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Abstract of the Thesis
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Master of Science
in
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2010

Although sophisticated runtime bug detection tools exisbbt out all kinds of concurrency prob-
lems, the data they need is often not accessible at the kiewed] examining every potentially
concurrent memory access for a system as central as a kemat feasible.

This thesis shows our runtime analysis systedflagwhich brings these essential tools to the
Linux kernel. Redflag has three components: custom GCCipkufpr in kernel instrumentation,
a logging system to record instrumented points, and at s, @n improved Lockset algorithm for
the Linux kernel.

We used GCC plug-ins to instrument read and writes to globethory locations, memory
allocations, and locks—including seldom-addressed faghprimitives like RCU’s . Our fast
logging system can log any event caught by instrumentafibie.logging system is also optimized
using zero-copy I/O in the kernel, and various in-kerneirojations for improved performance.

We customized the classic Lockset algorithm to prune fatsstipes caused by subtle kernel
synchronization. We present a number of techniques weeppd improve the accuracy of our
analysis . We tested our system on several file systems ingirapfs, Btrfs, and the kernel’s
VFS layer and found 2 real races and several benign races. |3&éngected data races in the
kernel and our system was able to detect them accuratelyflag&adfalse positive rates are very
low for most of the file systems.

Our system is versatile using a small automation languagete it easy to run and use. Red-
flag can help kernel developers in finding data races in thex_kernel, and is easily applicable
to other operating systems and asynchronous systems as well
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Chapter 1

Introduction

As the kernel underlies all of a system’s concurrency, ihesrnost important front for eliminating
concurrency errors. In order to design a highly reliablerafieg system, developers need tools
to prevent race conditions from going undetected until tb@yse real problems in a production
system. Understanding concurrency in the kernel is diffiduhlike many user-level applications,
almost the entire kernel must run in a multi-threaded cdntaxd much of it is written by experts
who rely on intricate synchronization techniques.

Static analysis tools like RacerX [13] can thoroughly cheekn large systems code bases
for potential data race errors, but they cannot easily in&tain runtime properties like aliases.
Also, they require manual annotation to relate impossibleedules like pagefault handler being
invoked from any code in the kernel and schedules relatade¢orupt handlers and bottom halves.

Runtime analysis provides additional tools for finding pesbs in multi-threaded code that are
powerful and flexible. They can target many kinds of conauryeerrors, including data races [12,
32] and atomicity violations [14, 38]. We designed fRedflagsystem with the goal of airlifting
these tools to the kernel front lines.

Redflag takes its name from stock car and formula racing, evbéficials signal with a red
flag to end a race. It has two main parts:

1. Fast Kernel Logginguses compiler plug-ins to providaodular instrumentation to target
specific kernel subsystems for logging. It then interact$ wie file system to log all oper-
ations in the instrumented module with the best possiblopaance.

2. The offline Redflag analysis tool performs several posti@no analyses on the resulting
logs in order to automatically detect potential race coodg that are apparent from the log.
This tool is designed to be versatile with the ability to soippnany kinds of analysis.

Currently, Redflag implements two kinds of concurrency gsial Lockset[32] and block
based [38]. We believe that these two types of analysis caweide range of potential bugs,
from missing locks to complex interleavings involving niplé variables. We contribute several
modifications to improve the accuracy of these algorithmsluiding Lexical Object Availability
(LOA) analysis, which detects false positives caused bypimaied initialization code. We added
support for RCU synchronization, a new synchronizatiorl tndhe Linux Kernel. This thesis
concentrates on concurrency analysis using Lockset only.



The rest of the thesis is organized as follows. In Chapter € explain how our modular
instrumentation and logging system works, and we descrilsanoplementation of the Lockset
Algorithm, along with the improvements we made to its accyraln Chapter 3, we present
the results of our analysis of several kernel componentsesatlate the performance of our
instrumentation and logging. We discuss related work inpgfdrad. We conclude in Chapter
5 and discuss future work in Chapter 6.



Chapter 2

Design

Four goals underlie our design of the Redflag system: vétgathodularity, performance, and
accuracy. Our decision to perform all analysis post-moriemotivated by the goals of versatility
and performance: once an execution trace is ready, it islges® run any number of runtime
analysis algorithms to search for different classes of aoeocy errors. We discuss the Lockset
algorithm here, even though our system also supports fingiomicity violations using block
based algorithm. Besides these many other algorithms gmithtially operate on the same log
files. We also seek to make the algorithms themselves Viersatir implementations can take into
account a variety of synchronization mechanisms used ikeheel.

Modularity is an important design goal because of the siza wiodern kernel. Developers
working on large projects are typically responsible foriudual components. An on-disk file
system developer may not be interested in potential errotseé networking stack. On the other
hand, a network file system developer might be, and it is ptes$o target several components
for one trace. Logging is broken down by data structure. Ténxebbper chooses specific data
structures to target, allowing fine granularity in chooswigich parts of the system to log.

Modularity is also crucial for system performance: the &n=d from logging every event in
the kernel would render Redflag’s logging impractical. Evéth targeted logging, however, a
kernel execution can generate a large number of eventsdgirlg. Performance is therefore still
a concern, and our in-kernel logging is designed to keephaagls low. When an instrumented
event occurs, the system stores the event in a queue, sa taat immediately return control to
the instrumented code and defer expensive 1/O until afggily is complete.

Finally, because accuracy is important to make Redflag Lsefdevelopers, we implemented
several measures to reduce the number of false positivethtéhaystem reports. We also ensured
that Redflag can find errors by inserting bugs into the kernéheerifying that they result in error
reports.

In Section 2.1, we explain how Redflag’s logging targets ijgecomponents for logging.
Section 2.2 explains the basic Lockset algorithm and imgmoents we made to Lockset. Sec-
tion 2.3 discusses our stack trace support. Section 2.4is8ss further improvements to handle
more kinds of synchronization.



2.1 Instrumentation and Logging

We are able to insert targeted instrumentation using a sfiteCC compiler plug-ins that we
developed specifically for Redflag. Plug-ins are a new GC@ifeavhich we have developed
over the past few years. GCC Plugins were formally introduirethe April 14, 2010 public
release of GCC 4.5 [17]. Compiler plug-ins execute durinmpitation and have direct access
to GCC’s intermediate representation of the code [5]. Rg&#fl&CC plug-ins search for relevant
events and then instrument them with function calls thatesaes hooks into Redflag’s logging
system. These logging calls pass information about ingtnied events directly to the logging
system as function arguments. In the case of an access tal atfiellogging call passes, among
other things, the address of the struct, the index of the,faid a flag that indicates if the access
was a read or write.

For most concurrency analysis, we need to log 4 types of tipasa

1. Field accesses: read from or write to a field ista uct .

2. Synchronization events: acquire/release operation lockaor wait/signal operation on a
condition variable.

3. Memory allocation: creation of a kernel object, necegsdar tracking memory reuse.
(Though we can track deallocation events, they are not sacgfor most analysis.)

