The VANILLA configuration completed in 3.5 seconds. The STRACE, AMINOTRACE,
AMINONULL configurations had overheads of 146.0%, 88.3%, and 117.5%, respectively.
These overheads are slightly higher than for the OpenSSH compile which were 84.4%,
60.0%, and 84.8%, respectively. The AMINOACI configuration was 7.0 times slower than
VANILLA (vs. 7.3 times for OpenSSH). Again, this was mainly due to an increase in CPU
time from 5.5 seconds to 17.8 seconds. Moreover, the VANILLA configuration utilized the
second CPU more efficiently, with a total utilization of 159.3%, whereas AMINOACI only
utilized 73.4% of the CPU while it was running. The AMINOTXN configuration added
slightly more overhead, and was 7.3 times slower than VANILLA. The VANSYNC con-
figuration was 441 times slower than VANILLA, AMINOACID was 282 times slower than
VANILLA, and AMINODTXN was 104 times slower than VANILLA.

Figure A.3 shows a ten-times-larger benchmark for the non-durable configurations. We
created an archive with ten copies of Linux 2.6.16, and then measured how long it took to
unpack it. The VANILLA configuration takes 90.9 seconds, which is 26 times longer than
for a single copy of Linux 2.6.16, because I/O was required. The STRACE, AMINOTRACE,
and AMINONULL configurations have overheads of 31.6%, 18.9%, and 26.6%, respectively.
The AMINOACI configuration was 3.9 times slower than VANILLA, because CPU utilization
increased by 3.6 times and 3.4 times more sectors were written to disk. The AMINOTXN
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configuration increased CPU utilization by 5.0% over AMINOACI, and was 3.9 times slower
than VANILLA.
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A.2 ptrace Primitives
We performed micro-benchmarks for getpid, stat, and open to determine the over-
head of our ptrace primitives. To time individual system calls, we read the TSC register
(which contains the number of cycles since system start) before and after the system call
and recorded the difference. We accumulated the total number of calls and cycles for one
second, and computed an average. We then repeated this process 50 times and present an
overall average.

getpid The getpid system call shows a worst case overhead for ptrace, because
it just returns an integer without any additional processing in the kernel. We measured the
overhead of six configurations:

• An untraced process.

• An process traced by strace.

• An process traced by our monitor, but we used our PTRACE SETCALLS primitive
to ignore the call.
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• An process traced by our monitor. The getpid call entry is traced, and we use
PTRACE SYSSKIP to avoid tracing the call’s exit.

• An process traced by our monitor. The getpid call entry is traced, and we use
PTRACE CHECKEMU to force a return value.

• An process traced by our monitor. The getpid call is traced, and we use
PTRACE SYSCALL to trace the entry and exit.

We present our results in Table A.1. The getpid system call takes 556 clock cycles on
an untraced process, which we use as our basis of comparison. When the same process is
traced by strace, the call takes 77,454 cycles or 139 times as long. This is not surprising
as getpid normally just traps into the kernel, returns an integer, and returns to user mode.
When strace is monitoring it, the kernel must a context switch from the application to
strace, and then handle dozens of more complex system calls within strace before
control is returned to the application.

Configuration Cycles/call ns/call Normalized
Vanilla 556 199 1
strace 77,454 27,661 139
Amino—untraced 1,087 388 2
Amino—entry traced 25,726 9,188 46
Amino—emulated 27,980 9,992 50
Amino—entry and exit traced 49,751 17,767 89

Table A.1: getpid micro-benchmark results. Cycles are measured on a 2.8Ghz Xeon.
Each cycle is 0.357 nanoseconds. The final column is the time normalized to the vanilla
configuration.

