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Abstract of the Thesis

Stopping Data Races using Redflag

by

Abhinav Duggal

Master of Science

in

Computer Science

Stony Brook University

2010

Although sophisticated runtime bug detection tools exist to root out all kinds of concurrency prob-
lems, the data they need is often not accessible at the kernellevel; examining every potentially
concurrent memory access for a system as central as a kernel is not feasible.

This thesis shows our runtime analysis systemRedflagwhich brings these essential tools to the
Linux kernel. Redflag has three components: custom GCC plug-ins for in kernel instrumentation,
a logging system to record instrumented points, and at its core, an improved Lockset algorithm for
the Linux kernel.

We used GCC plug-ins to instrument read and writes to global memory locations, memory
allocations, and locks—including seldom-addressed locking primitives like RCU’s . Our fast
logging system can log any event caught by instrumentation.The logging system is also optimized
using zero-copy I/O in the kernel, and various in-kernel optimizations for improved performance.

We customized the classic Lockset algorithm to prune false positives caused by subtle kernel
synchronization. We present a number of techniques we applied to improve the accuracy of our
analysis . We tested our system on several file systems including Wrapfs, Btrfs, and the kernel’s
VFS layer and found 2 real races and several benign races. We also injected data races in the
kernel and our system was able to detect them accurately. Redflag’s false positive rates are very
low for most of the file systems.

Our system is versatile using a small automation language tomake it easy to run and use. Red-
flag can help kernel developers in finding data races in the Linux kernel, and is easily applicable
to other operating systems and asynchronous systems as well.
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Chapter 1

Introduction

As the kernel underlies all of a system’s concurrency, it is the most important front for eliminating
concurrency errors. In order to design a highly reliable operating system, developers need tools
to prevent race conditions from going undetected until theycause real problems in a production
system. Understanding concurrency in the kernel is difficult. Unlike many user-level applications,
almost the entire kernel must run in a multi-threaded context, and much of it is written by experts
who rely on intricate synchronization techniques.

Static analysis tools like RacerX [13] can thoroughly checkeven large systems code bases
for potential data race errors, but they cannot easily infercertain runtime properties like aliases.
Also, they require manual annotation to relate impossible schedules like pagefault handler being
invoked from any code in the kernel and schedules related to interrupt handlers and bottom halves.

Runtime analysis provides additional tools for finding problems in multi-threaded code that are
powerful and flexible. They can target many kinds of concurrency errors, including data races [12,
32] and atomicity violations [14, 38]. We designed theRedflagsystem with the goal of airlifting
these tools to the kernel front lines.

Redflag takes its name from stock car and formula racing, where officials signal with a red
flag to end a race. It has two main parts:

1. Fast Kernel Logginguses compiler plug-ins to providemodular instrumentation to target
specific kernel subsystems for logging. It then interacts with the file system to log all oper-
ations in the instrumented module with the best possible performance.

2. The offline Redflag analysis tool performs several post-mortem analyses on the resulting
logs in order to automatically detect potential race conditions that are apparent from the log.
This tool is designed to be versatile with the ability to support many kinds of analysis.

Currently, Redflag implements two kinds of concurrency analysis: Lockset[32] and block
based [38]. We believe that these two types of analysis covera wide range of potential bugs,
from missing locks to complex interleavings involving multiple variables. We contribute several
modifications to improve the accuracy of these algorithms, includingLexical Object Availability
(LOA) analysis, which detects false positives caused by complicated initialization code. We added
support for RCU synchronization, a new synchronization tool in the Linux Kernel. This thesis
concentrates on concurrency analysis using Lockset only.
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The rest of the thesis is organized as follows. In Chapter 2, we explain how our modular
instrumentation and logging system works, and we describe our implementation of the Lockset
Algorithm, along with the improvements we made to its accuracy. In Chapter 3, we present
the results of our analysis of several kernel components andevaluate the performance of our
instrumentation and logging. We discuss related work in Chapter 4. We conclude in Chapter
5 and discuss future work in Chapter 6.
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Chapter 2

Design

Four goals underlie our design of the Redflag system: versatility, modularity, performance, and
accuracy. Our decision to perform all analysis post-mortemis motivated by the goals of versatility
and performance: once an execution trace is ready, it is possible to run any number of runtime
analysis algorithms to search for different classes of concurrency errors. We discuss the Lockset
algorithm here, even though our system also supports findingatomicity violations using block
based algorithm. Besides these many other algorithms couldpotentially operate on the same log
files. We also seek to make the algorithms themselves versatile; our implementations can take into
account a variety of synchronization mechanisms used in thekernel.

Modularity is an important design goal because of the size ofa modern kernel. Developers
working on large projects are typically responsible for individual components. An on-disk file
system developer may not be interested in potential errors in the networking stack. On the other
hand, a network file system developer might be, and it is possible to target several components
for one trace. Logging is broken down by data structure. The developer chooses specific data
structures to target, allowing fine granularity in choosingwhich parts of the system to log.

Modularity is also crucial for system performance: the overhead from logging every event in
the kernel would render Redflag’s logging impractical. Evenwith targeted logging, however, a
kernel execution can generate a large number of events for logging. Performance is therefore still
a concern, and our in-kernel logging is designed to keep overheads low. When an instrumented
event occurs, the system stores the event in a queue, so that it can immediately return control to
the instrumented code and defer expensive I/O until after logging is complete.

Finally, because accuracy is important to make Redflag useful for developers, we implemented
several measures to reduce the number of false positives that the system reports. We also ensured
that Redflag can find errors by inserting bugs into the kernel and verifying that they result in error
reports.

In Section 2.1, we explain how Redflag’s logging targets specific components for logging.
Section 2.2 explains the basic Lockset algorithm and improvements we made to Lockset. Sec-
tion 2.3 discusses our stack trace support. Section 2.4 discusses further improvements to handle
more kinds of synchronization.
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2.1 Instrumentation and Logging

We are able to insert targeted instrumentation using a suiteof GCC compiler plug-ins that we
developed specifically for Redflag. Plug-ins are a new GCC feature which we have developed
over the past few years. GCC Plugins were formally introduced in the April 14, 2010 public
release of GCC 4.5 [17]. Compiler plug-ins execute during compilation and have direct access
to GCC’s intermediate representation of the code [5]. Redflag’s GCC plug-ins search for relevant
events and then instrument them with function calls that serve as hooks into Redflag’s logging
system. These logging calls pass information about instrumented events directly to the logging
system as function arguments. In the case of an access to a field, the logging call passes, among
other things, the address of the struct, the index of the field, and a flag that indicates if the access
was a read or write.