4. Syscall boundaries: syscall entrance/exit, used by libekdbased algorithm for checking
syscall atomicity.

When compiling the kernel with the Redflag plug-ins, the dtgyer provides alisto$t r uct s
to target for instrumentation. Field accesses and lock iemelease operations are only instru-
mented if they operate on a targetedr uct , resulting in a smaller, more focused trace. A lock
acquire/release operation is considered to operatesivact if the lock it accesses is a field
within thatst r uct . Some locks in the kernel are not members of ahy uct , so the devel-
oper can also directly target these global locks by nameirfiplgy the process of targeting data
structures, Redflag provides a script that searches a dliyeftir thest r uct s and global locks
defined in its header and source files; this provides a uskftirg point for most components.

To minimize the performance penalty from executing an umegnted operation, Redflag’s
logging module stores logged operations on a queue. Queesents allows Redflag to return
control immediately to instrumented code, deferring I/Gillafter logging. Deferring disk writes
also makes it possible to log events that occur in contextsrevit is not possible to perform
potentially blocking I/O, such as when holding a spinlock.

To enqueue an operation, a logging function first pulls antgihmg record from a pool of pre-
allocated, empty records and then populates it with a seguenmber, the current threanl, and
any information that the instrumented event passed to tipgirig function. The logger chooses
the sequence number using a global, atomically-increndecteinter so that sequence numbers
preserve the ordering of logged operations among all tisread CPUs. Without hardware sup-
port, the logger cannot determine the exact ordering of nmgroperations executed on separate
processors as scheduled by the memory controller, but & doarantee that the final order of
logged operations is a possible order. For example, if ts@a two processors request a spinlock



at the same time, the log never shows the losing processairexggthe lock before the winning
processor releases it.

When the user stops logging, a backend thread empties the qued stores the records to
disk. With 1GB of memory allocated for the queue, it is postio log 20M events, which was
enough to provide useful results for all our analyses.

It is also possible to configure background threads to pexadigt flush the queue to disk to
take logs that are too large to stay in memory. Backgrouneatlts compress their output with
zlib, which is already available in the kernel, to reducerbead from writing to disk.The logs
are written to the disk by implementing a zero-copy mechariis the kernel. The default way
of logging in the kernel is to allocate a page in the kernell, tb&@ kernel write function which
copies the page to a new page and then writes that page asgyoasly to the disk. To prevent
this extra memory copy we implemented a zero-copy mechabisailocating a page directly on
the page cache and dirtying this page so that it is asyncheiyaevritten to the disk by the kernel
write-back thread. This is like ammap mechanism to prevent extra memory copying.

In this approach, the size of the queue can be configured demeapon the system. With
fixed size queue it is important to ensure that the queue dutegenfull if we want to log events for
a longer time. But with multiple producers there is alwaysagibility of producers overrunning
the consumer threads and it is not easy to estimate the mimiqueue size required to log events
for a long time. We approach this problem in two ways. Firstimprove the performance of
our logging threads and second we implement a sleep/wakegpanism between producers and
consumers.

We improve performance by a set of in kernel optimizatioh® lincreasing their priority,
binding 1 thread to each CPU and using a per thread log file atoetlich thread can write to a
separate file. Binding a thread to each CPU makes sure thaawveedt least one consumer thread
on each CPU. Otherwise a fast producer running on one of thés@Pa multi-core system could
overflow the queue.

By using per thread log file we prevent threads contentioningles file. Each record is
given a new sequence number which is incremented when tbedrecen-queued. A user-level
post-processing step merges the output from the loggireatls, sorting operations by sequence
number.

The producers wake up the consumer threads whenever thejagaubnto the queue. Waking
up the consumer threads is expensive as it involves digabiterrupts for a short time and the
overhead of frequent context switch is also high. So we impleted a low-watermark level so
that consumers are not woken up until there is enough dataexueue. The producers go to sleep
before waking up the consumers. The consumer threads deglighe data off the queue until
either the low watermark is reached or the consumer is deekdbd by the scheduler or goes to
sleep when the logs are written to the disk. In the case wiheréotv watermark level is reached,
the consumers wake up the producers and they themselvesdgefm When this happens the
producers can proceed forward. We have kept the low watdranaat high watermark as 1/4 and
3/4 respectively. The difference between low and high wa#ek is large enough so that there is
not frequent waking up of the consumers by the producerss fidglps us to utilize the queue in an
efficient manner. There is also very little possibility ohgipong at the high and low watermark
level. This is because once either producers or consumeéis gfeance they queue and dequeue
large amount of data.



The second reason of consumers going to sleep is if the siemaetkischedules the consumer.
In that case, the CPU cannot be given to the producer who épisig because that producer
can only be woken up by the consumer. The scheduler mightsthether processes. If these
processes are potential producers then they will also btoleep if the watermark level is high.
So no producer can fill the queue until the watermark is redticdow watermarks.

The third reason of consumers going to sleep is when theewsithe disk. The consumers
cache the data in per-consumer pool of memory and write to alidy when the pool gets full.
Thus the consumers can go to sleep on an I/O to the disk. lcélsatthe consumer will be woken
up by I/O interrupt when the data is available. If the prodad#l the queue in the high watermark
level they will be put to sleep and woken up when the consumersvoken up on I/0O completion
and they have emptied the queue upto low watermark levek désign seems to work well for
logging huge amount of data in the kernel.

It is also important that producer threads are not made &psléhen they are in a context in
which sleeping is not allowed. For example a thread canntb géeep inside a spinning lock like
spinlock, RCU, readers/writers lock and from an interrupttext. The logging system checks for
the context before putting the producers to sleep.

Redflag also has the ability to provide a stack trace for el@yged operation. To prevent
repeated output of same stack traces, Redflag stores eaktlirsize in a data structure which is a
combination of hash table and trie. Section 2.3 describestack trace logging design.

Developers who are very familiar with a code base may chood@éep stack traces off for
faster logging. When reported violations involve funcBdhat are called through only one or two
code paths, stack traces are not always necessary for thgglah effort. If reports implicate
functions that can be called from many different locatighe,developer can take another log with
stack traces to get a clearer picture of what is causing thlations.

2.2 Lockset Algorithm

Lockset is a well known algorithm for detectintata raceshat can result from variable accesses
that are not correctly protected by locks. We based our Letcksplementation on Eraser [32].

A data race occurs when two accesses to the same variabéssaoine of them a write, can
execute together without synchronization to enforce thailer. Not all data races are bugs; a
data race is benign when the ordering of the conflicting asesloes not affect the program’s
correctness. Data races that are not benign, however, cae eamy number of serious errors.

Lockset maintains eandidate sebf locks for each variable in the system. The candidate lock
set represents the locks that consistently protect thablari A variable with an empty candidate
Lockset is potentially involved in a race. Note that befdeefirst access, a variable’s candidate
Lockset is the set of all possible locks.