We examined four modes of our monitor, the fastest being when the process is traced,
but no traps are made into the monitor (this is the case for non-file-system–related system
calls). In this case an overhead of 531 cycles or 96% is incurred, because the kernel must
make an additional function call along the system call path to check whether or not the call
should be traced. The next two modes of operation trap only on the entry to the getpid
call. When the entry is traced, there is an overhead of 46 times. This mode is used for
file-system-related system calls that are not handled by Amino. When the entry is traced,
and a return value is emulated, the overhead is 50 times. This mode is used for most Amino
file-system calls. The highest overhead from our monitor comes when both the entry and
exit are traced. This mode is only used for a small subset of calls for which the monitor
needs to trace the return value (e.g., open, dup, exec, and certain mmap operations).
In this case, our monitor has an overhead of 89 times, which is 64% of the overhead for
strace. The reduced overhead is due to Amino more efficiently retrieving the process’s
registers.

stat Table A.2 shows the results for the stat benchmark. We used the VANILLA,
STRACE, AMINOTRACE, AMINONULL, and AMINOACI configurations described in Sec-
tion 5. The stat call takes 5,980 cycles or 2.1 microseconds on VANILLA, which is 10.6
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times as long as getpid. The tracing overheads, however, do not increase nearly as much
so the normalized overheads are better. STRACE and AMINOTRACE are 14.6 and 14.0 times
slower, respectively. Interestingly, the AMINONULL configuration is only 8% worse than
the AMINOTRACE configuration. Finally, AMINOACI is 19.8 times worse than VANILLA.

Configuration Cycles/call µs/call Normalized
VANILLA 5,980 2.1 1.0
STRACE 87,239 31.2 14.6
AMINOTRACE 83,512 29.8 14.0
AMINONULL 90,197 32.2 15.1
AMINOACI 118,427 42.3 19.8

Table A.2: stat micro-benchmark results. Cycles are measured on a 2.8Ghz Xeon. Each
cycle is 0.357 nanoseconds. The final column is the time normalized to the VANILLA con-
figuration.

open The results for open (shown in Table A.3) are similar to stat in that the
VANILLA configuration took more time than getpid or stat so the overhead is further
reduced. The STRACE, AMINOTRACE, and AMINONULL configurations have overheads
of 11.4, 10.5, and 11.7 times VANILLA, respectively. The AMINOACI configuration has
comparatively higher overhead of 18.9 times VANILLA. The reason that AMINOACI is
higher is that more processing is required for an Amino open (e.g., updating the reference
count in the database) than for an open on Ext3.

Configuration Cycles/call µs/call Normalized
VANILLA 8,260 3.0 1.0
STRACE 93,954 33.5 11.4
AMINOTRACE 87,024 31.1 10.5
AMINONULL 96,988 34.6 11.7
AMINOACI 155,822 55.6 18.9

Table A.3: open micro-benchmark results. Cycles are measured on a 2.8Ghz Xeon. Each
cycle is 0.357 nanoseconds. The final column is the time normalized to the VANILLA con-
figuration.
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Appendix B

Monitor VFS Operations

Most of our VFS operations take a struct pcb as an argument, which contains infor-
mation about the currently running process. This context can be used to retrieve register
values, examine the open file table, the current transaction, or any other per-process context.

Unless otherwise noted, all operations with an integer return value return 0 or greater
on success, and a negative error number (errno) on failure.

The monitor’s VFS operations can be divided into two broad classes. Section B.1 de-
scribes the first class, which are operations used by the monitor internally. Section B.2 lists
VFS operations which map directly to a system call.

B.1 Internal VFS Operations
Amino has two main VFS objects. The first is a struct mount, which contains the
mount’s opaque data related to the mount and an operations vector. The second is a
struct fd struct, which represents an open file. The fd struct points to a
mount, which in turn points to the operations vector.

The monitor has 19 internal VFS operations: three for manipulating mounts (Sec-
tion B.1.1), seven for files operations (Section B.1.2), two directory-name operations (Sec-
tion B.1.3), and seven event notifications (Section B.1.4).