For most concurrency analysis, we need to log 4 types of operations:

1. Field accesses: read from or write to a field in astruct.

2. Synchronization events: acquire/release operation on alock or wait/signal operation on a
condition variable.

3. Memory allocation: creation of a kernel object, necessary for tracking memory reuse.
(Though we can track deallocation events, they are not necessary for most analysis.)

4. Syscall boundaries: syscall entrance/exit, used by the block-based algorithm for checking
syscall atomicity.

When compiling the kernel with the Redflag plug-ins, the developer provides a list ofstructs
to target for instrumentation. Field accesses and lock acquire/release operations are only instru-
mented if they operate on a targetedstruct, resulting in a smaller, more focused trace. A lock
acquire/release operation is considered to operate on astruct if the lock it accesses is a field
within thatstruct. Some locks in the kernel are not members of anystruct, so the devel-
oper can also directly target these global locks by name. To simplify the process of targeting data
structures, Redflag provides a script that searches a directory for thestructs and global locks
defined in its header and source files; this provides a useful starting point for most components.

To minimize the performance penalty from executing an instrumented operation, Redflag’s
logging module stores logged operations on a queue. Queueing events allows Redflag to return
control immediately to instrumented code, deferring I/O until after logging. Deferring disk writes
also makes it possible to log events that occur in contexts where it is not possible to perform
potentially blocking I/O, such as when holding a spinlock.

To enqueue an operation, a logging function first pulls an empty log record from a pool of pre-
allocated, empty records and then populates it with a sequence number, the current threadID, and
any information that the instrumented event passed to the logging function. The logger chooses
the sequence number using a global, atomically-incremented counter so that sequence numbers
preserve the ordering of logged operations among all threads and CPUs. Without hardware sup-
port, the logger cannot determine the exact ordering of memory operations executed on separate
processors as scheduled by the memory controller, but it does guarantee that the final order of
logged operations is a possible order. For example, if threads on two processors request a spinlock
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at the same time, the log never shows the losing processor acquiring the lock before the winning
processor releases it.

When the user stops logging, a backend thread empties the queue and stores the records to
disk. With 1GB of memory allocated for the queue, it is possible to log 20M events, which was
enough to provide useful results for all our analyses.

It is also possible to configure background threads to periodically flush the queue to disk to
take logs that are too large to stay in memory. Background threads compress their output with
zlib, which is already available in the kernel, to reduce overhead from writing to disk.The logs
are written to the disk by implementing a zero-copy mechanism in the kernel. The default way
of logging in the kernel is to allocate a page in the kernel, call the kernel write function which
copies the page to a new page and then writes that page asynchronously to the disk. To prevent
this extra memory copy we implemented a zero-copy mechanismby allocating a page directly on
the page cache and dirtying this page so that it is asynchronously written to the disk by the kernel
write-back thread. This is like anmmap mechanism to prevent extra memory copying.

In this approach, the size of the queue can be configured depending upon the system. With
fixed size queue it is important to ensure that the queue does not get full if we want to log events for
a longer time. But with multiple producers there is always a possibility of producers overrunning
the consumer threads and it is not easy to estimate the minimum queue size required to log events
for a long time. We approach this problem in two ways. First weimprove the performance of
our logging threads and second we implement a sleep/wakeup mechanism between producers and
consumers.

We improve performance by a set of in kernel optimizations like increasing their priority,
binding 1 thread to each CPU and using a per thread log file so that each thread can write to a
separate file. Binding a thread to each CPU makes sure that we have at least one consumer thread
on each CPU. Otherwise a fast producer running on one of the CPUs in a multi-core system could
overflow the queue.

By using per thread log file we prevent threads contention on single file. Each record is
given a new sequence number which is incremented when the record is en-queued. A user-level
post-processing step merges the output from the logging threads, sorting operations by sequence
number.

The producers wake up the consumer threads whenever they putdata onto the queue. Waking
up the consumer threads is expensive as it involves disabling interrupts for a short time and the
overhead of frequent context switch is also high. So we implemented a low-watermark level so
that consumers are not woken up until there is enough data on the queue. The producers go to sleep
before waking up the consumers. The consumer threads dequeue all the data off the queue until
either the low watermark is reached or the consumer is de-scheduled by the scheduler or goes to
sleep when the logs are written to the disk. In the case where the low watermark level is reached,
the consumers wake up the producers and they themselves go tosleep. When this happens the
producers can proceed forward. We have kept the low watermark and high watermark as 1/4 and
3/4 respectively. The difference between low and high watermark is large enough so that there is
not frequent waking up of the consumers by the producers. This helps us to utilize the queue in an
efficient manner. There is also very little possibility of ping pong at the high and low watermark
level. This is because once either producers or consumers get a chance they queue and dequeue
large amount of data.
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The second reason of consumers going to sleep is if the scheduler de-schedules the consumer.
In that case, the CPU cannot be given to the producer who is sleeping because that producer
can only be woken up by the consumer. The scheduler might schedule other processes. If these
processes are potential producers then they will also be putto sleep if the watermark level is high.
So no producer can fill the queue until the watermark is reduced to low watermarks.

The third reason of consumers going to sleep is when they write to the disk. The consumers
cache the data in per-consumer pool of memory and write to disk only when the pool gets full.
Thus the consumers can go to sleep on an I/O to the disk. In thatcase the consumer will be woken
up by I/O interrupt when the data is available. If the producers fill the queue in the high watermark
level they will be put to sleep and woken up when the consumersare woken up on I/O completion
and they have emptied the queue upto low watermark level. This design seems to work well for
logging huge amount of data in the kernel.

It is also important that producer threads are not made to sleep when they are in a context in
which sleeping is not allowed. For example a thread cannot goto sleep inside a spinning lock like
spinlock, RCU, readers/writers lock and from an interrupt context. The logging system checks for
the context before putting the producers to sleep.

Redflag also has the ability to provide a stack trace for everylogged operation. To prevent
repeated output of same stack traces, Redflag stores each stack trace in a data structure which is a
combination of hash table and trie. Section 2.3 describes our stack trace logging design.

Developers who are very familiar with a code base may choose to keep stack traces off for
faster logging. When reported violations involve functions that are called through only one or two
code paths, stack traces are not always necessary for the debugging effort. If reports implicate
functions that can be called from many different locations,the developer can take another log with
stack traces to get a clearer picture of what is causing the violations.

2.2 Lockset Algorithm

Lockset is a well known algorithm for detectingdata racesthat can result from variable accesses
that are not correctly protected by locks. We based our Lockset implementation on Eraser [32].

A data race occurs when two accesses to the same variable, at least one of them a write, can
execute together without synchronization to enforce theirorder. Not all data races are bugs; a
data race is benign when the ordering of the conflicting accesses does not affect the program’s
correctness. Data races that are not benign, however, can cause any number of serious errors.