This section describes an improved Lockset Algorithm faadace detection and performance
analysis. The following sections describe our algorithmmg@rovements, along with various re-
finements and our usability improvements. Later on we algenekthe algorithm to deal with
multi-variable escape, supporting double-check locking BCU synchronization.



2.2.1 Lockset algorithmic improvements

When a thread allocates a new object, it can assume that aptbtiead has access to that object
unless it encounters a serious memory error. This assumptiows another means of synchro-
nization: until the thread stores a new object’s addressdioad)y accessible memory, no concur-
rent accesses to it are possible. Most initialization rmsiin the kernel take advantage of this
assumption to avoid the cost of locking when creating objdmiit these accesses may appear to
be data races to the Lockset algorithm.

The Eraser algorithm solves this problem by tracking whitteads access variables to de-
termine when each variable become shared by multiple tbrig®]. We implement a simplified
version of this idea: when a variable is accessed by moredharthread or accessed while hold-
ing a lock, it is considered shared. This approach is sintdeapproach based on using barrier
synchronization as a point when the Lockset is refined [30].

Accesses to a variable before its first shared access aredaskthread local, and we ignore
them for the purposes of the Lockset algorithm. Other vassiof Lockset improve on this idea
to handle variables that transfer ownership between tsread/ariables that are written in one
thread while being read in many threads [8, 32, 36], but wendidfind these improvements to be
necessary for the code we analyzed.

1: spin_l ock(inode->l ock);
2: inode->i _bytes++;
3: spin_unl ock(inode->l ock);

4: inode->i _bytes++;

5: spin_l ock(inode->| ock);
6: inode->i bytes--;
7: spin_unl ock(inode->l ock);

Figure 2.1: An example function body with inconsistent liock Redflag will report two data
races from a trace of this function’s execution: one betwews 2 and 4 and one between lines 4
and 6.

The algorithm processes each event in the log in order, ittgdke current Lockset for each
thread as it is processed. Each lock-acquire event addskadats thread’s lockset. The corre-
sponding release removes the lock. Figure 2.1 shows an égarhp function body with incon-
sistent locking. At lines 2 and 4, the executing thread'«$et will contain thd node- >l ock
lock. At line 4, the thread’s lockset will be empty.

When we process an access to a variable, the candidate iixkestned by intersecting it with
the thread'’s current lockset. That is, at each access, wbeeariable’s candidate lockset to be
the set of locks that were held feveryaccess to the variable. When Lockset processes the access
from line 2 in our example, it will set the candidate locksatthei _byt es field to contain just
i node- >l ock. The access at line 4 will result in an empty candidate lackse _byt es, and
the candidate lockset will remain empty for all further ags®s to this instance ofbyt es.

To simplify debugging, errors are reported zars of accesses that can potentially race. On
reaching an access with an empty candidate lockset, ourdebéiplementation revisits every
previous access to the same variable. If no common lockeqiext both accesses, we report the



pair as a data race. Because the candidate lockset is etmgrywill always be at least one pair of
accesses without a common lock. Whenithbyt es candidate lockset becomes empty at line 4
of the example, our Lockset reports a potential race witlptiegious access at line 2. Because the
candidate lockset remains empty at line 6, Lockset alsortgeporace between lines 4 and 6 but
not between 2 and 6, which share a lock in common. All the presimplementations we have
seen report this as a false positive Cilk [7], Java [8, 28,38, C++ [30], [38] and RaceTrack
for.NET platform [42]. We have found that extra overhead éeing track of the current lockset
per memory access is not too high as the locks held at any tyn@eprocess is typically small.
Redflag only produces one report for any pair of lines in thers® code so that the developer
does not have to examine multiple results for the same bu@migh race. Though the function
in Figure 2.1 may execute many times, resulting in many icsa of the same two data races,
Lockset only produces one report for each of the two racesh Egport contains every stack trace
that led to the race for both lines of code and the list of Idtled were protecting each access.

In addition to the base algorithm, there are several comrafinements to improve Lockset’s
accuracy. These additions are necessary because somefpadsesses do not share locks but
still cannot occur concurrently for other reasons, whichdiseuss here. Three refinements that
we implement track stack variables, memory reuse, antidppened-beforeelation.

2.2.2 Ignoring Stack Variables

Redflag does not track variables that are allocated on tloi.stastead, it ignores all accesses
to stack variables, which we assume are never shared. S$im@dvariables are considered bad
coding style in C and are very rare in systems code.

The logging system determines if a variable is stack loaainfits address and the process
stack size. The size of the per process stack in the kernekid fier architecture. If the variable’s
address lies between current process stack pointer artabthe stack then the variable is local.
The start of the stack isp - st acksi ze.

2.2.3 Memory Reuse

When a region of memory is freed, allocating new data strestin the same memory can cause
false positives in Lockset because variables are identifjettheir locations in memory. If a vari-
able is allocated to memory where a freed variable used idagthe new variable incorrectly
takes on the previous variable’s candidate lockset. Aaldlitily, if the previous value was marked
as shared, the new variable is prematurely marked as shared.

This is the biggest cause of false positives in Lockset tesr the Linux Kernel. Besides
allocation routines lik&kmal | oc and variants the Linux Kernel also has caching primitivis li
kmemcache_al | oc which are used extensively. Each time these routines gi¢sica always
assigns the same address to the memory region being atlocateeach new call to memory al-
location routines have to be treated as a reuse of memonehgacplit the accesses before the
allocation and all accesses after the allocation in twaedkifit generations. The Lockset is initial-
ized for each generation. The new variable allocated isidered thread local until it is accessed
by second thread. Eraser solves the memory reuse problegitiiyalizing the candidate lockset
and shared state for every memory location in a newly alemtaegion [32]. This improvement
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Figure 2.2: Example Hasse diagram for the happened-be&atian on the execution of two
threads synchronized by a condition variable. Becauseeobitiering enforced by the condition
variable, there is an edge from the signaling evestto the waiting evente;s.

reduces the false positives considerably as two varialotes tlifferent generations cannot race
with each other.

In some cases there would be a memory reuse of a variable kweagtt there has been no
explicit memory allocation to that variable. This probleshgrominent because of memory al-
location functions likekmap/ kunmap andget fr ee_pages. A lot of places in the kernel
memory is memory is mapped and unmapped from physical toalignd vice versa using the
kmap/ kunmap functions. After obtaining the virtual address, the kenvelulld map a structure
in some region of this virtual address and then read and weritkis structure. But there has been
no explicit allocation to this structure. The algorithm iade aware of this by keeping track of all
memory mapped usingmap memory addresses and the map size. It then does a range query t
find out if an access belongs to some mapped region and if sg doé generation update recur-
sively to the structure mapped into part of this memory ragid/e have been able to eliminate a
lot of false positives based on this idea in Btrfs file system.