B.1.1 Mount Operations
The monitor has three operations to manipulate mounts:
void cleanup( void *data);

The cleanup operation releases any private data associated with the mount. For
example, Amino closes the Berkeley DB databases and the encryption file system
zeros and frees the key in memory.

int sync( struct mount *mount);
The sync operation writes all of the mount’s outstanding data to disk. When a
sync system call is issued, this call is executed on each mount.
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int statfs internal( struct pcb *pcb,
struct mount *mount,
struct statfs *buf);

Fills the struct statfs buffer pointed to by buf with the number of used
blocks, used files, free blocks, free files, etc. on this file system. This is an internal
operation, because it does not access the process’s registers, and thus the monitor
can call it internally. There are a simple generic statfs, statfs64, fstatfs,
and fstatfs64 wrappers to the statfs internal operation to handle their
respective system calls.

B.1.2 File Operations
The monitor provides seven operations for operating on files internally. These operations
do not need to be executed in the context of a system call, but do need to be executed in
the context of a process. Each of these operations has a corresponding system call wrapper
described in Section B.2.
struct fd struct * open internal( struct pcb *pcb,

struct mount *mount,
char * f path,
int flags,
int mode,
int *rval);

The open internal operation is used to create an open fd struct that can be
used for the other internal file operations, or as an entry in the monitor’s open file
table. The f path argument is the file’s path relative to the root of this mount. The
flags argument specifies how the file should be opened (e.g., O RDWR), whether
it should be created (O CREAT) or truncated (O TRUNC), etc. If the file is created,
then its permissions are mode. On success an open file structure is returned. On
error, NULL is returned a negative error number is stored in the location pointed to
by rval.

int close internal( struct pcb *pcb,
struct fd struct
*fd struct);

Closes an fd struct returned by open internal.

int stat internal( struct pcb *pcb,
struct mount *mount,
char *f path,
struct stat64 *buf);

Fills the stat64 structure buf with information about the file f path (specified
relative to the root of mount). This is used by the stat family of system calls, and
also by internal monitor components that need to differentiate files and directories.
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int read internal( struct pcb *pcb,
struct fd struct *fd struct,
char *buf,
loff t pos);

The read internal operation is equivalent to pread, but takes internal monitor
objects as arguments: it reads data from fd struct into the location pointed to
by buf at the position pos.

int write internal( struct pcb *pcb,
struct fd struct *fd struct,
const char *buf,
loff t pos);

The write internal operation is equivalent to pwrite, but takes internal
monitor objects as arguments: it writes data from the location pointed to by buf to
fd struct at the position pos.

loff t lseek internal( struct pcb *pcb,
struct fd struct *fd struct,
loff t pos,
int whence);

The lseek internal operation updates fd struct’s current file pointer to
pos. If whence is SEEK SET, then pos is treated as an absolute position. If
whence is SEEK CUR or SEEK END, then pos is relative to the current position
or end of the file, respectively.

int readfile( struct pcb *pcb,
struct mount *mount,
char *f path,
int fd);

The readfile sequentially reads the entire contents of the file named f path
(relative to the root of mount) and copies it to the given Unix file descriptor. This
is used for creating temporary copies of files during the exec system call. Usu-
ally, it is implemented using the generic readfile method, which calls the
open internal, read internal, and close internal methods.

B.1.3 Directory Name Operations
The pass-through file system layer defines two operations for managing path names:
int encodename( struct pcb *pcb,

struct mount *mount,
const char *path,
char **outpath);
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The encodename name operation takes a mount and a full path relative to the
root of the mount as arguments, and transforms the name into a full path name. The
full path name is stored in a buffer allocated with malloc. The buffer’s address is
stored at the location pointed to by outpath.

int decodename( struct pcb *pcb,
struct mount *mount,
struct fd struct *fd struct,
char *name,
char **outname);

The decodename operation translates the path name component pointed to by
name inside of the open directory fd struct into a lower-level path name com-
ponent. The lower-level path name component is stored in a buffer allocated with
malloc. The buffer’s address is stored at the location pointed to by outname.