Lockset maintains acandidate setof locks for each variable in the system. The candidate lock
set represents the locks that consistently protect the variable. A variable with an empty candidate
Lockset is potentially involved in a race. Note that before its first access, a variable’s candidate
Lockset is the set of all possible locks.

This section describes an improved Lockset Algorithm for data race detection and performance
analysis. The following sections describe our algorithmicimprovements, along with various re-
finements and our usability improvements. Later on we also extend the algorithm to deal with
multi-variable escape, supporting double-check locking and RCU synchronization.
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2.2.1 Lockset algorithmic improvements

When a thread allocates a new object, it can assume that no other thread has access to that object
unless it encounters a serious memory error. This assumption allows another means of synchro-
nization: until the thread stores a new object’s address to globally accessible memory, no concur-
rent accesses to it are possible. Most initialization routines in the kernel take advantage of this
assumption to avoid the cost of locking when creating objects, but these accesses may appear to
be data races to the Lockset algorithm.

The Eraser algorithm solves this problem by tracking which threads access variables to de-
termine when each variable become shared by multiple threads [32]. We implement a simplified
version of this idea: when a variable is accessed by more thanone thread or accessed while hold-
ing a lock, it is considered shared. This approach is similarto approach based on using barrier
synchronization as a point when the Lockset is refined [30].

Accesses to a variable before its first shared access are marked as thread local, and we ignore
them for the purposes of the Lockset algorithm. Other versions of Lockset improve on this idea
to handle variables that transfer ownership between threads or variables that are written in one
thread while being read in many threads [8, 32, 36], but we didnot find these improvements to be
necessary for the code we analyzed.
1: spin_lock(inode->lock);
2: inode->i_bytes++;
3: spin_unlock(inode->lock);

4: inode->i_bytes++;

5: spin_lock(inode->lock);
6: inode->i_bytes--;
7: spin_unlock(inode->lock);

Figure 2.1: An example function body with inconsistent locking. Redflag will report two data
races from a trace of this function’s execution: one betweenlines 2 and 4 and one between lines 4
and 6.

The algorithm processes each event in the log in order, tracking the current Lockset for each
thread as it is processed. Each lock-acquire event adds a lock to its thread’s lockset. The corre-
sponding release removes the lock. Figure 2.1 shows an example of a function body with incon-
sistent locking. At lines 2 and 4, the executing thread’s lockset will contain theinode->lock
lock. At line 4, the thread’s lockset will be empty.

When we process an access to a variable, the candidate lockset is refined by intersecting it with
the thread’s current lockset. That is, at each access, we setthe variable’s candidate lockset to be
the set of locks that were held foreveryaccess to the variable. When Lockset processes the access
from line 2 in our example, it will set the candidate lockset for thei bytes field to contain just
inode->lock. The access at line 4 will result in an empty candidate lockset for i bytes, and
the candidate lockset will remain empty for all further accesses to this instance ofi bytes.

To simplify debugging, errors are reported aspairs of accesses that can potentially race. On
reaching an access with an empty candidate lockset, our Lockset implementation revisits every
previous access to the same variable. If no common locks protected both accesses, we report the
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pair as a data race. Because the candidate lockset is empty, there will always be at least one pair of
accesses without a common lock. When thei bytes candidate lockset becomes empty at line 4
of the example, our Lockset reports a potential race with theprevious access at line 2. Because the
candidate lockset remains empty at line 6, Lockset also reports a race between lines 4 and 6 but
not between 2 and 6, which share a lock in common. All the previous implementations we have
seen report this as a false positive Cilk [7], Java [8, 28, 29,36], C++ [30], [38] and RaceTrack
for.NET platform [42]. We have found that extra overhead in keeping track of the current lockset
per memory access is not too high as the locks held at any time by a process is typically small.
Redflag only produces one report for any pair of lines in the source code so that the developer
does not have to examine multiple results for the same bug or benign race. Though the function
in Figure 2.1 may execute many times, resulting in many instances of the same two data races,
Lockset only produces one report for each of the two races. Each report contains every stack trace
that led to the race for both lines of code and the list of locksthat were protecting each access.

In addition to the base algorithm, there are several common refinements to improve Lockset’s
accuracy. These additions are necessary because some pairsof accesses do not share locks but
still cannot occur concurrently for other reasons, which wediscuss here. Three refinements that
we implement track stack variables, memory reuse, and thehappened-beforerelation.

2.2.2 Ignoring Stack Variables

Redflag does not track variables that are allocated on the stack. Instead, it ignores all accesses
to stack variables, which we assume are never shared. Sharedstack variables are considered bad
coding style in C and are very rare in systems code.

The logging system determines if a variable is stack local from its address and the process
stack size. The size of the per process stack in the kernel is fixed per architecture. If the variable’s
address lies between current process stack pointer and start of the stack then the variable is local.
The start of the stack issp - stacksize.

2.2.3 Memory Reuse

When a region of memory is freed, allocating new data structures in the same memory can cause
false positives in Lockset because variables are identifiedby their locations in memory. If a vari-
able is allocated to memory where a freed variable used to reside, the new variable incorrectly
takes on the previous variable’s candidate lockset. Additionally, if the previous value was marked
as shared, the new variable is prematurely marked as shared.

This is the biggest cause of false positives in Lockset results on the Linux Kernel. Besides
allocation routines likekmalloc and variants the Linux Kernel also has caching primitives like
kmem cache alloc which are used extensively. Each time these routines gets called, it always
assigns the same address to the memory region being allocated. So each new call to memory al-
location routines have to be treated as a reuse of memory hence we split the accesses before the
allocation and all accesses after the allocation in two different generations. The Lockset is initial-
ized for each generation. The new variable allocated is considered thread local until it is accessed
by second thread. Eraser solves the memory reuse problem by reinitializing the candidate lockset
and shared state for every memory location in a newly allocated region [32]. This improvement
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Figure 2.2: Example Hasse diagram for the happened-before relation on the execution of two
threads synchronized by a condition variable. Because of the ordering enforced by the condition
variable, there is an edge from the signaling event,e2, to the waiting event,e13.

reduces the false positives considerably as two variables from different generations cannot race
with each other.

In some cases there would be a memory reuse of a variable even though there has been no
explicit memory allocation to that variable. This problem is prominent because of memory al-
location functions likekmap/kunmap andget free pages. A lot of places in the kernel
memory is memory is mapped and unmapped from physical to virtual and vice versa using the
kmap/kunmap functions. After obtaining the virtual address, the kernelwould map a structure
in some region of this virtual address and then read and writeto this structure. But there has been
no explicit allocation to this structure. The algorithm is made aware of this by keeping track of all
memory mapped usingkmap memory addresses and the map size. It then does a range query to
find out if an access belongs to some mapped region and if so doing the generation update recur-
sively to the structure mapped into part of this memory region. We have been able to eliminate a
lot of false positives based on this idea in Btrfs file system.