2.2.4 Happened-Before Analysis

Threads can also synchronize accesses using fork and jeiratigns and condition variables.
The original Dinning and Schonberg Lockset implementafit2] was designed as an improve-
ment to existing data-race detectors that used only Larsgmppened-before relatioj21]. The
happened-before relation is a partial order on the ordesirgyents in a program execution, so it
can handle any form of explicit synchronization, includfiogk and join operations and condition
variables.



The happened-before relatioA, B, is a relation on the events in an execution trace. Events
in the same thread are always orderedHbys in the order that they actually occurred: if events
e1 ande; are from the same thread ang executed later in the thread than we can say that
(61, 62) € HB.

Events that block on condition variables create edges ih#éppened-before graph between
different threads. Figure 2.2 shows an example of an edgéBnrepresenting a wait on a condi-
tion variable. The edge goes from the signaling evenin the example, to the waiting evemt,s.
The happened-before relation assumes that all events isighaling thread up to the signaling
event ¢; andes in the example) must execute before any of the events in tliteng/ghread after
it wakes up.

Our Lockset implementation uses the happened-beforeaelat determine when accesses are
synchronized by a condition variable. If a happened-befodering exists between two accesses,
we assume that they cannot occur concurrently even if thagesiio common locks. Conversely,
when the happened-before relation does not order the as;dassckset can report a potential race.
Note that this assumption is not always safe; the happeetmebrelation can rule out feasible
interleavings. Happened-before detectors usually alssider fork and join operations, but we
did not find any accesses in the Linux kernel that dependedrtrof join for synchronization. A
fork operation spawns a new thread, and join waits for a thtederminate.

2.2.5 Usability Improvements

The algorithm reports various race attributes like staekds and lock usage statistics which im-
prove usability of the system. If an object is accessed &rdifit lines with inconsistent locks we
output the lines and their corresponding stack traces. fidligs to compare whether a particular
type of object is accessed at different lines under diffel@rks. The intuition is that objects which
are accessed at different places with different locks areerikely to have bugs than those which
are nowhere accessed with any locks. The algorithm alsoutsigmy locks taken for the two
accesses which can race so that it is easy to figure out wiikk |arotect which objects. Another
advantage of locking information is that objects which areonsistently protected by spinning
locks are more likely to have bugs as they are taken for slegibns whereas a sleeping lock is
taken for a coarser region and it might not be protecting tirdended variable being accessed.

2.3 BLKTrace: Better Linux Kernel Tracer

2.3.1 Requirement for Stack Traces

Stack Traces are also required for analyzing results fronatgorithms. Lockset emits violations
in terms of line pairs. Two paths through system calls likaedrand write respectively can cause
a race whereas two paths to the same two lines through diffeyestem calls like open and close
may not cause the race. Thus, the context in which the raceaan is very important and stack
traces help in understanding this context. Also, staclesd®lp understanding of the code in case
of function pointers. Linux kernel has a number of layersoasrvarious subsystems. Running a
test case might touch various subsystem layers. Staclsthatp in understanding the interaction
between these layers.
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2.3.2 Kernel Support

Stack Traces are very useful in understanding bugs in thaxLiKkernel. Whenever the kernel
crashes or any type of error occurs, it emits the stack tradating out the set of events it was
performing when the error occurred. Linux Kernel has a fiomcicalleddunp_st ack which
emits the stack trace. It can also be used for debugging perpib uses this to emit stack trace
to the user space with a help of kernel thread named Ksysldd mechanism makes use of
architecture specific frame pointer support to emit a vepcize stack trace.

Kernel prints stack traces when the errors occur and there Easy mechanism of capturing
these stack trace. The kernel logging mechanism is alsoslenwyand redundant. Logging in the
kernel uses a circular buffer. Ksyslogd kernel thread réaidduffer from time to time and copies
it to the user space. This printing mechanism is designea twabied from either process context
or interrupt context. So it disables interrupts in betwerd & thus very slow. Also, the data can
get lost if the circular buffer is overrun. The overhead opgiog to user space by syslogd also
exacerbates the problem. Scalability is another probleth this mechanism. Capturing stack
traces for read and write to every variable in a particuldosystem is very difficult.

2.3.3 Redflag Stack Trace Support

Redflag requires stack trace for each readwrite access vidinbt possible using the present
mechanism. We built a novel mechanism for logging staclesaalled BLKTrace. We designed
the kerneldunp_st ack mechanism to log only unique stack traces. To log a stacle tiBdd<-
Trace goes through the process stack frame using the framepdt uses the address of the top
function in the stack trace as an index into a hash table. kb table lookup is lock free using
the Linux Kernel Read Copy Update (RCU) mechanism. Howewer,insertion into the hash
table has to be protected by a spinlock to prevent concuweétgrs from updating the hash table.

bar ()

foo();

}

foo()

{
a =1,
b = 2;
c = 3

}

Figure 2.3: Function call sequence of two functidreo() and bar ()

Indexing the hash table by the top function in the trace §iamtly reduces the number
of stack traces. Consider two functioh®o() andbar () as shown in the Figure 2.3. The
dunp_st ack utility outputs three stack traces for variable accessbsandc whereas BKL-
Tracer would only print one stack trace for the these aceeasseshown in Figure 2.4

We maintain the list of stack traces as a trie. Each node ofritaés the starting address of
a function. This data structure reduces the amount of memsage for stack traces as all stack
traces which reach the same function would share the trie fardthat function entry. We have
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dunp_st ack BLKTr acer
bar () bar ()
foo() 0x00 foo() 0xO

bar ()
foo() 0x04

bar ()
foo() 0x08

Figure 2.4: Three stack traces for variabéeb,c usingdunp_st ack and one stack trace using
BLKTracer

seen that number of different paths reaching a particulart paries from 1 — 400, so keeping a
trie like data structure reduces memory requirement.

\/
\/

Figure 2.5: Stack Trace maintained as a trie

We also add to each path in the trie a node with a unique indetkéostack trace. We append
this index to each record in the trace obtained by the log@&r.have found traversal of the trie
can also slow down the system because the length of the sé&ekdan go up to 50. So along with
the trie we also maintain a table sorted by the total lengttheffunctions leading up to the first
stack entry. Each entry of the table contains the length@tridce and the unique index we was
appended to each path in the trie. Before we check the tria foatch we check the table using
binary search to find a trace with the matching length. If #megth is found then we return the
length instead of searching the trie. We found in practied this optimization reduces the stack
trace overhead considerably. We maintain one table petibtmentry so using the stack length as
a unigue key for the trace works very well. This is becausettaces leading to a same function
entry, having the same length in terms of function size irebys$ highly unlikely.

We keep the stack traces in the memory only when the loggingkisg place. Once the
logging is disabled, all the traces are dumped to a file. Theksraces for reads and writes to all
Btrfs structs and fields do not exceed more than 2 MB for a testRacer. We also do not need
to store the actual function name entries in the trie whifgglng. Each node of the trie contains
only the address of the function. The function name cornedjpy to the symbol address can be
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easily retrieved through the symbol table lookup once tlygilng is disabled and before the stack
traces are dumped to the file.