B.1.4 Notification Operations
The monitor is notified of various events of interest to file systems by ptrace. Many
events are passed to all file systems using a loop of the form:

static int do_pre_fork(struct mount *mount, void *pcb) {
if (!mount->ops->on_pre_fork)

return 0;
return mount->ops->on_pre_fork(mount, (struct pcb *)pcb);

}

static int setup_clone(struct pcb *pcb) {
int ret;

if ((ret = for_each_mount(0, do_pre_fork, pcb))) {
setup_return(pcb, ret);
return 0;

}
/* The rest of the clone handling code follows. */

}

The monitor passes these events down to the file systems using seven notification oper-
ations:
int on exec( struct mount *mount,

struct pcb *pcb);
The on exec event is triggered when the current process’s image has been replaced
using the exec system call. The new process image is not necessarily located on
the file system pointed to by mount. This can be used to invalidate state that is
specific to a process’s address space.
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int on free pcb( struct mount *mount,
struct pcb *pcb);

The on free pcb event is triggered during the cleanup of pcb’s resources. At
the time on free pcb is called, the pcb structure no longer has any open files or
mapped regions. This callback is used by the individual file systems to free their
PCB-specific data (e.g., Amino aborts any active transactions).

int on new pcb( struct mount *mount,
struct pcb *pcb);

The on new pcb event is triggered after a PCB is created. File systems can insert
private data into the PCB at this point.

int on pre fork( struct mount *mount,
struct pcb *pcb);

The on pre fork event is triggered before the clone system call (or equivalent)
is executed. If the notification function returns a non-zero value, then the fork is
canceled and the returned value is passed to the user-level application.

int on post fork( struct mount *mount,
struct pcb *child,
struct pcb *parent);

The on post fork event is triggered in the parent process after the clone sys-
tem call (or equivalent) is executed.

int on post fork child( struct mount *mount,
struct pcb *child);

The on post fork child event is triggered in the child process after the clone
system call (or equivalent) is executed.

int on startup( struct mount *mount);
The on startup event is triggered after the monitor has read its configuration
file, but the traced program is executed. This can be used for initialization such as
starting a BDB checkpointing thread.

B.2 System Call VFS Operations
The monitor provides support for 51 system calls. Each system call VFS operation is
named after the corresponding system call and takes a PCB as an argument, and the op-
eration extracts its arguments from the process’s registers. The return value of each op-
eration is passed to the user-level process. If a file system does not implement an oper-
ation it can use the generic nosys, generic opnotsupp, generic eperm, or
generic ignore functions, which return -ENOSYS, -EOPNOTSUPP, -EPERM, and 0,
respectively We do not discuss the arguments for individual calls, as they are identical to
the standard Linux kernel application binary interface (ABI).
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B.2.1 Operations with Generic Implementations
Assuming that the file system defines the seven internal operations described in
Section B.1.2, the monitor provides generic routines for 24 operations:
int close( struct pcb *pcb);

The close operation implements the close system call. If close internal is
defined, then the generic close function may be used.

int exec( struct pcb *pcb);
The generic exec operation can be used to execute binaries if the readfile
operation is defined. The generic exec function creates a temporary file,
rewrites the exec system call’s registers, and unlinks the temporary file.

int lseek( struct pcb *pcb);
If the llseek method is defined, then the lseek method can be implemented
using generic lseek.

int llseek( struct pcb *pcb);
If the lseek internal method is defined, then the generic llseek can be
used.

int mmap2( struct pcb *pcb);
int old mmap( struct pcb *pcb);

The generic old mmap and generic mmap2 operations are used to establish
mappings. The file system must implement stat internal, read internal,
and write internal.

int open( struct pcb *pcb);
int complete open( struct pcb *pcb);

The open operation is called at the entry to the open system call. If
generic open is used, the file system must implement the open internal
method.
The complete open operation is called at the exit of the open system call, af-
ter the kernel assigns a file descriptor. If generic open is used for the open
operation, then generic complete open should be specified.

int read( struct pcb *pcb);
int readv( struct pcb *pcb);
int pread64( struct pcb *pcb);