2.2.4 Happened-Before Analysis

Threads can also synchronize accesses using fork and join operations and condition variables.
The original Dinning and Schonberg Lockset implementation[12] was designed as an improve-
ment to existing data-race detectors that used only Lamport’s happened-before relation[21]. The
happened-before relation is a partial order on the orderingof events in a program execution, so it
can handle any form of explicit synchronization, includingfork and join operations and condition
variables.
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The happened-before relation,HB, is a relation on the events in an execution trace. Events
in the same thread are always ordered byHB in the order that they actually occurred: if events
e1 ande2 are from the same thread ande2 executed later in the thread thane1, we can say that
(e1, e2) ∈ HB.

Events that block on condition variables create edges in thehappened-before graph between
different threads. Figure 2.2 shows an example of an edge inHB representing a wait on a condi-
tion variable. The edge goes from the signaling event,e2 in the example, to the waiting event,e13.
The happened-before relation assumes that all events in thesignaling thread up to the signaling
event (e1 ande2 in the example) must execute before any of the events in the waiting thread after
it wakes up.

Our Lockset implementation uses the happened-before relation to determine when accesses are
synchronized by a condition variable. If a happened-beforeordering exists between two accesses,
we assume that they cannot occur concurrently even if they share no common locks. Conversely,
when the happened-before relation does not order the accesses, Lockset can report a potential race.
Note that this assumption is not always safe; the happened-before relation can rule out feasible
interleavings. Happened-before detectors usually also consider fork and join operations, but we
did not find any accesses in the Linux kernel that depended on fork or join for synchronization. A
fork operation spawns a new thread, and join waits for a thread to terminate.

2.2.5 Usability Improvements

The algorithm reports various race attributes like stack traces and lock usage statistics which im-
prove usability of the system. If an object is accessed at different lines with inconsistent locks we
output the lines and their corresponding stack traces. Thishelps to compare whether a particular
type of object is accessed at different lines under different locks. The intuition is that objects which
are accessed at different places with different locks are more likely to have bugs than those which
are nowhere accessed with any locks. The algorithm also outputs any locks taken for the two
accesses which can race so that it is easy to figure out which locks protect which objects. Another
advantage of locking information is that objects which are inconsistently protected by spinning
locks are more likely to have bugs as they are taken for short regions whereas a sleeping lock is
taken for a coarser region and it might not be protecting the contended variable being accessed.

2.3 BLKTrace: Better Linux Kernel Tracer

2.3.1 Requirement for Stack Traces

Stack Traces are also required for analyzing results from our algorithms. Lockset emits violations
in terms of line pairs. Two paths through system calls like read and write respectively can cause
a race whereas two paths to the same two lines through different system calls like open and close
may not cause the race. Thus, the context in which the race canoccur is very important and stack
traces help in understanding this context. Also, stack traces help understanding of the code in case
of function pointers. Linux kernel has a number of layers across various subsystems. Running a
test case might touch various subsystem layers. Stack traces help in understanding the interaction
between these layers.
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2.3.2 Kernel Support

Stack Traces are very useful in understanding bugs in the Linux Kernel. Whenever the kernel
crashes or any type of error occurs, it emits the stack trace pointing out the set of events it was
performing when the error occurred. Linux Kernel has a function calleddump stack which
emits the stack trace. It can also be used for debugging purpose. It uses this to emit stack trace
to the user space with a help of kernel thread named Ksyslogd.The mechanism makes use of
architecture specific frame pointer support to emit a very precise stack trace.

Kernel prints stack traces when the errors occur and there isno easy mechanism of capturing
these stack trace. The kernel logging mechanism is also veryslow and redundant. Logging in the
kernel uses a circular buffer. Ksyslogd kernel thread readsthis buffer from time to time and copies
it to the user space. This printing mechanism is designed to be called from either process context
or interrupt context. So it disables interrupts in between and is thus very slow. Also, the data can
get lost if the circular buffer is overrun. The overhead of copying to user space by syslogd also
exacerbates the problem. Scalability is another problem with this mechanism. Capturing stack
traces for read and write to every variable in a particular subsystem is very difficult.

2.3.3 Redflag Stack Trace Support

Redflag requires stack trace for each readwrite access whichis not possible using the present
mechanism. We built a novel mechanism for logging stack traces called BLKTrace. We designed
the kerneldump stack mechanism to log only unique stack traces. To log a stack trace BLK-
Trace goes through the process stack frame using the frame pointer. It uses the address of the top
function in the stack trace as an index into a hash table. The hash table lookup is lock free using
the Linux Kernel Read Copy Update (RCU) mechanism. However,the insertion into the hash
table has to be protected by a spinlock to prevent concurrentwriters from updating the hash table.
bar()
{

foo();
}
foo()
{

a = 1;
b = 2;
c = 3;

}

Figure 2.3: Function call sequence of two functionsfoo() and bar()

Indexing the hash table by the top function in the trace significantly reduces the number
of stack traces. Consider two functionsfoo() andbar() as shown in the Figure 2.3. The
dump stack utility outputs three stack traces for variable accessesa,b andc whereas BKL-
Tracer would only print one stack trace for the these accesses as shown in Figure 2.4

We maintain the list of stack traces as a trie. Each node of thetrie is the starting address of
a function. This data structure reduces the amount of memoryusage for stack traces as all stack
traces which reach the same function would share the trie node for that function entry. We have
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dump stack BLKTracer
bar() bar()
foo() 0x00 foo() 0x0

bar()
foo() 0x04

bar()
foo() 0x08

Figure 2.4: Three stack traces for variablesa,b,c usingdump stack and one stack trace using
BLKTracer

seen that number of different paths reaching a particular point varies from 1 – 400, so keeping a
trie like data structure reduces memory requirement.

Figure 2.5: Stack Trace maintained as a trie

We also add to each path in the trie a node with a unique index for the stack trace. We append
this index to each record in the trace obtained by the logger.We have found traversal of the trie
can also slow down the system because the length of the stack trace can go up to 50. So along with
the trie we also maintain a table sorted by the total length ofthe functions leading up to the first
stack entry. Each entry of the table contains the length of the trace and the unique index we was
appended to each path in the trie. Before we check the trie fora match we check the table using
binary search to find a trace with the matching length. If the length is found then we return the
length instead of searching the trie. We found in practice that this optimization reduces the stack
trace overhead considerably. We maintain one table per function entry so using the stack length as
a unique key for the trace works very well. This is because twotraces leading to a same function
entry, having the same length in terms of function size in bytes is highly unlikely.