These stack traces are fed to the Lockset Algorithm whiclputstthe stack trace for each
violation pair from top to bottom as shown in the Figure 2.6heTraces contain the address on
which there is a lockset violation, the field of the strucidite line information, a unique stack
trace index and any locking information. This figure showet tthere was no lock held when
access at filé s/ bt rf s/ i node. ¢ on line 251 and three locks held on the access to the same
file with line 957. The type of lock is also printed with eaclpogt. This helps developers to
prioritize looking at reports based on the type of locks. uin @xperience we have found that locks
like spinlock and RCU which are held for a short duration aeriikely to have serious errors.
With this precise information, the developer can easilyriiguhether a report is a serious race or
a benign race.

STRACE= ffff88009366a100.17 1 START=fs/btrfs/inode.c 5422 ST: 251
ENTRY 251

btrfs_getattr

vfs_getattr

vfs_fstatat

vfs_stat

sys_newst at
systemcal | fastpath

STRACE= ffff88009366a100.17 1 START=fs/btrfs/inode.c 1378 ST: 957
ffff88009366a178 fs/btrfs/extent_o.c:524 AC
ffff88009366a538 fs/btrfs/file.c:857 M.
ffff8800allb2ac8 fs/btrfs/inode.c:1360 AC
ENTRY 957

clear statebit

bt rfs_cl ear _bi t _hook

cl ear extent _bit

cl ear extent _bits

pr epar e_pages

btrfsfilewite

viswite

syswite

systemcal | fastpath

Figure 2.6: Lockset Output with Stack Traces

2.4 Other Algorithm Improvements

The kernel is a highly concurrent environment and uses agglgferent styles of synchronization.

Among these, we found some that were not addressed by psewiotk on detecting concurrency
violations. This section discusses two new synchronipati@thods that Redflag handles: multi-
stage escape and RCU. Though we observed these methodd.inukeernel, they can be used

in any concurrent system.

13



2.4.1 Multi-Stage Escape

As explained in Section 2.2, objects within their initigiion phases are effectively protected
against concurrent access because other threads do nadwess to these newly created objects.
However, an object’s accessibility to other threads is maessarily binary. An object can become
available to a small set of functions during a secondarjailiration phase and then become avail-
able to a wider set of functions when that phase completesin@the secondary initialization,
some concurrent accesses are possible, but the initializabde is still protected against inter-
leaving with many functions. We call this phenomemalti-stage escapeds an example, inode
objects go through two escapes during initialization. tFiaéter a short first-stage initialization,
the inode gets placed on a master inode list in the file systeoperblock. File-system—specific
code performs a second initialization and then assignstdei to a dentry.

The lockset algorithm reported a race between accesses Bettond-stage initialization and
syscalls that operate on files, likead() andwri t e() . These data races are not possible, how-
ever, because file syscalidwvaysaccess inodes through a dentry. Before an object is asstgned
a dentry—its second escape—the second-stage initi@izabde is protected against concurrent
accesses from any file syscalls.

To avoid reporting these kinds of false inter-leavings, mteoducelexical Object Availability
(LOA) analysis. This analysis step produces a relation dth fiecesses for each targetidr uct .
Intuitively, this relation represents the order in whichds of code gain access tsar uct as it
is initialized. After constructing thé.O A relations, we can use them to check the feasibility of
inter-leavings reported by Locksel.O A relations are based on object life cycles; the first step
of the LOA algorithm is to divide the log file into sub-traces fach of the objects logged. A
sub-trace contains all the accesses to a particular instfretargetedt r uct in the same order
as they appeared in the original log, from the first accedsvirg its allocation to the last access
before deallocation.

The second step of the algorithm is to fill in the relation gsihe sub-traces. For each sub-
trace, we add an edge between two statements in the LOAaelfti that sub-trace’'st r uct
when we see evidence that one of the statements is allowectcto after the other in another
thread.

More formally, for ast r uct S and read/write statemenisandb we include(a,b) in LOAg
iff there exists a sub-trace for an object of typeontaining events, ande; such that:

1. e, is performed by statementande, is performed by statemeht and
2. e, occurs beforey, in the sub-trace, and

3. e, andey, occurred in different threads, or there exists sameccurring betweer,, ande;,
in a different thread.

Our Lockset algorithm useSO A to find out impossible interleavings. Our Lockset imple-
mentation reports that two statement@ndb can race only if both(a,b) and (b,a) are in the
LO A relation for thest r uct thata andb access.
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2.4.2 Syscall interleavings

Engler and Ashcraft observed that dependencies on dat&mireome kinds of syscalls from
interleaving [13]. For example, @&r i t e operation on a file will not execute in parallel with a
open operation because userspace programs have no way twr¢dlle beforeopen finishes.

These kinds of dependencies are actually a kinchafti-stage escapeavhich we discuss in
Section 2.4. The return frompen is an escape for the file object, which then becomes available
to other syscalls, such apen. For functions that are only ever called from one syscad,ltDA
analysis we developed for multi-stage escape already aulesnpossible interleavings between
syscalls with this kind of dependency.

However, when a function is reused in several syscallsibel relation cannot distinguish
executions of the same statement that were executed inatiffgyscalls. As a result, EOA
analysis sees that an interleaving in a shared functiondgsiple between one pair of syscalls, it
will believe that the interleaving is possible between aay pf syscalls.

We augmented théO A relation to be a relation on the set of all paisg/scall, statement).

As aresult, LOA analysis treats a function that is execuietio different syscalls as two separate
functions. Statements that do not execute in a syscall atedd identified by the name of the
kernel thread they execute in. The augmeni&dA relations can discover dependencies caused
by both multi-stage escape during initialization and byetefencies among syscalls.

Thoughopen andwr i t e cannot interleave operations on the same file, they carléater
operations on other shared objects, like the file systemrblgmk. Because we keep a separate
LOA relation for eactst r uct , LOA analysis does not incorrectly rule out these interiegs
because of dependencies related to ostaruct s.

243 RCU

Read-Copy Update (RCU) synchronization is a recent aaditiothe Linux kernel that allows
very efficient read access to shared variables [25]. Evelmaipiesence of contention, entering an
RCU read-side critical section never blocks or spins, da¢siaed to write to any shared memory
locations, and does not require special atomic instrusttbat lock the memory bus.

A typical RCU-write first copies the protected data struefumodifies the local copy, and
then replaces the pointer to the original copy with the updatopy. RCU synchronization does
not protect against lost updates, so writers must use theirlocking. A reader only needs to
surround any read-side critical sections witbu_r ead_l ock() andr cu_r ead_unl ock() .
These functions ensure that the shared data structure dbgetrfreed during the critical section.