If the read internalmethod is defined, then the read, readv, and pread64
operations can be implemented in terms of generic read, generic readv,
and generic pread64. Note that it is not necessary to use all three generic
methods. For example, Amino does not use generic readv, because it must
surround each all of the individual read operations in a single transaction.

int stat( struct pcb *pcb);
int fstat( struct pcb *pcb);
int stat64( struct pcb *pcb);
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int fstat64( struct pcb *pcb);
If the stat internal method is called, then the stat, fstat, stat64,
and fstat64 methods can be implemented using the generic stat,
generic fstat, generic stat64, and generic fstat64 methods, re-
spectively.

int truncate64( struct pcb *pcb);
int ftruncate64( struct pcb *pcb);

The truncate64 and ftruncate64 operations can be implemented in terms of
generic truncate64 and generic ftruncate64, if the truncate and
ftruncate operations are defined. Neither of these methods supports large files.

int statfs( struct pcb *pcb);
int fstatfs( struct pcb *pcb);
int statfs64( struct pcb *pcb);
int fstatfs64( struct pcb *pcb);

If the statfs internal method is defined, then the statfs, fstatfs
statfs64, and statfs64 operations can be implemented in terms
of generic statfs, generic fstatfs, generic statfs64, and
generic fstatfs64, respectively.

int write( struct pcb *pcb);
int writev( struct pcb *pcb);
int pwrite64( struct pcb *pcb);

If the write internal method is defined, then the write, writev, and
pwrite64 operations can be implemented in terms of generic write,
generic writev, and generic pwrite64. Note that it is not neces-
sary to use all three generic methods. For example, Amino does not use
generic writev, because it must surround each all of the individual write op-
erations in a single transaction.

B.2.2 Operations on File Descriptors
The monitor supports 12 operations on file descriptors that the file system may implement
(or alternatively use one of the generic error functions). We do not describe these opera-
tions, as they use the standard Linux ABI.
int fchmod( struct pcb *pcb);
int fchown( struct pcb *pcb);
int fcntl64( struct pcb *pcb);
int flock( struct pcb *pcb);
int fsync( struct pcb *pcb);
int ftruncate( struct pcb *pcb);
int getdents( struct pcb *pcb);
int getdents64( struct pcb *pcb);
int ioctl( struct pcb *pcb);
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B.2.3 Operations on Path Names
The monitor supports 11 operations on path names that the file system may implement (or
alternatively use one of the generic error functions). We do not describe these operations,
as they use the standard Linux ABI.
int access( struct pcb *pcb);
int chmod( struct pcb *pcb);
int chown( struct pcb *pcb);
int link( struct pcb *pcb);
int mkdir( struct pcb *pcb);
int rename( struct pcb *pcb);
int rmdir( struct pcb *pcb);
int truncate( struct pcb *pcb);
int unlink( struct pcb *pcb);
int utime( struct pcb *pcb);
int utimes( struct pcb *pcb);

B.2.4 Unimplemented System Calls
Our monitor has support for six system calls, which none of our example file systems
currently implement. However, new file systems can implement these operations without
any changes to the monitor.
int getxattr( struct pcb *pcb);
int listxattr( struct pcb *pcb);
int readlink( struct pcb *pcb);
int removexattr( struct pcb *pcb);
int setxattr( struct pcb *pcb);
int symlink( struct pcb *pcb);

B.2.5 New System Call
Our monitor implements the system call amino to manipulate transactions. Only the
Amino file system implements this call.
int amino( struct pcb *pcb);
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The amino operation is not part of the existing Linux ABI. The ABI of this call
is similar to the description of the amino library wrapper provided in Figure 2.2.
The only difference is that the pathname argument for BEGIN TXN is stored in
the ebx register. This makes the amino call more similar to other system calls that
take a pathname as an argument. If the call does not take a pathname, then ebx
must be NULL. If ebx is NULL, then the operation is passed to all Amino mounts,
but only the one that owns the process’s current transaction performs the action.
The transactional operation is stored in the ecx register, and depending on the call
the flags or id parameter is stored in edx. The system call number for Amino is
290, which is stored in the eax register.
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