We keep the stack traces in the memory only when the logging istaking place. Once the
logging is disabled, all the traces are dumped to a file. The stack traces for reads and writes to all
Btrfs structs and fields do not exceed more than 2 MB for a test like Racer. We also do not need
to store the actual function name entries in the trie while logging. Each node of the trie contains
only the address of the function. The function name corresponding to the symbol address can be
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easily retrieved through the symbol table lookup once the logging is disabled and before the stack
traces are dumped to the file.

These stack traces are fed to the Lockset Algorithm which outputs the stack trace for each
violation pair from top to bottom as shown in the Figure 2.6. The traces contain the address on
which there is a lockset violation, the field of the structure, file line information, a unique stack
trace index and any locking information. This figure shows that there was no lock held when
access at filefs/btrfs/inode.c on line 251 and three locks held on the access to the same
file with line 957. The type of lock is also printed with each report. This helps developers to
prioritize looking at reports based on the type of locks. In our experience we have found that locks
like spinlock and RCU which are held for a short duration are more likely to have serious errors.
With this precise information, the developer can easily figure whether a report is a serious race or
a benign race.
STRACE= ffff88009366a100.17 1 START=fs/btrfs/inode.c 5422 ST:251
ENTRY 251

btrfs getattr
vfs getattr
vfs fstatat
vfs stat
sys newstat
system call fastpath

-------------------------------------------------------------------
STRACE= ffff88009366a100.17 1 START=fs/btrfs/inode.c 1378 ST:957
ffff88009366a178 fs/btrfs/extent io.c:524 AC
ffff88009366a538 fs/btrfs/file.c:857 ML
ffff8800a11b2ac8 fs/btrfs/inode.c:1360 AC
ENTRY 957

clear state bit
btrfs clear bit hook
clear extent bit
clear extent bits
prepare pages
btrfs file write
vfs write
sys write
system call fastpath

Figure 2.6: Lockset Output with Stack Traces

2.4 Other Algorithm Improvements

The kernel is a highly concurrent environment and uses several different styles of synchronization.
Among these, we found some that were not addressed by previous work on detecting concurrency
violations. This section discusses two new synchronization methods that Redflag handles: multi-
stage escape and RCU. Though we observed these methods in theLinux kernel, they can be used
in any concurrent system.

13



2.4.1 Multi-Stage Escape

As explained in Section 2.2, objects within their initialization phases are effectively protected
against concurrent access because other threads do not haveaccess to these newly created objects.
However, an object’s accessibility to other threads is not necessarily binary. An object can become
available to a small set of functions during a secondary initialization phase and then become avail-
able to a wider set of functions when that phase completes. During the secondary initialization,
some concurrent accesses are possible, but the initialization code is still protected against inter-
leaving with many functions. We call this phenomenonmulti-stage escape. As an example, inode
objects go through two escapes during initialization. First, after a short first-stage initialization,
the inode gets placed on a master inode list in the file system’s superblock. File-system–specific
code performs a second initialization and then assigns the inode to a dentry.

The lockset algorithm reported a race between accesses in the second-stage initialization and
syscalls that operate on files, likeread() andwrite(). These data races are not possible, how-
ever, because file syscallsalwaysaccess inodes through a dentry. Before an object is assignedto
a dentry—its second escape—the second-stage initialization code is protected against concurrent
accesses from any file syscalls.

To avoid reporting these kinds of false inter-leavings, we introduceLexical Object Availability
(LOA) analysis. This analysis step produces a relation on field accesses for each targetedstruct.
Intuitively, this relation represents the order in which lines of code gain access to astruct as it
is initialized. After constructing theLOA relations, we can use them to check the feasibility of
inter-leavings reported by Lockset.LOA relations are based on object life cycles; the first step
of the LOA algorithm is to divide the log file into sub-traces for each of the objects logged. A
sub-trace contains all the accesses to a particular instance of a targetedstruct in the same order
as they appeared in the original log, from the first access following its allocation to the last access
before deallocation.

The second step of the algorithm is to fill in the relation using the sub-traces. For each sub-
trace, we add an edge between two statements in the LOA relation for that sub-trace’sstruct
when we see evidence that one of the statements is allowed to occur after the other in another
thread.

More formally, for astruct S and read/write statementsa andb we include(a, b) in LOAS

iff there exists a sub-trace for an object of types containing eventsea andeb such that:

1. ea is performed by statementa andeb is performed by statementb, and

2. ea occurs beforeeb in the sub-trace, and

3. ea andeb occurred in different threads, or there exists someec occurring betweenea andeb

in a different thread.

Our Lockset algorithm usesLOA to find out impossible interleavings. Our Lockset imple-
mentation reports that two statementsa and b can race only if both(a, b) and (b, a) are in the
LOA relation for thestruct thata andb access.
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2.4.2 Syscall interleavings

Engler and Ashcraft observed that dependencies on data prevent some kinds of syscalls from
interleaving [13]. For example, awrite operation on a file will not execute in parallel with a
open operation because userspace programs have no way to callwrite beforeopen finishes.

These kinds of dependencies are actually a kind ofmulti-stage escape, which we discuss in
Section 2.4. The return fromopen is an escape for the file object, which then becomes available
to other syscalls, such asopen. For functions that are only ever called from one syscall, the LOA
analysis we developed for multi-stage escape already rulesout impossible interleavings between
syscalls with this kind of dependency.

However, when a function is reused in several syscalls, theLOA relation cannot distinguish
executions of the same statement that were executed in different syscalls. As a result, ifLOA

analysis sees that an interleaving in a shared function is possible between one pair of syscalls, it
will believe that the interleaving is possible between any pair of syscalls.

We augmented theLOA relation to be a relation on the set of all pairs(syscall, statement).
As a result, LOA analysis treats a function that is executed by two different syscalls as two separate
functions. Statements that do not execute in a syscall are instead identified by the name of the
kernel thread they execute in. The augmentedLOA relations can discover dependencies caused
by both multi-stage escape during initialization and by dependencies among syscalls.

Thoughopen andwrite cannot interleave operations on the same file, they can interleave
operations on other shared objects, like the file system superblock. Because we keep a separate
LOA relation for eachstruct, LOA analysis does not incorrectly rule out these interleavings
because of dependencies related to otherstructs.

2.4.3 RCU

Read-Copy Update (RCU) synchronization is a recent addition to the Linux kernel that allows
very efficient read access to shared variables [25]. Even in the presence of contention, entering an
RCU read-side critical section never blocks or spins, does not need to write to any shared memory
locations, and does not require special atomic instructions that lock the memory bus.

A typical RCU-write first copies the protected data structure, modifies the local copy, and
then replaces the pointer to the original copy with the updated copy. RCU synchronization does
not protect against lost updates, so writers must use their own locking. A reader only needs to
surround any read-side critical sections withrcu read lock() andrcu read unlock().
These functions ensure that the shared data structure does not get freed during the critical section.