We updated our Lockset implementation to also test for ctmess of RCU use. When a
thread enters a read-side critical section by callimgi_r ead_| ock() , the updated implemen-
tation adds a virtual RCU lock to the thread’s lockset. We dbraport a data race between a read
and a write if the read access has the virtual RCU lock in itkdet. However, conflicting writes
to an RCU-protected variable will still produce a data ramgort, as RCU synchronization alone
does not protect against racing writes.
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2.4.4 Double-Checked Locking

Double-check locking is an optimization technique fredlyensed in the Linux Kernel for per-
formance reasons. If a read of a variable inside a spinloekcisnditional check, it is sometimes
possible to do the check before taking a lock and if the cheai& then try it with the lock. The
check would fail if someone else modified the field just betbiecheck took place. In that case
we can do a check again under the lock to prevent concurratgra/from modifying the field at
the same time. Failing in the first check of the lock should délifferent from doing the check in
the spinlock and the value changed just before taking aagkniThus, it should be safe to change
a lock for conditional variable to a double check lock. Hoewn highly concurrent systems its
might reduce performance if there is high contention on tmable being protected. In this case
the value might change very frequently so doing a doublelcheld not produce much advan-
tage. Doing a double checked lock should be no different dfiabTaking locks is expensive and
this optimization improves performance on the fast paths.

if ((inode->i state & flags) == flags)
return;
spi n_l ock( & node_ ock);
if ((inode->i state & flags) != flags) {
const int was_dirty = inode->i state & | _DI RTY;

i node->i state | = flags;

}

Figure 2.7: Example of double-checked locking in VFS

Figure 2.7 shows an example of double-checked locking. Wedmed Lockset Algorithm
to give hints for code paths suitable for double-checkedkifmz The algorithm finds out any
access to global memory location inside a spinlock. If theeas inside the spinlock is read and
there is no write to any other memory location inside thahkgmk, then possibly the read is just
a conditional check. By code inspection we can find out if treedris indeed a conditional check:
then the check can probably be moved before the spinlockrentbtk is only taken if the check
fails.

The Figure 2.8 shows a potential candidate for double-awkédcking that we detected using
this idea. The read afeser ved_ext ent s can be read without a spinlock first and if the value
has changed then the spinlock does not need to be acquired.

2.5 AutoRedflag

This section describes a languafyet oRedf | ag for automating the process of setting up Red-
flag. To set up Redflag we need to perform the following steps:

1) Import Redflag kernel changes to a vanilla kernel.

2) Create configuration files for the GCC for each of the pladire., field trace, lock trace,
malloc-trace and syscall-trace). To instrument a pawicalibsystem we need to find its structs,
fields, global and per struct locks and memory allocatioriines.

16



spi n_l ock( &ret a_si nf 0- >l ock) ;
spi n_l ock( &BTRFS.I (i node) - >account i ngl ock) ;
if (BTRFS.l (inode)->reservedextents <=
BTRFS.I (i node) - >out st andi ng_extents) {
spi n_unl ock( &BTRFS.I (i node) - >account i ng.l ock) ;
spi n_unl ock( &ret a_si nf o- >l ock) ;
return O;

}

can be changed to.....

spi n_l ock( &et a_si nf 0- >l ock) ;
if (BTRFS. (inode)->reservedextents <=
BTRFS.I (i node) - >out st andi ng_extents) {
spi n_unl ock( &ret a_si nf o- >l ock) ;
return O;

}

spi n_l ock( &BTRFS.I (i node) - >account i ngl ock) ;
if (BTRFS. (inode)->reservedextents <=
BTRFS.I (i node) - >out st andi ng_extents) {
spi n_unl ock( &BTRFS_I (i node) - >account i ng.l ock) ;
spi n_unl ock( &ret a_si nf o- >l ock) ;
return O;

}

Figure 2.8: A candidate for double-checked locking

3) Compile the kernel image.

4) Install the kernel image.

5) Run a set of test cases on the installed kernel.

6) Run the algorithm on the logs collected and output theltesma file.

To ease the process of setting up Redflag we built a small égegoalled AutoRedflag. Au-
toRedflag helps you specify various options for setting wpsystem, automatic patching of the
kernel with Redflag changes, creating configuration filepfogins, creating kernel configuration
file for enabling various options, compiling the kernel, ming tests in parallel, copying log files
and running algorithm over the logs.

Importing the Redflag changes is very easy. AutoRedflag pattie new kernel with our
changes without any conflicts.

To configure the system, one needs to specify the kerneltdisetrom which structs, locks
and memory-allocation routines are extracted. It credtescbnfiguration files which is then
provided as an input to GCC plugins.

AutoRedflag has an option for enabling various options inkiimel configuration file. To
enable an option just provide the option name and AutoRedflegtes a new configuration file
with the specified option enabled. It can also compile theddeif the kernel compilation option
is enabled.

17



Currently, installation of the kernel image on virtual mamehhas to be done manually but this
process can be easily automated.

Once the image is installed, we need to boot the image. Thigatipn is also done manually
by the user by booting the installed image in the virtual niaeh

Running tests in parallel is very simple using AutoRedflagitoRedflag is a client/server
architecture. The AutoRedflag server takes input from AewfRg parser running on the host
machine and a client running on VMware. The parser parseéAdtit@Redflag configuration file.
The AutoRedflag configuration file has various options fomiag the system. The following
options are currently supported

Command Description

i pclient IP address of the client running in virtual machine
i pserver IP address of the server

hook- i nl ay Configuration file for field trace plug-in
sys-trace Configuration file for syscall trace plug-in

mal | oc-trace Configuration file for malloc trace plug-in

| ock-trace Configuration file for lock trace plug-in

| og-dir Output directory for results from algorithm

creat e_pl ugi nconfi gs Enable plug-in config files
confi g-kernel -path directory path for kernel config file

save-config-dir directory for saving kernel configuration files

ker nel - pat h path of the kernel

target-hone-dir Directory on the Virtual machine in

which tests need to be run

bi nari es-dir Directory for specifying Redflag binaries

patch Option to patch the new kernel

sour ce-patch-dir Kernel source directory option uses by patch command
dest-patch-dir kernel destination directory option uses by patch command
.config This option is used to create a new kernel configuration file.
conponent Name of the component that needs to be enabled in the .config
conpile GCC compiler path

conpi |l e-t hreads Number of make threads for kernel compile

Table 2.1: AutoRedflag configuration options.

Running the test is simple. The configuration file containmm@nds which are to be run as
tests when the virtual machine is booted. When the virtuatimme is up, a client is run on the
virtual machine. This client establishes a communicatidth the AutoRedflag server. The server
passes the commands to the client which are then run by & el test cases. The configuration
file also contains options for running these tests in pdrallee client can be configured to run on
bootup using ni t . d scripts in Linux which runs when the kernel is booted up.