We updated our Lockset implementation to also test for correctness of RCU use. When a
thread enters a read-side critical section by callingrcu read lock(), the updated implemen-
tation adds a virtual RCU lock to the thread’s lockset. We do not report a data race between a read
and a write if the read access has the virtual RCU lock in its lockset. However, conflicting writes
to an RCU-protected variable will still produce a data race report, as RCU synchronization alone
does not protect against racing writes.
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2.4.4 Double-Checked Locking

Double-check locking is an optimization technique frequently used in the Linux Kernel for per-
formance reasons. If a read of a variable inside a spinlock isa conditional check, it is sometimes
possible to do the check before taking a lock and if the check fails then try it with the lock. The
check would fail if someone else modified the field just beforethe check took place. In that case
we can do a check again under the lock to prevent concurrent writers from modifying the field at
the same time. Failing in the first check of the lock should be no different from doing the check in
the spinlock and the value changed just before taking a spinlock. Thus, it should be safe to change
a lock for conditional variable to a double check lock. However, in highly concurrent systems its
might reduce performance if there is high contention on the variable being protected. In this case
the value might change very frequently so doing a double check would not produce much advan-
tage. Doing a double checked lock should be no different of sothat Taking locks is expensive and
this optimization improves performance on the fast paths.

if ((inode->i state & flags) == flags)
return;

spin lock(&inode lock);
if ((inode->i state & flags) != flags) {
const int was dirty = inode->i state & I DIRTY;

inode->i state |= flags;
}

Figure 2.7: Example of double-checked locking in VFS

Figure 2.7 shows an example of double-checked locking. We improved Lockset Algorithm
to give hints for code paths suitable for double-checked locking. The algorithm finds out any
access to global memory location inside a spinlock. If the access inside the spinlock is read and
there is no write to any other memory location inside that spinlock, then possibly the read is just
a conditional check. By code inspection we can find out if the read is indeed a conditional check:
then the check can probably be moved before the spinlock and the lock is only taken if the check
fails.

The Figure 2.8 shows a potential candidate for double-checked locking that we detected using
this idea. The read ofreserved extents can be read without a spinlock first and if the value
has changed then the spinlock does not need to be acquired.

2.5 AutoRedflag

This section describes a languageAutoRedflag for automating the process of setting up Red-
flag. To set up Redflag we need to perform the following steps:

1) Import Redflag kernel changes to a vanilla kernel.
2) Create configuration files for the GCC for each of the plugins (i.e., field trace, lock trace,

malloc-trace and syscall-trace). To instrument a particular subsystem we need to find its structs,
fields, global and per struct locks and memory allocation routines.
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spin lock(&meta sinfo->lock);
spin lock(&BTRFS I(inode)->accounting lock);
if (BTRFS I(inode)->reserved extents <=

BTRFS I(inode)->outstanding extents) {
spin unlock(&BTRFS I(inode)->accounting lock);
spin unlock(&meta sinfo->lock);
return 0;

}

can be changed to.....

spin lock(&meta sinfo->lock);
if (BTRFS I(inode)->reserved extents <=

BTRFS I(inode)->outstanding extents) {
spin unlock(&meta sinfo->lock);
return 0;

}

spin lock(&BTRFS I(inode)->accounting lock);
if (BTRFS I(inode)->reserved extents <=

BTRFS I(inode)->outstanding extents) {
spin unlock(&BTRFS I(inode)->accounting lock);
spin unlock(&meta sinfo->lock);
return 0;

}

Figure 2.8: A candidate for double-checked locking

3) Compile the kernel image.
4) Install the kernel image.
5) Run a set of test cases on the installed kernel.
6) Run the algorithm on the logs collected and output the results to a file.
To ease the process of setting up Redflag we built a small language called AutoRedflag. Au-

toRedflag helps you specify various options for setting up the system, automatic patching of the
kernel with Redflag changes, creating configuration files forplugins, creating kernel configuration
file for enabling various options, compiling the kernel, running tests in parallel, copying log files
and running algorithm over the logs.

Importing the Redflag changes is very easy. AutoRedflag patches the new kernel with our
changes without any conflicts.

To configure the system, one needs to specify the kernel directory from which structs, locks
and memory-allocation routines are extracted. It creates the configuration files which is then
provided as an input to GCC plugins.

AutoRedflag has an option for enabling various options in thekernel configuration file. To
enable an option just provide the option name and AutoRedflagcreates a new configuration file
with the specified option enabled. It can also compile the kernel, if the kernel compilation option
is enabled.
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Currently, installation of the kernel image on virtual machine has to be done manually but this
process can be easily automated.

Once the image is installed, we need to boot the image. This operation is also done manually
by the user by booting the installed image in the virtual machine.

Running tests in parallel is very simple using AutoRedflag. AutoRedflag is a client/server
architecture. The AutoRedflag server takes input from AutoRedflag parser running on the host
machine and a client running on VMware. The parser parses theAutoRedflag configuration file.
The AutoRedflag configuration file has various options for running the system. The following
options are currently supported

Command Description
ipclient IP address of the client running in virtual machine
ipserver IP address of the server
hook-inlay Configuration file for field trace plug-in
sys-trace Configuration file for syscall trace plug-in
malloc-trace Configuration file for malloc trace plug-in
lock-trace Configuration file for lock trace plug-in
log-dir Output directory for results from algorithm
create plugin configs Enable plug-in config files
config-kernel-path directory path for kernel config file
save-config-dir directory for saving kernel configuration files
kernel-path path of the kernel
target-home-dir Directory on the Virtual machine in
which tests need to be run
binaries-dir Directory for specifying Redflag binaries
patch Option to patch the new kernel
source-patch-dir Kernel source directory option uses by patch command
dest-patch-dir kernel destination directory option uses by patch command
.config This option is used to create a new kernel configuration file.
component Name of the component that needs to be enabled in the .config
compile GCC compiler path
compile-threads Number of make threads for kernel compile

Table 2.1: AutoRedflag configuration options.

Running the test is simple. The configuration file contains commands which are to be run as
tests when the virtual machine is booted. When the virtual machine is up, a client is run on the
virtual machine. This client establishes a communication with the AutoRedflag server. The server
passes the commands to the client which are then run by the client as test cases. The configuration
file also contains options for running these tests in parallel. The client can be configured to run on
bootup usinginit.d scripts in Linux which runs when the kernel is booted up.