Once the tests finish, the log files are copied to a specifiedtdiry and AutoRedflag runs the
algorithms on the log files. The results of these algorithmessaved to a set of output files for
later analysis by the developer. Figure 2.9 shows a sampiggcoation file for the AutoRedflag.
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homedi r=/r oot /

TEST 1 START

name=r acer

#conpi | e=/ home/ abhi nav/ ari stotl e-32/aristotle/src/nodul ar-gcc/install-svn/bin/gcc
#conpi |l e-threads=4

TASK 1 START
CVMD nkdir /mmt/w apfs/
CVD nkdir /mmt/ ext 4/
CVMD nount -t wapfs -o lowerdir=/mt/ext4/ none /mt/w apfs
CVMD /root/racer/racer2.sh / mt/w apfs/ 60
TASK 1 END
EXECUTE TASK 1
TEST 1 END

Figure 2.9: An example configuration file for AutoRedflag

Each test can be configured to have multiple tasks eithenrgeduence or parallel. Commands
to be run are specified by CMD option. The EXECUTE command @escthese commands. To
run multiple commands in parallel, multiple options aredfied as arguments to the EXECUTE
command. These commands are sent to a client running on VMinewhere they are executed
depending upon the options specified.
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Chapter 3

Evaluation

To evaluate its accuracy and performance, we exercised&ealfl three kernel components: two
file systems and one video driver. We took logs from each dfalsystems and analyzed those
logs with our Lockset and block-based implementations. Vésegnt the results of that analysis
here, along with performance benchmarks for our instruat@n and logging.

The two file systems we examine are Btrfs, a complex in-dgwvetnt on-disk file system,
and Wrapfs, a pass-through stackable file system that sasvasstackable file system template,
also in development. Because of the interdependenciesebatatackable file systems and the
underlying virtual file system (VFS), we instrumented all¥#ata structures along with Wrapfs’s
data structures.

We logged each file system while running the Racer tool [33]ictv is designed to test a
variety of file-system system calls concurrently to triggare schedules. Our analysis does not
require a violating schedule to execute in order to detebuitexecuting more schedules provides
better information to our LOA analysis.

Nouveau, the video driver we examined, provides hardwarearaD3D hardware acceleration
for Nvidia video cards. We logged Nouveau data structureBewdlaying a video and running
several instances @l xgear s, a simple 3D OpenGL example. We were not able to run more
complicated 3D programs under Nouveau, which is still idyedevelopment.

3.1 Analysis Results

Total Bug Benign Stat Untraced lock

Btrfs 8 0 8 0 0
Wrapfs 78 2 45 29 2
Nouveau 11 0 0 0 11

Table 3.1: Reported races from the Lockset algorithm. Freftrtd right, the columns show: total
reports, confirmed bugs, benign data races causest lay , other benign data races, and false
positives caused by untraced locks.
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Lockset results Table 3.1 shows our analysis results for the Lockset algoritOur analysis of
Wrapfs revealed two confirmed locking bugs. The first buglts$tom an unprotected access to a
field in the filest r uct , which is one of the VFS data structures we included for ouaMé tests.
A Lockset report (listed as “Bug” in Table 3.1) showed thad fparallel calls to thewr i t e syscall
can access theos field simultaneously. Investigating the report, we foundaditle describing
a bug resulting from the reported race: parallel writes tdeadan sometimes write their data to
the same location in a file, in violation of POSIX requirensefur writes [10]. Because proposed
fixes carried too high a performance cost, this bug is cusrestill present in the Linux kernel.

The second bug is in Wrapfs itself. Thae apf s_set at t r function copies a data structure
from the wrapped file system (tHewer inodg to a Wrapfs data structure (thgoper inodé but
does not lock either inode, resulting in several Locksebrep We discovered that file truncate
operations call thew apf s_set at t r function after modifying the lower inode. If a truncate
operation’s call tow apf s_set at t r races with another call tar apf s_set at t r, the updates
to the lower inode from the truncate can sometimes be lostarupper inode. We confirmed this
bug with the Wrapfs developers and tested a simple fix to tbldng inwr apf s_setattr.

Most of Lockset’s reports are in fact benign races: datagdlkat occur but that do not af-
fect the correctness of the program. In particular, theeesanumber of benign races in théat
syscall. Thest at syscall is responsible for copying information about a fiteti the file system'’s
inode structure to the user process, but it does not lockribee for the copy. The unprotected
copy can race with several other file system operations,imgust at to return inconsistent re-
sults. Aninconsistengt at result returns some fields from an inode before a concurnestadl
executed and some fields from after that syscall executeib Liiux community considers this
behavior preferable to the performance cost that additimeéing in st at would introduce [2].
We list these races in the “Stat” column of Table 3.1. The liemg benign races are in the
“Benign” column.

All of the false positives in Nouveau resulted from variabthat are protected by locks ex-
ternal to Nouveau. Because these locks do not belong tettheict s we targeted, they were
not logged, making them invisible to our analysis. Untraloets also caused two false positives
in Wrapfs (the “Untraced Lock” column in Table 3.1). If rep®from an untraced lock become
overwhelming, the user can target the offending lock fotruraentation and produce a new log.

The “Untraced lock” false positive in the Nouveau driver itually protected by the Big
Kernel Lock (BKL), which we did not instrument. The BKL is a nalithic lock that protects
data in many kernel systems. If kernel developers decideptace the BKL in Nouveau, they
will need to introduce a new lock to protect the two variabteslved in this false positive.

3.2 Performance

Logging To measure the performance of our logging system, we testggirig overhead with
FileBench using a workload of mixed reads and writes on a lsdzdh set. We kept the data
set small enough to fit in RAM to ensure that the 1/O cost of tlwekload did not dominate
our benchmark. We benchmarked logging on a computer witl@2z quad-core Intel E5530
processor and 12GB of RAM. Instrumentation in our benchntargeted the Btrfs file system
running as part of the 2.6.33 release of the Linux kernel.nglwith the instrumented kernel, the
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test system ran Ubuntu 9.10 with packages up-to-date asmf2 2010.

With all Btrfs data structures instrumented but logginghed off, the workload ran with 12%
overhead. Turning logging on resulted in 35% overhead witlstack trace logging. With stack
traces, logging ran with 45 times overhead. The added owmdrialmost entirely from the ex-
pense of reading the stack trace itself, including trangrshe frame pointer and mapping return
addresses to the locations of the functions they return ke rést of logging overhead is caused
by the cost of calling instrumentation functions, synclzomg the logging queue, and copying
data into log records.

Analysis Though they run offline, we also measured performance sefuiteach of our analy-
ses. We measured the time each analysis took along with nyaumsage for our Btrfs log, which
has 13.6 million events and 7,119 stack traces. Our anatgsem a test machine with an identical
hardware configuration to the computer we used to benchrogdirg.

It took our Lockset implementation 15 minutes to analyzeBtrés log, using 1.3GB of mem-
ory at its peak.
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Chapter 4

Related Work

A number of techniques, both runtime and static, exist fackmg down difficult concurrency
errors. This section discusses tools from several categiokiockset-based runtime race detectors,
static analyzers, model checkers, and runtime tools fonaity checking.

Lockset Our Lockset implementation is informed primarily by the T®raser tool [32], which
is itself based on Dinning and Schonberg [12]. Eraser intced memory reuse tracking and
a technique for determining when variables become shardbadainprotected accesses during
initialization do not cause false positives. Variationdotkset exist for Cilk [7], Java [8, 28, 29,
36], C++ [30], and the .NET platform [42]. These tools alletgterrors on-the-fly, and most focus
on reducing the performance impact of computing and staiieglockset. Their overheads are
typically better than Redflag’s data-collection overhdad,they use optimizations that would not
apply to other techniques, such as the block-based algarith

LiteRace uses sampling to track only a small percentage cdsses and synchronization
events. One of its goals is to target cold code paths, whiehhasre likely to hide potentially
dangerous data races than frequently executed functidis@ers have no control over the sam-
pling, however; they cannot choose to target debuggingtdtiepecific program modules or data
structures. LiteRace uses a purely happened-before—loetector, which is more likely to miss
data races because of scheduling perturbations than Ltels&sed approaches [12].

Static analysis Static analysis tools are very effective for finding dateesam large systems,
usually by employing a Lockset-style approach of findingalales that lack a consistent locking
discipline [9, 13, 19, 31, 33, 41]. The RacerX tool, for exdenfound data races in both the Linux
and FreeBSD kernels [13].

These tools cannot easily check for more complicated coeway properties, such as atom-
icity. There is no static analysis equivalent to the bloelsdd algorithms we used to check for
the atomicity of system calls. Existing static analyzersigieed for atomicity properties check for
stale valuesandmethod consistencyl he stale-value approach flags values that are saved within
a critical section and then later reused outside that atigection, which can often violate atom-
icity [4]. The method-consistency approach [37] is basetheridea ohigh-level data racefl];
it characterizes methods by thddack views the critical sections they execute, paired with the
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variables accessed in those critical sections. When methmzk views do nothain it can often
mean inconsistent locking among a set of variables that mteged together. Both these ideas
form a useful intuition about the kinds of atomicity propestprogrammers expect, but neither is
equivalent to checking for atomicity. They can miss someal&iof atomicity violations, and they
can also report interleavings that are not atomicity violad.

Model checking Model checking can verify concurrency properties by emguthat invariants
hold under all possible interleavings [6, 11, 18]. In pauiie, it is possible to show atomicity by
proving that a function produces the same resulting stateatter how it is scheduled [3, 15, 34].
Such systems can detect any kind of concurrency error, leytdlb not scale to systems as large
as those that we tested. The Calvin-R checker, which djrebttcks for atomicity using Lipton’s
reduction property [22], can verify a 1,200-line NFS impkemtation given a developer-written
specification for every function it checks [16]. The larg@stsystem we checked, Btrfs, has more
than 54,000 lines of code.

The CHEsstool's systematic testing approach is similar in flavor todalochecking [27].
Rather than exhaustively checking every possible inteitggaCHESS executes all the schedules
that can result from a limited set of preemption points. Ti®d-model checker was designed
to operate on an entire production file system, and sucdis&fund errors in several Linux file
systems [40]. Its checking is single-threaded, howevel, does not detect errors arising from
parallel executions.

Runtime atomicity Though we focused on the Lockset and block-based algorittemsur
analysis, there are several other runtime techniques faictieg different styles of concurrency
problems. All of these techniques could be adapted to wotk Redflag’s logging output.

Like the block-based algorithm, analysis based on Liptoeduction property [22] can also
check operations for atomicity violations [14, 20, 38]. idugh it checks for the same kinds of
errors, Lipton’s reduction is generally more efficient ththe block-based algorithm, especially
for very long traces [38].

Another potentially useful analysis checks fogh-level data racefl]. As with method con-
sistency, discussed earlier among the static analysis,tba@h-level data races represent groups
of variables that are protected together but accessed imcansistent way.

AVIO’s analysis is similar to the block-based algorithm Ivat it reports pairs of instructions
that are interleaved inconsistently [23]. Xu et al's anal\first infers what regions should be
atomic and then checks that they follow a 2-phase lockingppmd [39]. These approaches have
the advantage that they do not need any programmer-sugpfi@anation about which code re-
gions should be atomic. None of the runtime analysis todsudised here operate at the kernel
level. Currently, Linux kernel developers who want to dymeaity check their code for concur-
rency errors are limited to checks for APl misuse and poateadlock [26].
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Chapter 5

Conclusions

Redflag attempts to manage the complexity of concurrenesystsoftware, targeting specific
components and identifying possible interleavings in ¢hegstems that can lead to difficult-to-
debug concurrency errors. We have shown that Redflag’ssiméreture is versatile: it produces
highly detailed logs of system execution on which it can rwaety of analyses. As Redflag is
modular, logs can target specific system data, making thera waduable to developers who want
to focus their efforts on individual system components.

We have shown that, although the cost of thorough systemnggmn be high, Redflag’s per-
formance is sufficient to capture traces that exercise mgsigm calls and execution paths. The
runtime analyses that Redflag uses are designed to find prstdgen if they exist in schedules
that may occur only rarely, mitigating the problem of scHedwerturbations resulting from log-
ging overhead. We have also presented a number of techniggiesed to improve the accuracy
of our analysis. Besides finding data races our Lockset impfegation also hints at places for per-
formance optimizations related to double check lockingdfleg also logs RCU synchronization,
so that its Lockset implementation can identify invalid glyronization of RCU-protected vari-
ables. Finally, we developed Lexical Object AvailabilityJA) analysis to remove false positives
caused by complicated initialization code that uses nséigge escape.
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Chapter 6

Future work

Memory barriers can cause subtle synchronization erroistwéaire hard to debug. We plan to
improve upon our preliminary algorithm for detecting membarrier problems and make it more
generic and concrete. We also plan to improve the algorithhahdle any type of re-ordering and
not just store-load reordering.

We also believe that in addition to finding errors, Redflagld¢dae applied to the problem
of improving the performance of concurrent code. By exangribcking and access patterns in
execution logs, Redflag can also be used to predict datdwtesovhich would benefit from RCU
based locking. Furthermore, if Redflag logged informatibowt lock contention, it could find
critical sections that are too coarse-grained, leadingotdention, or too fine-grained, requiring
unnecessary locking operations.

We can also extend our analysis to real-time kernel. Rea-kernel have variants of conven-
tional locking mechanism like spinlocks and RCUs which aersuited to real-time systems
performance.

Capturing stack traces is the most expensive part of ourgggystem. We plan to explore
ways to read less stack trace data in order to improve pedoce If we instrument a small
number of function boundaries, we can capture only a pastetk trace or avoid reading the
stack trace all together when we know we have not exited threrifunction.

Finally, we can improve our logging system to get our racect&n instrumentation frame-
work into the mainline kernel. The Linux kernel has a dynadeadlock detection tool, Lockdep,
but it does not have any tool for dynamic race detection. Ehisecause race detection requires
more sophisticated analysis. We think that our targetedaagh with offline analysis can be
brought into the mainline and is a more practical approachdce detection in the kernel.
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