Once the tests finish, the log files are copied to a specified directory and AutoRedflag runs the
algorithms on the log files. The results of these algorithms are saved to a set of output files for
later analysis by the developer. Figure 2.9 shows a sample configuration file for the AutoRedflag.
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homedir=/root/
TEST 1 START
name=racer
#compile=/home/abhinav/aristotle-32/aristotle/src/modular-gcc/install-svn/bin/gcc
#compile-threads=4

TASK 1 START
CMD mkdir /mnt/wrapfs/
CMD mkdir /mnt/ext4/
CMD mount -t wrapfs -o lowerdir=/mnt/ext4/ none /mnt/wrapfs

CMD /root/racer/racer2.sh /mnt/wrapfs/ 60
TASK 1 END
EXECUTE TASK 1
TEST 1 END

Figure 2.9: An example configuration file for AutoRedflag

Each test can be configured to have multiple tasks either run in sequence or parallel. Commands
to be run are specified by CMD option. The EXECUTE command executes these commands. To
run multiple commands in parallel, multiple options are specified as arguments to the EXECUTE
command. These commands are sent to a client running on VM machine where they are executed
depending upon the options specified.
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Chapter 3

Evaluation

To evaluate its accuracy and performance, we exercised Redflag on three kernel components: two
file systems and one video driver. We took logs from each of these systems and analyzed those
logs with our Lockset and block-based implementations. We present the results of that analysis
here, along with performance benchmarks for our instrumentation and logging.

The two file systems we examine are Btrfs, a complex in-development on-disk file system,
and Wrapfs, a pass-through stackable file system that servesas a stackable file system template,
also in development. Because of the interdependencies between stackable file systems and the
underlying virtual file system (VFS), we instrumented all VFS data structures along with Wrapfs’s
data structures.

We logged each file system while running the Racer tool [35], which is designed to test a
variety of file-system system calls concurrently to triggerrare schedules. Our analysis does not
require a violating schedule to execute in order to detect it, but executing more schedules provides
better information to our LOA analysis.

Nouveau, the video driver we examined, provides hardware 2Dand 3D hardware acceleration
for Nvidia video cards. We logged Nouveau data structures while playing a video and running
several instances ofglxgears, a simple 3D OpenGL example. We were not able to run more
complicated 3D programs under Nouveau, which is still in early development.

3.1 Analysis Results

Total Bug Benign Stat Untraced lock
Btrfs 8 0 8 0 0
Wrapfs 78 2 45 29 2
Nouveau 11 0 0 0 11

Table 3.1: Reported races from the Lockset algorithm. From left to right, the columns show: total
reports, confirmed bugs, benign data races caused bystat, other benign data races, and false
positives caused by untraced locks.
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Lockset results Table 3.1 shows our analysis results for the Lockset algorithm. Our analysis of
Wrapfs revealed two confirmed locking bugs. The first bug results from an unprotected access to a
field in the filestruct, which is one of the VFS data structures we included for our Wrapfs tests.
A Lockset report (listed as “Bug” in Table 3.1) showed that two parallel calls to thewrite syscall
can access thepos field simultaneously. Investigating the report, we found anarticle describing
a bug resulting from the reported race: parallel writes to a file can sometimes write their data to
the same location in a file, in violation of POSIX requirements for writes [10]. Because proposed
fixes carried too high a performance cost, this bug is currently still present in the Linux kernel.

The second bug is in Wrapfs itself. Thewrapfs setattr function copies a data structure
from the wrapped file system (thelower inode) to a Wrapfs data structure (theupper inode) but
does not lock either inode, resulting in several Lockset reports. We discovered that file truncate
operations call thewrapfs setattr function after modifying the lower inode. If a truncate
operation’s call towrapfs setattr races with another call towrapfs setattr, the updates
to the lower inode from the truncate can sometimes be lost in the upper inode. We confirmed this
bug with the Wrapfs developers and tested a simple fix to the locking inwrapfs setattr.

Most of Lockset’s reports are in fact benign races: data races that occur but that do not af-
fect the correctness of the program. In particular, there are a number of benign races in thestat
syscall. Thestat syscall is responsible for copying information about a file from the file system’s
inode structure to the user process, but it does not lock the inode for the copy. The unprotected
copy can race with several other file system operations, causing stat to return inconsistent re-
sults. An inconsistentstat result returns some fields from an inode before a concurrent syscall
executed and some fields from after that syscall executed. This Linux community considers this
behavior preferable to the performance cost that additional locking in stat would introduce [2].
We list these races in the “Stat” column of Table 3.1. The remaining benign races are in the
“Benign” column.

All of the false positives in Nouveau resulted from variables that are protected by locks ex-
ternal to Nouveau. Because these locks do not belong to thestructs we targeted, they were
not logged, making them invisible to our analysis. Untracedlocks also caused two false positives
in Wrapfs (the “Untraced Lock” column in Table 3.1). If reports from an untraced lock become
overwhelming, the user can target the offending lock for instrumentation and produce a new log.

The “Untraced lock” false positive in the Nouveau driver is actually protected by the Big
Kernel Lock (BKL), which we did not instrument. The BKL is a monolithic lock that protects
data in many kernel systems. If kernel developers decide to replace the BKL in Nouveau, they
will need to introduce a new lock to protect the two variablesinvolved in this false positive.

3.2 Performance

Logging To measure the performance of our logging system, we tested logging overhead with
FileBench using a workload of mixed reads and writes on a small data set. We kept the data
set small enough to fit in RAM to ensure that the I/O cost of the workload did not dominate
our benchmark. We benchmarked logging on a computer with a 2.4GHz quad-core Intel E5530
processor and 12GB of RAM. Instrumentation in our benchmarktargeted the Btrfs file system
running as part of the 2.6.33 release of the Linux kernel. Along with the instrumented kernel, the
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test system ran Ubuntu 9.10 with packages up-to-date as of April 27, 2010.
With all Btrfs data structures instrumented but logging turned off, the workload ran with 12%

overhead. Turning logging on resulted in 35% overhead without stack trace logging. With stack
traces, logging ran with 45 times overhead. The added overhead is almost entirely from the ex-
pense of reading the stack trace itself, including traversing the frame pointer and mapping return
addresses to the locations of the functions they return to. The rest of logging overhead is caused
by the cost of calling instrumentation functions, synchronizing the logging queue, and copying
data into log records.

Analysis Though they run offline, we also measured performance results for each of our analy-
ses. We measured the time each analysis took along with memory usage for our Btrfs log, which
has 13.6 million events and 7,119 stack traces. Our analysesran on a test machine with an identical
hardware configuration to the computer we used to benchmark logging.

It took our Lockset implementation 15 minutes to analyze theBtrfs log, using 1.3GB of mem-
ory at its peak.

22



Chapter 4

Related Work

A number of techniques, both runtime and static, exist for tracking down difficult concurrency
errors. This section discusses tools from several categories: Lockset-based runtime race detectors,
static analyzers, model checkers, and runtime tools for atomicity checking.

Lockset Our Lockset implementation is informed primarily by the 1997 Eraser tool [32], which
is itself based on Dinning and Schonberg [12]. Eraser introduced memory reuse tracking and
a technique for determining when variables become shared sothat unprotected accesses during
initialization do not cause false positives. Variations ofLockset exist for Cilk [7], Java [8, 28, 29,
36], C++ [30], and the .NET platform [42]. These tools all detect errors on-the-fly, and most focus
on reducing the performance impact of computing and storingthe lockset. Their overheads are
typically better than Redflag’s data-collection overhead,but they use optimizations that would not
apply to other techniques, such as the block-based algorithm.

LiteRace uses sampling to track only a small percentage of accesses and synchronization
events. One of its goals is to target cold code paths, which are more likely to hide potentially
dangerous data races than frequently executed functions [24]. Users have no control over the sam-
pling, however; they cannot choose to target debugging effort to specific program modules or data
structures. LiteRace uses a purely happened-before–baseddetector, which is more likely to miss
data races because of scheduling perturbations than Lockset-based approaches [12].

Static analysis Static analysis tools are very effective for finding data races in large systems,
usually by employing a Lockset-style approach of finding variables that lack a consistent locking
discipline [9, 13, 19, 31, 33, 41]. The RacerX tool, for example, found data races in both the Linux
and FreeBSD kernels [13].

These tools cannot easily check for more complicated concurrency properties, such as atom-
icity. There is no static analysis equivalent to the block-based algorithms we used to check for
the atomicity of system calls. Existing static analyzers designed for atomicity properties check for
stale valuesandmethod consistency. The stale-value approach flags values that are saved within
a critical section and then later reused outside that critical section, which can often violate atom-
icity [4]. The method-consistency approach [37] is based onthe idea ofhigh-level data races[1];
it characterizes methods by theirlock views, the critical sections they execute, paired with the
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variables accessed in those critical sections. When methods’ lock views do notchain, it can often
mean inconsistent locking among a set of variables that are protected together. Both these ideas
form a useful intuition about the kinds of atomicity properties programmers expect, but neither is
equivalent to checking for atomicity. They can miss some kinds of atomicity violations, and they
can also report interleavings that are not atomicity violations.

Model checking Model checking can verify concurrency properties by ensuring that invariants
hold under all possible interleavings [6, 11, 18]. In particular, it is possible to show atomicity by
proving that a function produces the same resulting state nomatter how it is scheduled [3, 15, 34].
Such systems can detect any kind of concurrency error, but they do not scale to systems as large
as those that we tested. The Calvin-R checker, which directly checks for atomicity using Lipton’s
reduction property [22], can verify a 1,200-line NFS implementation given a developer-written
specification for every function it checks [16]. The largestfile system we checked, Btrfs, has more
than 54,000 lines of code.

The CHESS tool’s systematic testing approach is similar in flavor to model checking [27].
Rather than exhaustively checking every possible interleaving,CHESS executes all the schedules
that can result from a limited set of preemption points. The FiSC model checker was designed
to operate on an entire production file system, and successfully found errors in several Linux file
systems [40]. Its checking is single-threaded, however, and does not detect errors arising from
parallel executions.

Runtime atomicity Though we focused on the Lockset and block-based algorithmsfor our
analysis, there are several other runtime techniques for detecting different styles of concurrency
problems. All of these techniques could be adapted to work with Redflag’s logging output.

Like the block-based algorithm, analysis based on Lipton’sreduction property [22] can also
check operations for atomicity violations [14, 20, 38]. Although it checks for the same kinds of
errors, Lipton’s reduction is generally more efficient thanthe block-based algorithm, especially
for very long traces [38].

Another potentially useful analysis checks forhigh-level data races[1]. As with method con-
sistency, discussed earlier among the static analysis tools, high-level data races represent groups
of variables that are protected together but accessed in an inconsistent way.

AVIO’s analysis is similar to the block-based algorithm in that it reports pairs of instructions
that are interleaved inconsistently [23]. Xu et al’s analysis first infers what regions should be
atomic and then checks that they follow a 2-phase locking protocol [39]. These approaches have
the advantage that they do not need any programmer-suppliedinformation about which code re-
gions should be atomic. None of the runtime analysis tools discussed here operate at the kernel
level. Currently, Linux kernel developers who want to dynamically check their code for concur-
rency errors are limited to checks for API misuse and potential deadlock [26].
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Chapter 5

Conclusions

Redflag attempts to manage the complexity of concurrent systems software, targeting specific
components and identifying possible interleavings in those systems that can lead to difficult-to-
debug concurrency errors. We have shown that Redflag’s infrastructure is versatile: it produces
highly detailed logs of system execution on which it can run avariety of analyses. As Redflag is
modular, logs can target specific system data, making them more valuable to developers who want
to focus their efforts on individual system components.

We have shown that, although the cost of thorough system logging can be high, Redflag’s per-
formance is sufficient to capture traces that exercise many system calls and execution paths. The
runtime analyses that Redflag uses are designed to find problems even if they exist in schedules
that may occur only rarely, mitigating the problem of schedule perturbations resulting from log-
ging overhead. We have also presented a number of techniqueswe used to improve the accuracy
of our analysis. Besides finding data races our Lockset implementation also hints at places for per-
formance optimizations related to double check locking. Redflag also logs RCU synchronization,
so that its Lockset implementation can identify invalid synchronization of RCU-protected vari-
ables. Finally, we developed Lexical Object Availability (LOA) analysis to remove false positives
caused by complicated initialization code that uses multi-stage escape.
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Chapter 6

Future work

Memory barriers can cause subtle synchronization errors which are hard to debug. We plan to
improve upon our preliminary algorithm for detecting memory barrier problems and make it more
generic and concrete. We also plan to improve the algorithm to handle any type of re-ordering and
not just store-load reordering.

We also believe that in addition to finding errors, Redflag could be applied to the problem
of improving the performance of concurrent code. By examining locking and access patterns in
execution logs, Redflag can also be used to predict data structures which would benefit from RCU
based locking. Furthermore, if Redflag logged information about lock contention, it could find
critical sections that are too coarse-grained, leading to contention, or too fine-grained, requiring
unnecessary locking operations.

We can also extend our analysis to real-time kernel. Real-time kernel have variants of conven-
tional locking mechanism like spinlocks and RCUs which are more suited to real-time systems
performance.

Capturing stack traces is the most expensive part of our logging system. We plan to explore
ways to read less stack trace data in order to improve performance. If we instrument a small
number of function boundaries, we can capture only a partialstack trace or avoid reading the
stack trace all together when we know we have not exited the current function.

Finally, we can improve our logging system to get our race detection instrumentation frame-
work into the mainline kernel. The Linux kernel has a dynamicdeadlock detection tool, Lockdep,
but it does not have any tool for dynamic race detection. Thisis because race detection requires
more sophisticated analysis. We think that our targeted approach with offline analysis can be
brought into the mainline and is a more practical approach for race detection in the kernel.
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